Necroptosis does not drive disease pathogenesis in a mouse infective model of SARS-CoV-2 in vivo.


Journal

Cell death & disease
ISSN: 2041-4889
Titre abrégé: Cell Death Dis
Pays: England
ID NLM: 101524092

Informations de publication

Date de publication:
30 Jan 2024
Historique:
received: 26 02 2023
accepted: 15 01 2024
revised: 08 01 2024
medline: 30 1 2024
pubmed: 30 1 2024
entrez: 29 1 2024
Statut: epublish

Résumé

Necroptosis, a type of lytic cell death executed by the pseudokinase Mixed Lineage Kinase Domain-Like (MLKL) has been implicated in the detrimental inflammation caused by SARS-CoV-2 infection. We minimally and extensively passaged a single clinical SARS-CoV-2 isolate to create models of mild and severe disease in mice allowing us to dissect the role of necroptosis in SARS-CoV-2 disease pathogenesis. We infected wild-type and MLKL-deficient mice and found no significant differences in viral loads or lung pathology. In our model of severe COVID-19, MLKL-deficiency did not alter the host response, ameliorate weight loss, diminish systemic pro-inflammatory cytokines levels, or prevent lethality in aged animals. Our in vivo models indicate that necroptosis is dispensable in the pathogenesis of mild and severe COVID-19.

Identifiants

pubmed: 38286985
doi: 10.1038/s41419-024-06471-6
pii: 10.1038/s41419-024-06471-6
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

100

Subventions

Organisme : Department of Health | National Health and Medical Research Council (NHMRC)
ID : GNT1175011
Organisme : Department of Health | National Health and Medical Research Council (NHMRC)
ID : GNT1172929

Informations de copyright

© 2024. The Author(s).

Références

Singh S, McNab C, Olson RM, Bristol N, Nolan C, Bergstrøm E, et al. How an outbreak became a pandemic: a chronological analysis of crucial junctures and international obligations in the early months of the COVID-19 pandemic. Lancet. 2021;398:2109–24.
pubmed: 34762857 pmcid: 8575464 doi: 10.1016/S0140-6736(21)01897-3
Lee S, Channappanavar R, Kanneganti T-D. Coronaviruses: innate immunity, inflammasome activation, inflammatory cell death, and cytokines. Trends Immunol. 2020;41:1083–99.
pubmed: 33153908 pmcid: 7561287 doi: 10.1016/j.it.2020.10.005
Morais Da Silva M, Lira De Lucena AS, Paiva Júnior SDSL, Florêncio De Carvalho VM, Santana De Oliveira PS, Rosa MM, et al. Cell death mechanisms involved in cell injury caused by SARS‐CoV‐2. Rev Med Virol. 2021;32:e2292.
Bader SM, Cooney JP, Pellegrini M, Doerflinger M. Programmed cell death: the pathways to severe COVID-19? Biochem J. 2022;479:609–28.
pubmed: 35244141 doi: 10.1042/BCJ20210602
Pasparakis M, Vandenabeele P. Necroptosis and its role in inflammation. Nature. 2015;517:311–20.
pubmed: 25592536 doi: 10.1038/nature14191
Conos SA, Chen KW, De Nardo D, Hara H, Whitehead L, Núñez G, et al. Active MLKL triggers the NLRP3 inflammasome in a cell-intrinsic manner. Proc Natl Acad Sci USA. 2017;114:E961–e9.
pubmed: 28096356 pmcid: 5307433 doi: 10.1073/pnas.1613305114
Gutierrez KD, Davis MA, Daniels BP, Olsen TM, Ralli-Jain P, Tait SWG, et al. MLKL activation triggers NLRP3-mediated processing and release of IL-1β independently of gasdermin-D. J Immunol. 2017;198:2156–64.
pubmed: 28130493 doi: 10.4049/jimmunol.1601757
Potere N, Del Buono MG, Caricchio R, Cremer PC, Vecchié A, Porreca E, et al. Interleukin-1 and the NLRP3 inflammasome in COVID-19: Pathogenetic and therapeutic implications. eBioMedicine. 2022;85:104299.
pubmed: 36209522 pmcid: 9536001 doi: 10.1016/j.ebiom.2022.104299
Vercammen D, Brouckaert G, Denecker G, Van de Craen M, Declercq W, Fiers W, et al. Dual signaling of the Fas receptor: initiation of both apoptotic and necrotic cell death pathways. J Exp Med. 1998;188:919–30.
pubmed: 9730893 pmcid: 2213397 doi: 10.1084/jem.188.5.919
Laster SM, Wood J, Gooding L. Tumor necrosis factor can induce both apoptic and necrotic forms of cell lysis. J Immunol. 1988;141:2629–34.
pubmed: 3171180 doi: 10.4049/jimmunol.141.8.2629
Chan FK-M, Shisler J, Bixby JG, Felices M, Zheng L, Appel M, et al. A role for tumor necrosis factor receptor-2 and receptor-interacting protein in programmed necrosis and antiviral responses. J Biol Chem. 2003;278:51613–21.
pubmed: 14532286 doi: 10.1074/jbc.M305633200
Holler N, Zaru R, Micheau O, Thome M, Attinger A, Valitutti S, et al. Fas triggers an alternative, caspase-8–independent cell death pathway using the kinase RIP as effector molecule. Nat Immunol. 2000;1:489–95.
pubmed: 11101870 doi: 10.1038/82732
Kaiser WJ, Sridharan H, Huang C, Mandal P, Upton JW, Gough PJ, et al. Toll-like receptor 3-mediated necrosis via TRIF, RIP3, and MLKL. J Biol Chem. 2013;288:31268–79.
pubmed: 24019532 pmcid: 3829437 doi: 10.1074/jbc.M113.462341
Vercammen D, Beyaert R, Denecker G, Goossens V, Van Loo G, Declercq W, et al. Inhibition of caspases increases the sensitivity of L929 cells to necrosis mediated by tumor necrosis factor. J Exp Med. 1998;187:1477–85.
pubmed: 9565639 pmcid: 2212268 doi: 10.1084/jem.187.9.1477
Mocarski ES, Upton JW, Kaiser WJ. Viral infection and the evolution of caspase 8-regulated apoptotic and necrotic death pathways. Nat Rev Immunol. 2011;12:79–88.
pubmed: 22193709 pmcid: 4515451 doi: 10.1038/nri3131
Murphy JM, Czabotar PE, Hildebrand JM, Lucet IS, Zhang JG, Alvarez-Diaz S, et al. The pseudokinase MLKL mediates necroptosis via a molecular switch mechanism. Immunity. 2013;39:443–53.
pubmed: 24012422 doi: 10.1016/j.immuni.2013.06.018
Hildebrand JM, Tanzer MC, Lucet IS, Young SN, Spall SK, Sharma P, et al. Activation of the pseudokinase MLKL unleashes the four-helix bundle domain to induce membrane localization and necroptotic cell death. Proc Natl Acad Sci USA. 2014;111:15072–7.
pubmed: 25288762 pmcid: 4210347 doi: 10.1073/pnas.1408987111
Garnish SE, Meng Y, Koide A, Sandow JJ, Denbaum E, Jacobsen AV, et al. Conformational interconversion of MLKL and disengagement from RIPK3 precede cell death by necroptosis. Nat Commun. 2021;12:2211.
pubmed: 33850121 pmcid: 8044208 doi: 10.1038/s41467-021-22400-z
Samson AL, Zhang Y, Geoghegan ND, Gavin XJ, Davies KA, Mlodzianoski MJ, et al. MLKL trafficking and accumulation at the plasma membrane control the kinetics and threshold for necroptosis. Nat Commun. 2020;11:3151.
pubmed: 32561730 pmcid: 7305196 doi: 10.1038/s41467-020-16887-1
Sethi A, Horne CR, Fitzgibbon C, Wilde K, Davies KA, Garnish SE, et al. Membrane permeabilization is mediated by distinct epitopes in mouse and human orthologs of the necroptosis effector, MLKL. Cell Death Differ. 2022;29:1804–15.
pubmed: 35264780 pmcid: 9433430 doi: 10.1038/s41418-022-00965-6
Sarhan J, Liu BC, Muendlein HI, Weindel CG, Smirnova I, Tang AY, et al. Constitutive interferon signaling maintains critical threshold of MLKL expression to license necroptosis. Cell Death Differ 2019;26:332–47.
pubmed: 29786074 doi: 10.1038/s41418-018-0122-7
Knuth A-K, Rösler S, Schenk B, Kowald L, van Wijk SJL, Fulda S. Interferons transcriptionally up-regulate MLKL expression in cancer cells. Neoplasia. 2019;21:74–81.
pubmed: 30521981 doi: 10.1016/j.neo.2018.11.002
Akamatsu MA, de Castro JT, Takano CY, Ho PL. Off balance: Interferons in COVID-19 lung infections. EBioMedicine. 2021;73:103642. https://doi.org/10.1016/j.ebiom.2021.103642 .
Xu G, Li Y, Zhang S, Peng H, Wang Y, Li D, et al. SARS-CoV-2 promotes RIPK1 activation to facilitate viral propagation. Cell Res. 2021;31:1230–43.
pubmed: 34663909 pmcid: 8522117 doi: 10.1038/s41422-021-00578-7
Schweizer TA, Shambat SM, Vulin C, Hoeller S, Acevedo C, Huemer M, et al. Blunted Fas signaling favors RIPK1-driven neutrophil necroptosis in critically ill COVID-19 patients. bioRxiv. 2021. https://doi.org/10.1101/2021.03.19.436166 .
Frühbeck G, Catalán V, Valentí V, Moncada R, Gómez-Ambrosi J, Becerril S, et al. FNDC4 and FNDC5 reduce SARS-CoV-2 entry points and spike glycoprotein S1-induced pyroptosis, apoptosis, and necroptosis in human adipocytes. Cell Mol Immunol. 2021;18:2457–9.
pubmed: 34465884 pmcid: 8405856 doi: 10.1038/s41423-021-00762-0
Steenblock C, Richter S, Berger I, Barovic M, Schmid J, Schubert U, et al. Viral infiltration of pancreatic islets in patients with COVID-19. Nat Commun. 2021;12:3534.
pubmed: 34112801 pmcid: 8192507 doi: 10.1038/s41467-021-23886-3
Koupenova M, Corkrey HA, Vitseva O, Tanriverdi K, Somasundaran M, Liu P, et al. SARS-CoV-2 initiates programmed cell death in platelets. Circ Res. 2021;129:631–46.
pubmed: 34293929 pmcid: 8409903 doi: 10.1161/CIRCRESAHA.121.319117
Petrie EJ, Birkinshaw RW, Koide A, Denbaum E, Hildebrand JM, Garnish SE, et al. Identification of MLKL membrane translocation as a checkpoint in necroptotic cell death using Monobodies. Proc Natl Acad Sci USA. 2020;117:8468–75.
pubmed: 32234780 pmcid: 7165463 doi: 10.1073/pnas.1919960117
Zheng J, Wong L-YR, Li K, Verma AK, Ortiz ME, Wohlford-Lenane C, et al. COVID-19 treatments and pathogenesis including anosmia in K18-hACE2 mice. Nature. 2021;589:603–7.
pubmed: 33166988 doi: 10.1038/s41586-020-2943-z
Kumari P, Rothan HA, Natekar JP, Stone S, Pathak H, Strate PG, et al. Neuroinvasion and Encephalitis Following Intranasal Inoculation of SARS-CoV-2 in K18-hACE2 Mice. Viruses. 2021;13:132.
pubmed: 33477869 pmcid: 7832889 doi: 10.3390/v13010132
Israelow B, Song E, Mao T, Lu P, Meir A, Liu F, et al. Mouse model of SARS-CoV-2 reveals inflammatory role of type I interferon signaling. J Exp Med. 2020;217:e20201241.
pubmed: 32750141 pmcid: 7401025 doi: 10.1084/jem.20201241
Li S, Zhang Y, Guan Z, Ye M, Li H, You M, et al. SARS-CoV-2 Z-RNA activates the ZBP1-RIPK3 pathway to promote virus-induced inflammatory responses. Cell Res. 2023;33:201–14.
pubmed: 36650286 pmcid: 9844202 doi: 10.1038/s41422-022-00775-y
Hassan AO, Case JB, Winkler ES, Thackray LB, Kafai NM, Bailey AL, et al. A SARS-CoV-2 Infection Model in Mice Demonstrates Protection by Neutralizing Antibodies. Cell. 2020;182:744–53.e4.
pubmed: 32553273 pmcid: 7284254 doi: 10.1016/j.cell.2020.06.011
Zost SJ, Gilchuk P, Case JB, Binshtein E, Chen RE, Reidy JX, et al. Potently neutralizing human antibodies that block SARS-CoV-2 receptor binding and protect animals. bioRxiv. 2020. https://doi.org/10.1101/2020.05.22.111005 .
Huang H, Zhu Y, Niu Z, Zhou L, Sun Q. SARS-CoV-2 N501Y variants of concern and their potential transmission by mouse. Cell Death Differ 2021;28:2840–2.
pubmed: 34389814 pmcid: 8362871 doi: 10.1038/s41418-021-00846-4
Gu H, Chen Q, Yang G, He L, Fan H, Deng Y-Q, et al. Adaptation of SARS-CoV-2 in BALB/c mice for testing vaccine efficacy. Science. 2020;369:1603–7.
pubmed: 32732280 pmcid: 7574913 doi: 10.1126/science.abc4730
Niu Z, Zhang Z, Gao X, Du P, Lu J, Yan B, et al. N501Y mutation imparts cross-species transmission of SARS-CoV-2 to mice by enhancing receptor binding. Signal Transduct Target Ther. 2021;6:284.
pubmed: 34315847 pmcid: 8313414 doi: 10.1038/s41392-021-00704-2
Morton DB. A systematic approach for establishing humane endpoints. Ilar J. 2000;41:80–6.
pubmed: 11406701 doi: 10.1093/ilar.41.2.80
Hao Q, Shetty S, Tucker TA, Idell S, Tang H. Interferon-γ preferentially promotes necroptosis of lung epithelial cells by upregulating MLKL. Cells. 2022;11:563.
pubmed: 35159372 pmcid: 8833897 doi: 10.3390/cells11030563
Legarda D, Justus SJ, Ang RL, Rikhi N, Li W, Moran TM, et al. CYLD proteolysis protects macrophages from TNF-mediated auto-necroptosis induced by LPS and licensed by type I IFN. Cell Rep. 2016;15:2449–61.
pubmed: 27264187 pmcid: 4909532 doi: 10.1016/j.celrep.2016.05.032
Stutz MD, Ojaimi S, Allison C, Preston S, Arandjelovic P, Hildebrand JM, et al. Necroptotic signaling is primed in Mycobacterium tuberculosis-infected macrophages, but its pathophysiological consequence in disease is restricted. Cell Death Differ 2018;25:951–65.
pubmed: 29229989 doi: 10.1038/s41418-017-0031-1
Bader SM, Cooney JP, Sheerin D, Taiaroa G, Harty L, Davidson KC, et al. SARS-CoV-2 mouse adaptation selects virulence mutations that cause TNF-driven age-dependent severe disease with human correlates. Proc Natl Acad Sci USA. 2023;120:e2301689120.
pubmed: 37523564 pmcid: 10410703 doi: 10.1073/pnas.2301689120
Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395:497–506.
pubmed: 31986264 pmcid: 7159299 doi: 10.1016/S0140-6736(20)30183-5
Li S, Jiang L, Li X, Lin F, Wang Y, Li B, et al. Clinical and pathological investigation of patients with severe COVID-19. JCI Insight. 2020;5:e138070.
pubmed: 32427582 pmcid: 7406259 doi: 10.1172/jci.insight.138070
Blanco-Melo D, Nilsson-Payant BE, Liu W-C, Uhl S, Hoagland D, Møller R, et al. Imbalanced host response to SARS-CoV-2 drives development of COVID-19. Cell. 2020;181:1036–45.e9.
pubmed: 32416070 pmcid: 7227586 doi: 10.1016/j.cell.2020.04.026
Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395:1033–4.
pubmed: 32192578 pmcid: 7270045 doi: 10.1016/S0140-6736(20)30628-0
Yanez ND, Weiss NS, Romand JA, Treggiari MM. COVID-19 mortality risk for older men and women. BMC Public Health. 2020;20:1742.
pubmed: 33213391 pmcid: 7675386 doi: 10.1186/s12889-020-09826-8
Guan W-J, Ni Z-Y, Hu Y, Liang W-H, Ou C-Q, He J-X, et al. Clinical characteristics of coronavirus disease 2019 in China. N. Engl J Med. 2020;382:1708–20.
pubmed: 32109013 doi: 10.1056/NEJMoa2002032
Yang Y, Li X, Zhang T, Xu D. RIP kinases and necroptosis in aging and aging-related diseases. Life Med. 2022;1:2–20.
doi: 10.1093/lifemedi/lnac003
Royce GH, Brown-Borg HM, Deepa SS. The potential role of necroptosis in inflammaging and aging. GeroScience. 2019;41:795–811.
pubmed: 31721033 pmcid: 6925091 doi: 10.1007/s11357-019-00131-w
Riegler AN, Brissac T, Gonzalez-Juarbe N, Orihuela CJ. Necroptotic Cell Death Promotes Adaptive Immunity Against Colonizing Pneumococci. Front Immunol. 2019;10:615.
pubmed: 31019504 pmcid: 6459137 doi: 10.3389/fimmu.2019.00615
Li S, Zhang Y, Guan Z, Li H, Ye M, Chen X, et al. SARS-CoV-2 triggers inflammatory responses and cell death through caspase-8 activation. Signal Transduct Target Ther. 2020;5:235.
pubmed: 33037188 pmcid: 7545816 doi: 10.1038/s41392-020-00334-0
Junqueira C, Crespo Ã, Ranjbar S, Lewandrowski M, Ingber J, de Lacerda LB, et al. SARS-CoV-2 infects blood monocytes to activate NLRP3 and AIM2 inflammasomes, pyroptosis and cytokine release. Res Sq. 2021. https://doi.org/10.21203/rs.3.rs-153628/v1 .
Yang D, Liang Y, Zhao S, Ding Y, Zhuang Q, Shi Q, et al. ZBP1 mediates interferon-induced necroptosis. Cell Mol Immunol. 2020;17:356–68.
pubmed: 31076724 doi: 10.1038/s41423-019-0237-x
Muendlein HI, Connolly WM, Magri Z, Jetton D, Smirnova I, Degterev A, et al. ZBP1 promotes inflammatory responses downstream of TLR3/TLR4 via timely delivery of RIPK1 to TRIF. Proc Natl Acad Sci. 2022;119:e2113872119.
pubmed: 35666872 pmcid: 9214535 doi: 10.1073/pnas.2113872119
Newton K, Dugger DL, Maltzman A, Greve JM, Hedehus M, Martin-McNulty B, et al. RIPK3 deficiency or catalytically inactive RIPK1 provides greater benefit than MLKL deficiency in mouse models of inflammation and tissue injury. Cell Death Differ 2016;23:1565–76.
pubmed: 27177019 pmcid: 5072432 doi: 10.1038/cdd.2016.46
Samson AL, Fitzgibbon C, Patel KM, Hildebrand JM, Whitehead LW, Rimes JS, et al. A toolbox for imaging RIPK1, RIPK3, and MLKL in mouse and human cells. Cell Death Differ. 2021;28:2126–44.
pubmed: 33589776 pmcid: 8257593 doi: 10.1038/s41418-021-00742-x
Müller T, Dewitz C, Schmitz J, Schröder AS, Bräsen JH, Stockwell BR, et al. Necroptosis and ferroptosis are alternative cell death pathways that operate in acute kidney failure. Cell Mol Life Sci. 2017;74:3631–45.
pubmed: 28551825 pmcid: 5589788 doi: 10.1007/s00018-017-2547-4
Upton JW, Chan FK-M. Staying alive: cell death in antiviral immunity. Mol cell. 2014;54:273–80.
pubmed: 24766891 pmcid: 4010939 doi: 10.1016/j.molcel.2014.01.027
Chan FK-M, Luz NF, Moriwaki K. Programmed necrosis in the cross talk of cell death and inflammation. Annu Rev Immunol. 2015;33:79–106.
pubmed: 25493335 doi: 10.1146/annurev-immunol-032414-112248
Omoto S, Guo H, Talekar GR, Roback L, Kaiser WJ, Mocarski ES. Suppression of RIP3-dependent necroptosis by human cytomegalovirus. J Biol Chem. 2015;290:11635–48.
pubmed: 25778401 pmcid: 4416866 doi: 10.1074/jbc.M115.646042
Liu Z, Nailwal H, Rector J, Rahman MM, Sam R, McFadden G, et al. A class of viral inducer of degradation of the necroptosis adaptor RIPK3 regulates virus-induced inflammation. Immunity. 2021;54:247–58.e7.
pubmed: 33444549 pmcid: 7878414 doi: 10.1016/j.immuni.2020.11.020
Lu Z, Van Eeckhoutte HP, Liu G, Nair PM, Jones B, Gillis CM, et al. Necroptosis signaling promotes inflammation, airway remodeling, and emphysema in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2021;204:667–81.
pubmed: 34133911 doi: 10.1164/rccm.202009-3442OC
Hierholzer JC, Killington RA. Virus isolation and quantitation. In: Virology Methods Manual; 1996. p. 25–46. https://doi.org/10.1016/B978-012465330-6/50003-8 .
Matute-Bello G, Downey G, Moore BB, Groshong SD, Matthay MA, Slutsky AS, et al. An official American Thoracic Society workshop report: features and measurements of experimental acute lung injury in animals. Am J Respir Cell Mol Biol. 2011;44:725–38.
pubmed: 21531958 pmcid: 7328339 doi: 10.1165/rcmb.2009-0210ST
Newton K, Wickliffe KE, Maltzman A, Dugger DL, Strasser A, Pham VC, et al. RIPK1 inhibits ZBP1-driven necroptosis during development. Nature. 2016;540:129–33.
pubmed: 27819682 doi: 10.1038/nature20559
Petrie EJ, Sandow JJ, Lehmann WIL, Liang LY, Coursier D, Young SN, et al. Viral MLKL homologs subvert necroptotic cell death by sequestering cellular RIPK3. Cell Rep. 2019;28:3309–19.e5.
pubmed: 31553902 doi: 10.1016/j.celrep.2019.08.055

Auteurs

Stefanie M Bader (S)

The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia.
Department of Medical Biology, University of Melbourne, Melbourne, VIC, 3050, Australia.

James P Cooney (JP)

The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia.
Department of Medical Biology, University of Melbourne, Melbourne, VIC, 3050, Australia.

Reet Bhandari (R)

The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia.
Department of Medical Biology, University of Melbourne, Melbourne, VIC, 3050, Australia.

Liana Mackiewicz (L)

The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia.

Merle Dayton (M)

The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia.

Dylan Sheerin (D)

The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia.
Department of Medical Biology, University of Melbourne, Melbourne, VIC, 3050, Australia.

Smitha Rose Georgy (SR)

Department of Anatomic Pathology, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Werribee, VIC, 3030, Australia.

James M Murphy (JM)

The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia.
Department of Medical Biology, University of Melbourne, Melbourne, VIC, 3050, Australia.
Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.

Kathryn C Davidson (KC)

The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia.
Department of Medical Biology, University of Melbourne, Melbourne, VIC, 3050, Australia.

Cody C Allison (CC)

The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia.

Marc Pellegrini (M)

The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia.
Department of Medical Biology, University of Melbourne, Melbourne, VIC, 3050, Australia.

Marcel Doerflinger (M)

The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia. doerflinger.m@wehi.edu.au.
Department of Medical Biology, University of Melbourne, Melbourne, VIC, 3050, Australia. doerflinger.m@wehi.edu.au.

Classifications MeSH