Cryoablation for the treatment of breast cancer: immunological implications and future perspectives. Utopia or reality?

Breast MRI Breast cancer CEM Cryoablation Ultrasound

Journal

La Radiologia medica
ISSN: 1826-6983
Titre abrégé: Radiol Med
Pays: Italy
ID NLM: 0177625

Informations de publication

Date de publication:
31 Jan 2024
Historique:
received: 21 07 2023
accepted: 03 01 2024
medline: 1 2 2024
pubmed: 1 2 2024
entrez: 31 1 2024
Statut: aheadofprint

Résumé

Cryoablation is a minimally invasive technique currently employed in breast cancer care, that uses freeze and thaw cycles to treat benign breast lesions, small breast cancers or focal sites of metastatic disease in patients not eligible for surgery. The final goal of this procedure is to destroy breast cancer cells using extreme cold. In addition, several studies have shown that this technique seems to have an enhancing effect on the immune response, especially by increasing the expression of tumor neoantigens specific to tumor cells, which are then attacked and destroyed. Exploiting this effect, cryoablation in combination with immunotherapy could be the key to treating early-stage breast cancers or patients who are unsuitable for surgery. According to some recent studies, there are other potential tools that could be used to enhance the therapeutic effect of cryoablation, such as FE3O4 nanoparticles or the manipulation of aquaporin expression. The aim of this narrative review is to summarize the current evidence regarding the use, indications, advantages and disadvantages of cryoablation in the treatment of breast cancer.

Identifiants

pubmed: 38296892
doi: 10.1007/s11547-024-01769-z
pii: 10.1007/s11547-024-01769-z
doi:

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2024. The Author(s).

Références

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A et al (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71(3):209–249
doi: 10.3322/caac.21660 pubmed: 33538338
Soerjomataram I, Bray F (2021) Planning for tomorrow: global cancer incidence and the role of prevention 2020–2070. Nat Rev Clin Oncol 18(10):663–672
doi: 10.1038/s41571-021-00514-z pubmed: 34079102
Lei S, Zheng R, Zhang S, Shaoming Wang R, Chen KS, Zeng H, Zhou J, Wei W (2021) Global patterns of breast cancer incidence and mortality: a population-based cancer registry data analysis from 2000 to 2020. Cancer Commun 41(11):1183–1194
doi: 10.1002/cac2.12207
Kashyap D, Pal D, Sharma R, Garg VK, Goel N, Koundal D, Zaguia A, Koundal S, Belay A (2022) Global increase in breast cancer incidence: risk factors and preventive measures. Biomed Res Int 18(2022):9605439. https://doi.org/10.1155/2022/9605439.PMID:35480139;PMCID:PMC9038417
doi: 10.1155/2022/9605439.PMID:35480139;PMCID:PMC9038417
Veronesi U, Cascinelli N, Mariani L et al (2002) Twenty-year follow-up of a randomized study comparing breast-conserving surgery with radical mastectomy for early breast cancer. N Engl J Med 347:1227–1232
doi: 10.1056/NEJMoa020989 pubmed: 12393819
Jatoi I, Proschan MA (2005) Randomized trials of breast-conserving therapy versus mastectomy for primary breast cancer: a pooled analysis of updated results. Am J Clin Oncol 28:289–294
doi: 10.1097/01.coc.0000156922.58631.d7 pubmed: 15923803
Fisher B, Anderson S, Bryant J et al (2002) Twenty-year follow-up of a randomized trial comparing total mastectomy, lumpectomy, and lumpectomy plus irradiation for the treatment of invasive breast cancer. N Engl J Med 347:1233–1241
doi: 10.1056/NEJMoa022152 pubmed: 12393820
Shah DR, Green S, Elliot A, McGahan JP, Khatri VP (2013) Current oncologic applications of radiofrequency ablation therapies. World J Gastrointest Oncol 5:71–80
doi: 10.4251/wjgo.v5.i4.71 pubmed: 23671734 pmcid: 3648666
Mauri G, Sconfienza LM, Pescatori LC et al (2017) Technical success, technique efficacy and complications of minimally-invasive imaging-guided percutaneous ablation procedures of breast cancer: a systematic review and meta-analysis. Eur Radiol 27:3199–3210
doi: 10.1007/s00330-016-4668-9 pubmed: 28050693
McArthur HL, Diab A, Page DB et al (2016) A pilot study of preoperative single-dose ipilimumab and/or cryoablation in women with early stage breast cancer with comprehensive immune profiling. Clin Cancer Res 22:5729–5737
doi: 10.1158/1078-0432.CCR-16-0190 pubmed: 27566765 pmcid: 5161031
Sabel MS, Nehs MA, Su GK et al (2005) Immunologic response to cryoablation of breast cancer. Breast Cancer Res Treat 90(97–104):46
Sidana A (2014) Cancer immunotherapy using tumor cryoablation. Immunotherapy 6:85–93
doi: 10.2217/imt.13.151 pubmed: 24341887
Pediconi F, Marzocca F, CavalloMarincola B, Napoli A (2018) MRI-guided treatment in the breast. Int Soc Mag Res Med 48(6):1479–1488
Regen-Tuero HC, Ward RC, Sikov WM, Littrup PJ (2021) Cryoablation and immunotherapy for breast cancer: overview and rationale for combined therapy. Radiol Imaging Cancer. 3(2):e200134
doi: 10.1148/rycan.2021200134 pubmed: 33817653 pmcid: 8011444
Baust JG, Gage AA (2005) The molecular basis of cryosurgery. BJU Int 95(9):1187–1191
doi: 10.1111/j.1464-410X.2005.05502.x pubmed: 15892798
Mehta A, Oklu R, Sheth RA (2016) Thermal ablative therapies and immune checkpoint modulation: can locoregional approaches effect a systemic response? Gastroenterol Res Pract 2016:9251375
doi: 10.1155/2016/9251375 pubmed: 27051417 pmcid: 4802022
Chu KF, Dupuy DE (2014) Thermal ablation of tumours: biological mechanisms and advances in therapy. Nat Rev Cancer 14(3):199–208
doi: 10.1038/nrc3672 pubmed: 24561446
Abdo J, Cornell DL, Mittal SK, Agrawal DK (2018) Immunotherapy plus cryotherapy: potential augmented abscopal effect for advanced cancers. Front Oncol 8:85
doi: 10.3389/fonc.2018.00085 pubmed: 29644213 pmcid: 5882833
Reits EA, Hodge JW, Herberts CA et al (2006) Radiation modulates the peptide repertoire, enhances MHC class I expression, and induces successful antitumor immunotherapy. J Exp Med 203(5):1259–1271
doi: 10.1084/jem.20052494 pubmed: 16636135 pmcid: 3212727
Apetoh L, Ghiringhelli F, Tesniere A et al (2007) The interaction between HMGB1 and TLR4 dictates the outcome of anticancer chemotherapy and radiotherapy. Immunol Rev 220:47–59
doi: 10.1111/j.1600-065X.2007.00573.x pubmed: 17979839
ShimaRoknsharifi MD, Kapil Wattamwar MD, Fishman MDC, Robert MD, Ward C, Kelly Ford MD, SalomaoFaintuch MD, Surekha Joshi MD, VandanaDialani MD, MD. (2021) Image-guided microinvasive percutaneous treatment of breast lesions: where do we stand? Radiographics 41:945–966. https://doi.org/10.1148/rg.2021200156
doi: 10.1148/rg.2021200156
Consensus Guideline on the Use of Transcutaneous and Percutaneous Ablation for the Treatment of Benign and Malignant Tumors of the Breast: The American Society of Breast Surgeons. https://www.breastsurgeons.org/docs/statements/ Consensus-Guideline-on-the-Use-of-Transcutaneous-andPercutaneous-Methods-for-the-Treatment-of-Benign-andMalignant-Tumors-of-the-Breast.pdf. Published 2018. Accessed April 2, 2021.
Management of Fibroadenomas of the Breast. The American Society of Breast Surgeons Official Statement]. https://www.breastsurgeons.org/resources/statements . Published 2008. Accessed April 2, 2021
Kaufman CS, Littrup PJ, Freman-Gibb LA et al (2004) Office-based cryoablation of breast fibroadenomas: 12-month followup. J Am Coll Surg 198(6):914–923
doi: 10.1016/j.jamcollsurg.2004.02.014 pubmed: 15194073
Kaufman CS, Littrup PJ, Freeman-Gibb LA et al (2005) Office-based cryoablation of breast fibroadenomas with long-term follow-up. Breast J 11(5):344–350
doi: 10.1111/j.1075-122X.2005.21700.x pubmed: 16174156
Ward RC, Lourenco AP, Mainiero MB (2020) Implementing breast cryoablation in practice. J Breast Imaging 2(1):61–66
doi: 10.1093/jbi/wbz077
Littrup PJ, Jallad B, Chandiwala-Mody P, D’Agostini M, Adam BA, Bouwman D (2009) Cryotherapy for breast cancer: a feasibility study without excision. J Vasc Interv Radiol 20(10):1329–1341
doi: 10.1016/j.jvir.2009.06.029 pubmed: 19800542
Manenti G, Perretta T, Gaspari E et al (2011) Percutaneous local ablation of unifocal subclinical breast cancer: clinical experience and preliminary results of cryotherapy. Eur Radiol 21(11):2344–2353
doi: 10.1007/s00330-011-2179-2 pubmed: 21681574
Ward RC, Lourenco AP, Mainiero MB (2019) ultrasoundguided breast cancer cryoablation. AJR Am J Roentgenol 213(3):716–722
doi: 10.2214/AJR.19.21329 pubmed: 31120790
Pusceddu C, Paliogiannis P, Nigri G, Fancellu A (2019) Cryoablation in the management of breast cancer: evidence to date. Breast Cancer (Dove Med Press) 11:283–292
pubmed: 31632134
Tomkovich KR. Cryoablation as a primary treatment of lowrisk breast cancers: An interim update of the Ice 3 Trial 2018.
Pusceddu C, Melis L, Ballicu N et al (2017) Cryoablation of primary breast cancer in patients with metastatic disease: considerations arising from a single-centre data analysis. Biomed Res Int 2017:3839012. https://doi.org/10.1155/2017/3839012
doi: 10.1155/2017/3839012 pubmed: 29201903 pmcid: 5671676
Machida Y, Shimauchi A, Igarashi T, Fukuma E (2019) MRI findings after cryoablation of primary breast cancer without surgical resection. Acad Radiol 26(6):744–751
doi: 10.1016/j.acra.2018.07.012 pubmed: 30149977
Poplack SP, Levine GM, Henry L et al (2015) A pilot study of ultrasoundguided cryoablation of invasive ductal carcinomas up to 15 mm with MRI follow-up and subsequent surgical resection. AJR Am J Roentgenol 204:1100–1108. https://doi.org/10.2214/AJR.13.12325
doi: 10.2214/AJR.13.12325 pubmed: 25905948 pmcid: 4836389
Manenti G, Scarano AL, Pistolese CA et al (2013) Subclinical breast cancer: minimally invasive approaches. Our experience with percutaneous radiofrequency ablation vs. cryotherapy. Breast Care (Basel). 8:356–360. https://doi.org/10.1159/000355707
doi: 10.1159/000355707 pubmed: 24415989 pmcid: 3861851
Simmons RM, Ballman KV, Cox C, Carp N, Sabol J, Hwang RF et al (2016) A phase II trial exploring the success of cryoablation therapy in the treatment of invasive breast carcinoma: Results from ACOSOG (Alliance) Z1072. Ann Surg Oncol 23:2438–2445. https://doi.org/10.1245/s10434-016-5275-3
doi: 10.1245/s10434-016-5275-3 pubmed: 27221361 pmcid: 5433250
Olagunju A, Forsman T, Ward RC (2022) An update on the use of cryoablation and immunotherapy for breast cancer. Front Immunol 13:1026475
doi: 10.3389/fimmu.2022.1026475 pubmed: 36389815 pmcid: 9647043
Khan SY, Snitman A, Habrawi Z et al (2023) The role of cryoablation in breast cancer beyond the oncologic control: COST and breast-Q patient-reported outcomes. Ann Surg Oncol 30:1029–1037. https://doi.org/10.1245/s10434-022-12570-5
doi: 10.1245/s10434-022-12570-5 pubmed: 36171531
Devices JP, Erinjeri TWI, Clark, (2010) Cryoablation: Mechanism of Action and Devices. J Vasc Interv Radiol 21(8 Suppl):S187–S191. https://doi.org/10.1016/j.jvir.2009.12.403
doi: 10.1016/j.jvir.2009.12.403
Fornage BD, Hwang RF (2014) Current status of imaging-guided percutaneous ablation of breast cancer. Am J Roentgenol 203:442–448
doi: 10.2214/AJR.13.11600
Abdo J, Cornell DL, Mittal SK, Agrawal DK (2018) Immunotherapy plus cryotherapy: Potential augmented abscopal effect for advanced cancers. Front Oncol. https://doi.org/10.3389/fonc.2018.00085
doi: 10.3389/fonc.2018.00085 pubmed: 29868478 pmcid: 5954028
Keisari Y (2017) Tumor abolition and antitumor immunostimulation by physico-chemical tumor ablation. Front Biosci 22:310–347
doi: 10.2741/4487
Khan SY, Melkus MW, Rasha F, Castro M, Chu V, Brandi L et al (2022) Tumorinfiltrating lymphocytes (TILs) as a biomarker of abscopal effect of cryoablation in breast cancer: a pilot study. Ann Surg Oncol 29:2914–2925. https://doi.org/10.1245/s10434-021-11157-w
doi: 10.1245/s10434-021-11157-w pubmed: 35094188 pmcid: 8990945
Ping Ye Yu, Kong XC, Li W, Liu D, Xie Y, Zhou Y, Zou H, Chang Z, Dai H, Kong X, Liu P (2017) Fe3O4 nanoparticles and cryoablation enhance ice crystal formation to improve the efficiency of killing breast cancer cells. Oncotarget 8(7):11389–11399
doi: 10.18632/oncotarget.13859 pubmed: 27974703
Alkhalifa H, Mohammed F, Taurin S, Greish K, Taha S, Frederick S (2021) Inhibition of aquaporins as a potential adjunct to breast cancer cryotherapy. Oncol Lett 21:458. https://doi.org/10.3892/ol.2021.12719
doi: 10.3892/ol.2021.12719 pubmed: 33907568 pmcid: 8063341
Qin F, Zhang H, Shao Y, Liu X, Yang L, Huang Y, Fu L, Gu F, Ma Y (2016) Expression of aquaporin1, a water channel protein, in cytoplasm is negatively correlated with prognosis of breast cancer patients. Oncotarget 7:8143–8154
doi: 10.18632/oncotarget.6994 pubmed: 26812884 pmcid: 4884982
Chong W, Zhang H, Guo Z, Yang L, Shao Y, Liu X, Zhao Y, Wang Z, Zhang M, Guo C et al (2021) Aquaporin 1 promotes sensitivity of anthracycline chemotherapy in breast cancer by inhibiting β-catenin degradation to enhance TopoIIα activity. Cell Death Differ 28:382–400
doi: 10.1038/s41418-020-00607-9 pubmed: 32814878
Wang J, Feng L, Zhu Z, Zheng M, Wang D, Chen Z, Sun H (2015) Aquaporins as diagnostic and therapeutic targets in cancer: How far we are? J Transl Med 13:96
doi: 10.1186/s12967-015-0439-7 pubmed: 25886458 pmcid: 4382841
Taurin S, Allen KM, Scandlyn MJ, Rosengren RJ (2013) Raloxifene reduces triple-negative breast cancer tumor growth and decreases EGFR expression. Int J Oncol 43:785–792
doi: 10.3892/ijo.2013.2012 pubmed: 23842642
Lanza E, Palussiere J, Buy X et al (2015) Percutaneous image-guided cryoablation of breast cancer: a systematic review. J Vasc Interv Radiol 26:1652–1657. https://doi.org/10.1016/j.jvir.2015.07.020)
doi: 10.1016/j.jvir.2015.07.020) pubmed: 26342882

Auteurs

Francesca Galati (F)

Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy.

Andrea Marra (A)

Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy. andrea.marra@uniroma1.it.

Federica Cicciarelli (F)

Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy.

Marcella Pasculli (M)

Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy.

Roberto Maroncelli (R)

Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy.

Veronica Rizzo (V)

Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy.

Giuliana Moffa (G)

Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy.

Federica Pediconi (F)

Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy.

Classifications MeSH