Genetic constraints in genes exhibiting splicing plasticity in facultative diapause.
Journal
Heredity
ISSN: 1365-2540
Titre abrégé: Heredity (Edinb)
Pays: England
ID NLM: 0373007
Informations de publication
Date de publication:
30 Jan 2024
30 Jan 2024
Historique:
received:
26
02
2023
accepted:
03
01
2024
revised:
28
12
2023
medline:
31
1
2024
pubmed:
31
1
2024
entrez:
30
1
2024
Statut:
aheadofprint
Résumé
Phenotypic plasticity is produced and maintained by processes regulating the transcriptome. While differential gene expression is among the most important of these processes, relatively little is known about other sources of transcriptional variation. Previous work suggests that alternative splicing plays an extensive and functionally unique role in transcriptional plasticity, though plastically spliced genes may be more constrained than the remainder of expressed genes. In this study, we explore the relationship between expression and splicing plasticity, along with the genetic diversity in those genes, in an ecologically consequential polyphenism: facultative diapause. Using 96 samples spread over two tissues and 10 timepoints, we compare the extent of differential splicing and expression between diapausing and direct developing pupae of the butterfly Pieris napi. Splicing differs strongly between diapausing and direct developing trajectories but alters a smaller and functionally unique set of genes compared to differential expression. We further test the hypothesis that among these expressed loci, plastically spliced genes are likely to experience the strongest purifying selection to maintain seasonally plastic phenotypes. Genes with unique transcriptional changes through diapause consistently had the lowest nucleotide diversity, and this effect was consistently stronger among genes that were differentially spliced compared to those with just differential expression through diapause. Further, the strength of negative selection was higher in the population expressing diapause every generation. Our results suggest that maintenance of the molecular mechanisms involved in diapause progression, including post-transcriptional modifications, are highly conserved and likely to experience genetic constraints, especially in northern populations of P. napi.
Identifiants
pubmed: 38291272
doi: 10.1038/s41437-024-00669-2
pii: 10.1038/s41437-024-00669-2
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Carl Tryggers Stiftelse för Vetenskaplig Forskning (Carl Trygger Foundation)
ID : CTS 18:415
Organisme : Carl Tryggers Stiftelse för Vetenskaplig Forskning (Carl Trygger Foundation)
ID : CTS 18:415
Organisme : Vetenskapsrådet (Swedish Research Council)
ID : 2017-04386
Organisme : Vetenskapsrådet (Swedish Research Council)
ID : 2017-04386
Organisme : Vetenskapsrådet (Swedish Research Council)
ID : 2012-3715
Organisme : Vetenskapsrådet (Swedish Research Council)
ID : 2010- 5341
Organisme : Vetenskapsrådet (Swedish Research Council)
ID : 621-2012-4001
Organisme : Academy of Finland (Suomen Akatemia)
ID : 131155
Organisme : Academy of Finland (Suomen Akatemia)
ID : 131155
Organisme : Knut och Alice Wallenbergs Stiftelse (Knut and Alice Wallenberg Foundation)
ID : 2012.0058
Informations de copyright
© 2024. The Author(s).
Références
Aamodt RM (2008) The caste- and age-specific expression signature of honeybee heat shock genes shows an alternative splicing-dependent regulation of Hsp90. Mech Ageing Dev 129:632–637
pubmed: 18760295
doi: 10.1016/j.mad.2008.07.002
Abrieux A, Xue Y, Cai Y, Lewald KM, Nguyen HN, Zhang Y et al. (2020) EYES ABSENT and TIMELESS integrate photoperiodic and temperature cues to regulate seasonal physiology in Drosophila. Proc Natl Acad Sci 117:15293–15304
pubmed: 32541062
pmcid: 7334534
doi: 10.1073/pnas.2004262117
Alexa A, Rahnenfuhrer J (2022) topGO: Enrichment Analysis for Gene Ontology. R package version 2.54.0, https://bioconductor.org/packages/topGO
Aris-Brosou S, Excoffier L (1996) The impact of population expansion and mutation rate heterogeneity on DNA sequence polymorphism. Mol Biol Evol 13:494–504
pubmed: 8742638
doi: 10.1093/oxfordjournals.molbev.a025610
Barberà M, Collantes-Alegre JM, Martínez-Torres D (2017) Characterisation, analysis of expression and localisation of circadian clock genes from the perspective of photoperiodism in the aphid Acyrthosiphon pisum. Insect Biochem Mol Biol 83:54–67
pubmed: 28235563
doi: 10.1016/j.ibmb.2017.02.006
Brůna T, Hoff KJ, Lomsadze A, Stanke M, Borodovsky M (2021) BRAKER2: automatic eukaryotic genome annotation with GeneMark-EP+ and AUGUSTUS supported by a protein database. NAR Genomics Bioinforma 3:lqaa108
doi: 10.1093/nargab/lqaa108
Buchfink B, Xie C, Huson DH (2015) Fast and sensitive protein alignment using DIAMOND. Nat Methods 12:59–60
pubmed: 25402007
doi: 10.1038/nmeth.3176
Buckley LB, Kingsolver JG (2021) Evolution of thermal sensitivity in changing and variable climates. Annu Rev Ecol Evol Syst 52:563–586
doi: 10.1146/annurev-ecolsys-011521-102856
Chen W, Geng S-L, Song Z, Li Y-J, Wang H, Cao J-Y (2019) Alternative splicing and expression analysis of HSF1 in diapause pupal brains in the cotton bollworm, Helicoverpa armigera. Pest Manag Sci 75:1258–1269
pubmed: 30324758
doi: 10.1002/ps.5238
Chen Y, Lun ATL, Smyth GK (2016) From reads to genes to pathways: differential expression analysis of RNA-Seq experiments using Rsubread and the edgeR quasi-likelihood pipeline. F1000Res 5:1438
pubmed: 27508061
pmcid: 4934518
Cramer P (2019) Organization and regulation of gene transcription. Nature 573:45–54
pubmed: 31462772
doi: 10.1038/s41586-019-1517-4
Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO et al. (2021) Twelve years of SAMtools and BCFtools. Gigascience 10:giab008
pubmed: 33590861
pmcid: 7931819
doi: 10.1093/gigascience/giab008
Davis ES, Mu W, Lee S, Dozmorov MG, Love MI, Phanstiel DH (2023). matchRanges: Generating null hypothesis genomic ranges via covariate-matched sampling. Bioinformatics. https://doi.org/10.1093/bioinformatics/btad197
de Souza JES, Ramalho RF, Galante PAF, Meyer D, de Souza SJ (2011) Alternative splicing and genetic diversity: silencers are more frequently modified by SNVs associated with alternative exon/intron borders. Nucleic Acids Res 39:4942–4948
pubmed: 21398627
pmcid: 3130264
doi: 10.1093/nar/gkr081
Dowle EJ, Powell THQ, Doellman MM, Meyers PJ, Calvert MB, Walden KKO et al. (2020) Genome-wide variation and transcriptional changes in diverse developmental processes underlie the rapid evolution of seasonal adaptation. Proc Natl Acad Sci 117:23960–23969
pubmed: 32900926
pmcid: 7519392
doi: 10.1073/pnas.2002357117
Dutoit L, Mugal CF, Bolívar P, Wang M, Nadachowska-Brzyska K, Smeds L et al. (2018) Sex-biased gene expression, sexual antagonism and levels of genetic diversity in the collared flycatcher (Ficedula albicollis) genome. Mol Ecol 27:3572–3581
pubmed: 30055065
doi: 10.1111/mec.14789
Ezard THG, Prizak R, Hoyle RB (2014) The fitness costs of adaptation via phenotypic plasticity and maternal effects. Funct Ecol 28:693–701
doi: 10.1111/1365-2435.12207
Foley LE, Ling J, Joshi R, Evantal N, Kadener S, Emery P (2019) Drosophila PSI controls circadian period and the phase of circadian behavior under temperature cycle via tim splicing (M Ramaswami and RL Calabrese, Eds.). eLife 8:e50063
pubmed: 31702555
pmcid: 6890465
doi: 10.7554/eLife.50063
Garrigan D, Lewontin R, Wakeley J (2010) Measuring the sensitivity of single-locus “neutrality tests” using a direct perturbation approach. Mol Biol Evol 27:73–89
pubmed: 19744997
doi: 10.1093/molbev/msp209
Gautier M, Vitalis R, Flori L, Estoup A (2022) f-Statistics estimation and admixture graph construction with Pool-Seq or allele count data using the R package poolfstat. Mol Ecol Res 22:1394–1416. https://doi.org/10.1111/1755-0998.13557
doi: 10.1111/1755-0998.13557
Ghalambor CK, McKay JK, Carroll SP, Reznick DN (2007) Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Funct Ecol 21:394–407
doi: 10.1111/j.1365-2435.2007.01283.x
Goren A, Ram O, Amit M, Keren H, Lev-Maor G, Vig I et al. (2006) Comparative analysis identifies exonic splicing regulatory sequences—the complex definition of enhancers and silencers. Mol Cell 22:769–781
pubmed: 16793546
doi: 10.1016/j.molcel.2006.05.008
Grantham ME, Brisson JA (2018) Extensive differential splicing underlies phenotypically plastic aphid morphs. Mol Biol Evol 35:1934–1946
pubmed: 29722880
pmcid: 6063273
doi: 10.1093/molbev/msy095
Haugen IMA, Gotthard K (2015) Diapause induction and relaxed selection on alternative developmental pathways in a butterfly. J Anim Ecol 84:464–472
doi: 10.1111/1365-2656.12291
Healy TM, Schulte PM (2019). Patterns of alternative splicing in response to cold acclimation in fish. J Exper Biol 222:jeb193516
Helanterä H, Uller T (2014) Neutral and adaptive explanations for an association between caste-biased gene expression and rate of sequence evolution. Front Genet 5:297
Hoff KJ, Lange S, Lomsadze A, Borodovsky M, Stanke M (2016) BRAKER1: unsupervised RNA-seq-based genome annotation with GeneMark-ET and AUGUSTUS. Bioinformatics 32:767–769
pubmed: 26559507
doi: 10.1093/bioinformatics/btv661
Hoff KJ, Lomsadze A, Borodovsky M, Stanke M (2019) Whole-genome annotation with BRAKER. In: Kollmar M (ed) Gene prediction: methods and protocols, methods in molecular biology. Springer, New York, NY, pp 65–95
Jacobs A, Elmer KR (2021) Alternative splicing and gene expression play contrasting roles in the parallel phenotypic evolution of a salmonid fish. Mol Ecol 30:4955–4969
pubmed: 33502030
pmcid: 8653899
doi: 10.1111/mec.15817
Kang DS, Cotten MA, Denlinger DL, Sim C (2016) Comparative transcriptomics reveals key gene expression differences between diapausing and non-diapausing adults of culex pipiens. PLOS One 11:e0154892
pubmed: 27128578
pmcid: 4851316
doi: 10.1371/journal.pone.0154892
Kassambara A (2023) ggpubr: 'ggplot2' Based Publication Ready Plots. R package version 0.6.0, https://rpkgs.datanovia.com/ggpubr/
Kassambara A (2023) rstatix: Pipe-Friendly Framework for Basic Statistical Tests. R package version 0.7.2, https://rpkgs.datanovia.com/rstatix/
Kim D, Paggi JM, Park C, Bennett C, Salzberg SL (2019) Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol 37:907–915
pubmed: 31375807
pmcid: 7605509
doi: 10.1038/s41587-019-0201-4
Kivelä SM, Svensson B, Tiwe A, Gotthard K (2015) Thermal plasticity of growth and development varies adaptively among alternative developmental pathways. Evolution 69:2399–2413
pubmed: 26202579
doi: 10.1111/evo.12734
Kofler R, Orozco-terWengel P, Maio ND, Pandey RV, Nolte V, Futschik A et al. (2011) PoPoolation: a toolbox for population genetic analysis of next generation sequencing data from pooled individuals. PLOS One 6:e15925
pubmed: 21253599
pmcid: 3017084
doi: 10.1371/journal.pone.0015925
Kofler R, Pandey RV, Schlötterer C (2011) PoPoolation2: identifying differentiation between populations using sequencing of pooled DNA samples (Pool-Seq). Bioinformatics 27:3435–3436
pubmed: 22025480
pmcid: 3232374
doi: 10.1093/bioinformatics/btr589
Koštál V (2006) Eco-physiological phases of insect diapause. J Insect Physiol 52:113–127
pubmed: 16332347
doi: 10.1016/j.jinsphys.2005.09.008
Koštál V, Štětina T, Poupardin R, Korbelová J, Bruce AW (2017) Conceptual framework of the eco-physiological phases of insect diapause development justified by transcriptomic profiling. Proc Natl Acad Sci 114:8532–8537
pubmed: 28720705
pmcid: 5559046
doi: 10.1073/pnas.1707281114
Kumar L, Futschik ME (2007) Mfuzz: A software package for soft clustering of microarray data. Bioinformation 2:5–7
pubmed: 18084642
pmcid: 2139991
doi: 10.6026/97320630002005
Lafuente E, Beldade P (2019) Genomics of developmental plasticity in animals. Front Genet 10:720
Lang AS, Austin SH, Harris RM, Calisi RM, MacManes MD (2020) Stress-mediated convergence of splicing landscapes in male and female rock doves. BMC Genom 21:251
doi: 10.1186/s12864-020-6600-6
Lehmann P, Pruisscher P, Posledovich D, Carlsson M, Käkelä R, Tang P et al. (2016) Energy and lipid metabolism during direct and diapause development in a pierid butterfly. J Exp Biol 219:3049–3060
pubmed: 27445351
Lehmann P, Van Der Bijl W, Nylin S, Wheat CW, Gotthard K (2017) Timing of diapause termination in relation to variation in winter climate. Physiol Entomol 42:232–238
doi: 10.1111/phen.12188
Leung C, Rescan M, Grulois D, Chevin L-M (2020) Reduced phenotypic plasticity evolves in less predictable environments. Ecol Lett 23:1664–1672
pubmed: 32869431
pmcid: 7754491
doi: 10.1111/ele.13598
Li H (2013) Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv https://arxiv.org/abs/1303.3997
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N et al. (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079
pubmed: 19505943
pmcid: 2723002
doi: 10.1093/bioinformatics/btp352
Li K, Tian L, Guo Z, Guo S, Zhang J, Gu S-H et al. (2016) 20-hydroxyecdysone (20E) primary response gene E75 isoforms mediate steroidogenesis autoregulation and regulate developmental timing in bombyx. J Biol Chem 291:18163–18175
pubmed: 27365399
pmcid: 5000065
doi: 10.1074/jbc.M116.737072
Liao Y, Smyth GK, Shi W (2014) featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30:923–930
pubmed: 24227677
doi: 10.1093/bioinformatics/btt656
Liao Y, Smyth GK, Shi W (2019) The R package Rsubread is easier, faster, cheaper and better for alignment and quantification of RNA sequencing reads. Nucleic Acids Res 47:e47–e47
pubmed: 30783653
pmcid: 6486549
doi: 10.1093/nar/gkz114
Lindestad O, von Schmalensee L, Lehmann P, Gotthard K (2020) Variation in butterfly diapause duration in relation to voltinism suggests adaptation to autumn warmth, not winter cold. Funct Ecol 34:1029–1040
doi: 10.1111/1365-2435.13525
Lindestad O, Wheat CW, Nylin S, Gotthard K (2019) Local adaptation of photoperiodic plasticity maintains life cycle variation within latitudes in a butterfly. Ecology 100:e02550
pubmed: 30375642
doi: 10.1002/ecy.2550
Liu Y, Beyer A, Aebersold R (2016) On the dependency of cellular protein levels on mRNA abundance. Cell 165:535–550
pubmed: 27104977
doi: 10.1016/j.cell.2016.03.014
Lohse K, Hayward A, Ebdon S, Darwin Tree of Life Barcoding collective, Wellcome Sanger Institute Tree of Life programme, Wellcome Sanger Institute Scientific Operations: DNA Pipelines collective, Tree of Life Core Informatics collective, & Darwin Tree of Life Consortium (2021) The genome sequences of the male and female green-veined white, Pieris napi (Linnaeus, 1758). Wellcome Open Res 6:288. https://doi.org/10.12688/wellcomeopenres.17277.1
Lomsadze A, Ter-Hovhannisyan V, Chernoff YO, Borodovsky M (2005) Gene identification in novel eukaryotic genomes by self-training algorithm. Nucleic Acids Res 33:6494–6506
pubmed: 16314312
pmcid: 1298918
doi: 10.1093/nar/gki937
Lun ATL, Chen Y, Smyth GK (2016) It’s DE-licious: a recipe for differential expression analyses of RNA-seq experiments using quasi-likelihood methods in edgeR. In: Mathé E, Davis S (eds) Statistical Genomics: Methods and Protocols, Methods in Molecular Biology. Springer, New York, NY, pp 391–416.
Mantica F, Irimia M (2022) The 3D-Evo space: evolution of gene expression and alternative splicing regulation. Annu Rev Genet 56:315–337
pubmed: 36055647
doi: 10.1146/annurev-genet-071719-020653
Marden JH (2008) Quantitative and evolutionary biology of alternative splicing: how changing the mix of alternative transcripts affects phenotypic plasticity and reaction norms. Heredity 100:111–120
pubmed: 17006532
doi: 10.1038/sj.hdy.6800904
Martin Anduaga A, Evantal N, Patop IL, Bartok O, Weiss R, Kadener S (2019) Thermosensitive alternative splicing senses and mediates temperature adaptation in Drosophila (M Ramaswami and RL Calabrese, Eds.). eLife 8:e44642
pubmed: 31702556
pmcid: 6890466
doi: 10.7554/eLife.44642
McManus CJ, Coolon JD, Eipper-Mains J, Wittkopp PJ, Graveley BR (2014) Evolution of splicing regulatory networks in Drosophila. Genome Res 24:786–796
pubmed: 24515119
pmcid: 4009608
doi: 10.1101/gr.161521.113
Mehmood A, Laiho A, Venäläinen MS, McGlinchey AJ, Wang N, Elo LL (2020) Systematic evaluation of differential splicing tools for RNA-seq studies. Brief Bioinforma 21:2052–2065
doi: 10.1093/bib/bbz126
Mu W, Davis ES, Lee S, Dozmorov MG, Phanstiel DH, Love MI (2023) bootRanges: Flexible generation of null sets of genomic ranges for hypothesis testing. Bioinformatics. https://doi.org/10.1093/bioinformatics/btad190
Neethiraj R (2019) Advances in studying the role of genetic divergence and recombination in adaptation in non-model species (PhD dissertation, Department of Zoology, Stockholm University)
Nielsen ME, Lehmann P, Gotthard K (2022) Longer and warmer prewinter periods reduce post-winter fitness in a diapausing insect. Funct Ecol 36:1151–1162
doi: 10.1111/1365-2435.14037
Nijhout HF (2003) Development and evolution of adaptive polyphenisms. Evol. Dev 5:9–18
pubmed: 12492404
doi: 10.1046/j.1525-142X.2003.03003.x
Pickrell JK, Pai AA, Gilad Y, Pritchard JK (2010) Noisy splicing drives mRNA isoform diversity in human cells. PLoS Genet 6:e1001236
pubmed: 21151575
pmcid: 3000347
doi: 10.1371/journal.pgen.1001236
Podsiadlowski L, Tunström K, Espeland M, Wheat CW (2021) The genome assembly and annotation of the apollo butterfly parnassius apollo, a flagship species for conservation biology. Genome Biol Evol. 13:evab122
pubmed: 34115121
pmcid: 8536933
doi: 10.1093/gbe/evab122
Porter AH, Geiger H (1995) Limitations to the inference of gene flow at regional geographic scales—an example from the Pieris napi group (Lepidoptera: Pieridae) in Europe. Biol J Linn Soc 54:329–348
Posledovich D, Toftegaard T, Wiklund C, Ehrlén J, Gotthard K (2015) Latitudinal variation in diapause duration and post-winter development in two pierid butterflies in relation to phenological specialization. Oecologia 177:181–190
pubmed: 25362581
doi: 10.1007/s00442-014-3125-1
Poupardin R, Schöttner K, Korbelová J, Provazník J, Doležel D, Pavlinic D et al. (2015) Early transcriptional events linked to induction of diapause revealed by RNAseq in larvae of drosophilid fly, Chymomyza costata. BMC Genom 16:720
doi: 10.1186/s12864-015-1907-4
Pruisscher P, Larsdotter-Mellström H, Stefanescu C, Nylin S, Wheat CW, Gotthard K (2017) Sex-linked inheritance of diapause induction in the butterfly Pieris napi. Physiol Entomol 42:257–265
doi: 10.1111/phen.12194
Pruisscher P, Lehmann P, Nylin S, Gotthard K, Wheat CW (2022) Extensive transcriptomic profiling of pupal diapause in a butterfly reveals a dynamic phenotype. Mol Ecol 31:1269–1280
pubmed: 34862690
doi: 10.1111/mec.16304
Pruisscher P, Nylin S, Wheat CW, Gotthard K (2021) A region of the sex chromosome associated with population differences in diapause induction contains highly divergent alleles at clock genes. Evolution 75:490–500
pubmed: 33340097
doi: 10.1111/evo.14151
Purandare SR, Bickel RD, Jaquiery J, Rispe C, Brisson JA (2014) Accelerated evolution of morph-biased genes in pea aphids. Mol Biol Evol 31:2073–2083
pubmed: 24770714
pmcid: 4104313
doi: 10.1093/molbev/msu149
R Core Team (2021) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/
Ragland GJ, Armbruster PA, Meuti ME (2019) Evolutionary and functional genetics of insect diapause: a call for greater integration. Curr Opin Insect Sci 36:74–81
pubmed: 31539788
pmcid: 7212789
doi: 10.1016/j.cois.2019.08.003
Ragland GJ, Egan SP, Feder JL, Berlocher SH, Hahn DA (2011) Developmental trajectories of gene expression reveal candidates for diapause termination: a key life-history transition in the apple maggot fly Rhagoletis pomonella. J Exp Biol 214:3948–3960
pubmed: 22071185
doi: 10.1242/jeb.061085
Ragland GJ, Keep E (2017) Comparative transcriptomics support evolutionary convergence of diapause responses across Insecta. Physiol Entomol 42:246–256
doi: 10.1111/phen.12193
Rescan M, Grulois D, Aboud EO, de Villemereuil P, Chevin L-M (2021) Predicting population genetic change in an autocorrelated random environment: Insights from a large automated experiment. PLOS Genet 17:e1009611
pubmed: 34161327
pmcid: 8259966
doi: 10.1371/journal.pgen.1009611
Rogers TF, Palmer DH, Wright AE (2021) Sex-specific selection drives the evolution of alternative splicing in birds. Mol Biol Evol 38:519–530
pubmed: 32977339
doi: 10.1093/molbev/msaa242
Saudemont B, Popa A, Parmley JL, Rocher V, Blugeon C, Necsulea A et al. (2017) The fitness cost of mis-splicing is the main determinant of alternative splicing patterns. Genome Biol 18:208
pubmed: 29084568
pmcid: 5663052
doi: 10.1186/s13059-017-1344-6
Schlichting CD, Smith H (2002) Phenotypic plasticity: linking molecular mechanisms with evolutionary outcomes. Evolut Ecol 16:189–211
doi: 10.1023/A:1019624425971
van der Burg KR, Reed RD (2021) Seasonal plasticity: how do butterfly wing pattern traits evolve environmental responsiveness? Curr Opin Genet Dev 69:82–87
pubmed: 33740694
doi: 10.1016/j.gde.2021.02.009
von Schmalensee L, Caillault P, Gunnarsdóttir KH, Gotthard K, Lehmann P (2023) Seasonal specialization drives divergent population dynamics in two closely related butterflies. Nat Commun 14:3663
doi: 10.1038/s41467-023-39359-8
Schmitt T (2007) Molecular biogeography of Europe: Pleistocene cycles and postglacial trends. Front Zool 4:11
pubmed: 17439649
pmcid: 1868914
doi: 10.1186/1742-9994-4-11
Shen S, Park JW, Lu Z, Lin L, Henry MD, Wu YN et al. (2014) rMATS: Robust and flexible detection of differential alternative splicing from replicate RNA-Seq data. PNAS 111:E5593–E5601
pubmed: 25480548
pmcid: 4280593
doi: 10.1073/pnas.1419161111
Sproul JS, Hotaling S, Heckenhauer J, Powell A, Marshall D, Larracuente AM, et al. (2023) 600+ insect genomes reveal repetitive element dynamics and highlight biodiversity-scale repeat annotation challenges. BioRxiv https://www.biorxiv.org/content/10.1101/2022.06.02.494618v2.full
Stanke M, Diekhans M, Baertsch R, Haussler D (2008) Using native and syntenically mapped cDNA alignments to improve de novo gene finding. Bioinformatics 24:637–644
pubmed: 18218656
doi: 10.1093/bioinformatics/btn013
Stanke M, Schöffmann O, Morgenstern B, Waack S (2006) Gene prediction in eukaryotes with a generalized hidden Markov model that uses hints from external sources. BMC Bioinforma 7:62
doi: 10.1186/1471-2105-7-62
Steward RA, de Jong MA, Oostra V, Wheat CW (2022) Alternative splicing in seasonal plasticity and the potential for adaptation to environmental change. Nat Commun 13:1–12
doi: 10.1038/s41467-022-28306-8
Stuckas H, Mende MB, Hundsdoerfer AK (2014) Response to cold acclimation in diapause pupae of Hyles euphorbiae (Lepidoptera: Sphingidae): candidate biomarker identification using proteomics. Insect Mol Biol 23:444–456
pubmed: 24628883
doi: 10.1111/imb.12093
Süess P, Dircksen H, Roberts KT, Gotthard K, Nässel DR, Wheat CW et al. (2022) Time- and temperature-dependent dynamics of prothoracicotropic hormone and ecdysone sensitivity co-regulate pupal diapause in the green-veined white butterfly Pieris napi. Insect Biochem Mol Biol 149:103833
pubmed: 36084800
doi: 10.1016/j.ibmb.2022.103833
Teets NM, Denlinger DL (2013) Physiological mechanisms of seasonal and rapid cold-hardening in insects. Physiol Entomol 38:105–116
doi: 10.1111/phen.12019
Ter-Hovhannisyan V, Lomsadze A, Chernoff YO, Borodovsky M (2008) Gene prediction in novel fungal genomes using an ab initio algorithm with unsupervised training. Genome Res 18:1979–1990
pubmed: 18757608
pmcid: 2593577
doi: 10.1101/gr.081612.108
Thorstensen MJ, Baerwald MR, Jeffries KM (2021) RNA sequencing describes both population structure and plasticity-selection dynamics in a non-model fish. BMC Genom 22:273
doi: 10.1186/s12864-021-07592-4
Tian S, Monteiro A (2022) A transcriptomic atlas underlying developmental plasticity of seasonal forms of Bicyclus anynana butterflies. Mol Biol Evol 39:msac126
pubmed: 35679434
pmcid: 9218548
doi: 10.1093/molbev/msac126
Tian K, Xu W-H (2013) High expression of PP2A-Aα is associated with diapause induction during the photoperiod-sensitive stage of the cotton bollworm, Helicoverpa armigera. J Insect Physiol 59:588–594
pubmed: 23557680
doi: 10.1016/j.jinsphys.2013.03.006
Ule J, Blencowe BJ (2019) Alternative splicing regulatory networks: functions, mechanisms, and evolution. Mol Cell 76:329–345
pubmed: 31626751
doi: 10.1016/j.molcel.2019.09.017
Verta J-P, Jacobs A (2022) The role of alternative splicing in adaptation and evolution. Trends Ecol Evol 37:299–308
pubmed: 34920907
doi: 10.1016/j.tree.2021.11.010
Wan Y, Larson DR (2018) Splicing heterogeneity: separating signal from noise. Genome Biol 19:86
pubmed: 29986741
pmcid: 6036703
doi: 10.1186/s13059-018-1467-4
Wang Z, Xiao X, Van Nostrand E, Burge CB (2006) General and specific functions of exonic splicing silencers in splicing control. Mol Cell 23:61–70
pubmed: 16797197
pmcid: 1839040
doi: 10.1016/j.molcel.2006.05.018
West-Eberhard MJ (2003) Developmental plasticity and evolution, 1st edn. Oxford University Press, Oxford
Wickham H, Averick M, Bryan J, Chang W, McGowan LD, François R et al. (2019) Welcome to the tidyverse. J Open Source Softw 4:1686
doi: 10.21105/joss.01686
Wilsterman K, Ballinger MA, Williams CM (2021) A unifying, eco-physiological framework for animal dormancy. Funct Ecol 35:11–31
doi: 10.1111/1365-2435.13718
Wright CJ, Smith CWJ, Jiggins CD (2022) Alternative splicing as a source of phenotypic diversity. Nat Rev Genet 23:697–710
pubmed: 35821097
doi: 10.1038/s41576-022-00514-4
Zhang Q, Piermarini PM, Nachman RJ, Denlinger DL (2014) Molecular identification and expression analysis of a diapause hormone receptor in the corn earworm, Helicoverpa zea. Peptides 53:250–257
pubmed: 24345336
doi: 10.1016/j.peptides.2013.12.005