A revision of maximal oxygen consumption and exercise capacity at altitude 70 years after the first climb of Mount Everest.

altitude exercise hypoxia maximal oxygen consumption

Journal

The Journal of physiology
ISSN: 1469-7793
Titre abrégé: J Physiol
Pays: England
ID NLM: 0266262

Informations de publication

Date de publication:
01 Feb 2024
Historique:
received: 07 09 2023
accepted: 03 01 2024
medline: 1 2 2024
pubmed: 1 2 2024
entrez: 1 2 2024
Statut: aheadofprint

Résumé

On the 70th anniversary of the first climb of Mount Everest by Edmund Hillary and Tensing Norgay, we discuss the physiological bases of climbing Everest with or without supplementary oxygen. After summarizing the data of the 1953 expedition and the effects of oxygen administration, we analyse the reasons why Reinhold Messner and Peter Habeler succeeded without supplementary oxygen in 1978. The consequences of this climb for physiology are briefly discussed. An overall analysis of maximal oxygen consumption (

Identifiants

pubmed: 38299739
doi: 10.1113/JP285606
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2024 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.

Références

Åstrand, P. (1954). The respiratory activity in man exposed to prolonged hypoxia. Acta Physiologica Scandinavica, 30(4), 343-368.
Benoit, H., Busso, T., Castells, J., Denis, C., & Geyssant, A. (1995). Influence of hypoxic ventilatory response on arterial O2 saturation during maximal exercise in acute hypoxia. European Journal of Applied Physiology, 72(1-2), 101-105.
Cerretelli, P. (1976). Limiting factors to oxygen transport on Mount Everest. Journal of Applied Physiology, 40(5), 658-667.
Cerretelli, P. (1980) Gas exchange at high altitude. In: West JB (ed). Pulmonary gas exchange, vol II. Academic Press, New York, pp 97-147.
Cerretelli, P., & di Prampero, P. E. (1987). Gas exchange at exercise. In: Farhi LE, Tenney SM (eds). Handbook of physiology, the respiratory system, vol. IV. Gas Exchange. American Physiological Society, Bethesda MD, sect. 3, pp 555-632.
Cerretelli, P., & Hoppeler, H. (1996). Morphologic and metabolic response to chronic hypoxia. In: Handbook of physiology. Environmental physiology. Fregly MJ, Blatteis CM eds. Oxford University Press, New York, sect. 4, vol. II, pp. 1155-1181.
Cerretelli, P., & Margaria, R. (1961). Maximum oxygen consumption at altitude. Internationale Zeitschrift Fur Angewandte Physiologie Einschliesslich Arbeitsphysiologie, 18, 460-464.
Christensen, E. H. (1937). Sauerstoffaufnahme und respiratorische Funktionen in grossen Höhen. Skand Arch Physiol, 76(1-2), 88-101.
Cotes, J. E. (1954). The open-circuit oxygen equipment used by the British Mount Everest Expedition. The Journal of Physiology, 123(2), 24P-25P.
Dempsey, J. A., Hanson, P. G., & Henderson, K. S. (1984). Exercise-induced arterial hypoxaemia in healthy human subjects at sea level. The Journal of Physiology, 355(1), 161-175.
Di Prampero, P. E. (1985). Metabolic and circulatory limitations to V O2max at the whole animal level. Journal of Experimental Biology, 115(1), 319-331.
Di Prampero, P. E., & Ferretti, G. (1990). Factors limiting maximal oxygen consumption in humans. Respiration Physiology, 80(2-3), 113-128.
Downey, A. E., Chenoweth, L. M., Townsend, D. K., Ranum, J. D., Ferguson, C. S., & Harms, C. A. (2007). Effects of inspiratory muscle training on exercise responses in normoxia and hypoxia. Respiratory Physiology & Neurobiology, 156(2), 137-146.
Esposito, F., & Ferretti, G. (1997). The effects of breathing He-O2 mixtures on maximal oxygen consumption in normoxic and hypoxic men. The Journal of Physiology, 503(1), 215-221.
Esposito, F., Limonta, E., Alberti, G., Veicsteinas, A., & Ferretti, G. (2010). Effect of respiratory muscle training on maximum aerobic power in normoxia and hypoxia. Respiratory Physiology & Neurobiology, 170(3), 268-272.
Ferretti, G. (2014). Maximal oxygen consumption in healthy humans: Theories and facts. European Journal of Applied Physiology, 114(10), 2007-2036.
Ferretti, G., & Di Prampero, P. E. (1995) Factors limiting maximal O2 consumption: Effects of acute changes in ventilation. Respiration Physiology, 99(2), 259-271.
Ferretti, G., Fagoni, N., Taboni, A., Vinetti, G., & Di Prampero, P. E. (2022). A century of exercise physiology. Key concepts on coupling respiratory oxygen flow to muscle energy demand during exercise. European Journal of Applied Physiology, 122(6), 1317-1365.
Ferretti, G., & Miserocchi, G. (2023). A School goes to altitude. In: Ferretti G (ed.). Exercise, respiratory and environmental Physiology: A tribute from the School of Milano. Springer, Cham, Switzerland and American Physiological Society.
Ferretti, G., Moia, C., Thomet, J. M., & Kayser, B. (1997). The decrease of maximal oxygen consumption during hypoxia in man: A mirror image of the oxygen equilibrium curve. The Journal of Physiology, 498(1), 231-237.
FitzGerald, M. P. (1913). The changes in the breathing and the blood at various high altitudes. Philosophical Transactions of the Royal Society, 203, 351-371.
Gavin, T. P., Derchak, P. A., & Stager, J. M. (1998) Ventilation's role in the decline in VO2max and SaO2 in acute hypoxic exercise. Medicine and Science in Sports and Exercise, 30(2), 195-199.
Giesbrecht, G. G., Puddy, A., Ahmed, M., Younes, M., & Anthonisen, N. R. (1991). Exercise endurance and arterial desaturation in normobaric hypoxia with increased chemosensitivity. Journal of Applied Physiology, 70(4), 1770-1774.
Greene, R. (1934). Observations on the composition of alveolar air on Everest, 1933. The Journal of Physiology, 82(4), 481-485.
Grocott, M. P. W., Martin, D. S., Levett, D. Z. H., Mcmorrow, R., Windsor, J., & Montgomery, H. E. (2009). Arterial blood gases and oxygen content in climbers on Mount Everest. The New England Journal of Medicine, 360(2), 140-149.
Grocott, M. P., Martin, D. S., Wilson, M. H.. Mitchell, K., Dhillon, S., Mythen, M. G., Montgomery, H. E., & Levett, D. Z. (2007). Caudwell xtreme Everest expedition. High Altitude Medicine & Biology, 11, 133- 137.
Harrop, G. A. (1919). The oxygen and carbon dioxide content of arterial and of venous blood in normal individuals and in patients with anaemia and heart disease. Journal of Experimental Medicine, 30(3), 241-257.
Hill, A. V. (1910). The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves. The Journal of Physiology, 40, iv-vii.
Hoppeler, H., Howald, H., Conley, K., Lindstedt, S. L., Claassen, H., Vock, P., & Weibel, E. R. (1985). Endurance training in humans: Aerobic capacity and structure of skeletal muscle. Journal of Applied Physiology, 59(2), 320-327.
Hoppeler, H., Kleinert, E., Schlegel, C., Claassen, H., Howald, H., Kayar, S., & Cerretelli, P. (1990). Morphological adaptations of human skeletal muscle to chronic hypoxia. International Journal of Sports Medicine, 11(S 1) S3-S9.
Houston, C. S., Sutton, J. R., Cymerman, A., & Reeves, J. T. (1987). Operation Everest II: Man at extreme altitude. Journal of Applied Physiology, 63(2), 877-882.
Hunt, J. (1953). The Ascent of Everest, Hodder & Stoughton, London.
Kellas, A. M. (1917). A consideration of the possibility of ascending the loftier Himalaya. The Geographical Journal, 49(1), 26-47, 1917.
Kellas, A. M. (2001). A consideration of the possibility of ascending Mount Everest. Reprinted by John West in High Altitude Medicine and Biology, 2(3), 431-461.
Koistinen, P., Takala, T., Martikkala, V., & Leppäluoto, J. (1995). Aerobic fitness influences the response of maximal oxygen uptake and lactate threshold in acute hypobaric hypoxia. International Journal of Sports Medicine, 16(02), 78-81.
Marconi, C., Marzorati, M., Grassi, B., Basnyat, B., Colombini, A., Kayser, B., & Cerretelli, P. (2004). Second generation Tibetan lowlanders acclimatize to high altitude more quickly than Caucasians. The Journal of Physiology, 556(2), 661-671.
Margaria, R. (1929). Die Arbeitfähigkeit des Menschen bei verminderten Luftdruck. Arbeitphysiol, 2, 261-272.
Margaria, R. (1938). Sulla fisiologia e specialmente sul consumo energetico della marcia e della corsa a varia velocità ed inclinazione del terreno. Atti R Accad Lincei, 7, 299-368.
Minetti, A. E., Moia, C., Roi, G. S., Susta, D., & Ferretti, G. (2002). Energy cost of walking and running at extreme uphill and downhill slopes. Journal of Applied Physiology, 93(3), 1039-1046.
Ogawa, T., Calbet, J. A. L., Honda, Y., Fujii, N., & Nishiyasu, T. (2010). The effects of breathing a helium-oxygen gas mixture on maximal pulmonary ventilation and maximal oxygen consumption during exercise in acute moderate hypobaric hypoxia. European Journal of Applied Physiology, 110(4), 853-861.
Ogawa, T., Hayashi, K., Ichinose, M., & Nishiyasu, T. (2007) Relationship between rest ventilatory chemosensitivity and maximal oxygen uptake in moderate hypobaric hypoxia. Journal of Applied Physiology, 103(4), 1221-1226.
Oelz, O., Howald, H., Di Prampero, P. E., Hoppeler, H., Claassen, H., Jenni, R., Buhlmann, A., Ferretti, G., Bruckner, J. C., Veicsteinas, A., Gussoni, M., & Cerretelli, P. (1986). Physiological profile of world class high altitude climbers. Journal of Applied Physiology, 60(5), 1734-1742.
Perutz, M. F. (1970). Stereochemistry of cooperative effects in haemoglobin. Nature, 228(5273), 726-734.
Piiper, J., Meyer, M., & Scheid, P. (1984). Dual role of diffusion in tissue gas exchange: Blood-tissue equilibration and diffusion shunt. Respiration Physiology, 56(2), 131-144.
Piiper, J., & Scheid, P. (1981). Model for capillary-alveolar equilibration with special reference to O2 uptake in hypoxia. Respiration Physiology, 46(3), 193-208.
Pugh, L. (1952). Report on British Himalayan Expedition [to Cho Oyu]. Medical Research Council, London.
Pugh, L. G. C. E. (1954). Scientific aspects of the expedition to Mount Everest, 1953. The Geographical Journal, 120(2), 183-192.
Pugh, L. G. C. E. (1957). Resting ventilation and alveolar air on Mount Everest: With remarks on the relation of barometric pressure to altitude in mountains. The Journal of Physiology, 135(3), 590-610.
Pugh, L. G. C. E. (1958). Muscular exercise on Mount Everest. The Journal of Physiology, 141(2), 233-261.
Pugh, L. G. C. E., Gill, M. B., Lahiri, S., Milledge, J. S., Ward, M. P., & West, J. B. (1964). Maximal exercise at great altitudes. Journal of Applied Physiology, 19(3), 431-440
Roca, J., Hogan, M. C., Story, D., Bebout, D. E., Haab, P., Gonzalez, R., Ueno, O., & Wagner, P. D. (1989). Evidence for tissue diffusion limitation of in normal humans. Journal of Applied Physiology, 67(1), 291-299.
Severinghaus, J. W. (1979). Simple, accurate expressions for human blood oxygen dissociation computations. Journal of Applied Physiology, 46(3), 599-602.
Shephard, R. J. (1969). A non-linear solution of the oxygen conductance equation: Applications to performance at sea level and at an altitude of 7,350 ft. Internationale Zeitschrift Fur Angewandte Physiologie Einschliesslich Arbeitsphysiologie, 27(3), 212-225.
Shipton, E. E. (1952). The Mount Everest Reconnaissance Expedition 1951. Hodder & Stoughton, London.
Stembridge, M., Ainslie, P. N., & West, J. B. (2022). Elevating physiology: Griffith Pugh on the limits of human performance and survival. The Journal of Physiology, 600(8), 1811-1813.
Richard Taylor, C., & Weibel, E. R. (1981). Design of the mammalian respiratory system. I. Problem and strategy. Respiration Physiology, 44(1), 1-10.
Wagner, P. D. (1993). Algebraic analysis of the determinants of VO 2max. Respiration Physiology, 93(2), 221-237.
Wagner, P. D. (1996a). Determinants of maximal oxygen transport and utilization. Annual Review of Physiology, 58(1), 21-50.
Wagner, P. D. (1996b). A theoretical analysis of factors determining VO 2max at sea level and altitude. Respiration Physiology, 106(3), 329-343.
Wagner, P. D. (2010). Operation Everest II. High Altitude Medicine & Biology, 11(2), 111-119.
Ward, M. P. (2003). Everest 1953, First Ascent: A clinical record. High Altitude Medicine & Biology, 4(1), 27-37.
Wehrlin, J. P., & Hallén, J. (2006). Linear decrease in VO2max and performance with increasing altitude in endurance athletes. European Journal of Applied Physiology, 96(4), 404-412.
West, J. B. (1987). Alexander M. Kellas and the physiological challenge of Mt. Everest. Journal of Applied Physiology, 63(1), 3-11.
West, J. B. (1988). Rate of ventilatory acclimatization to extreme altitude. Respiration Physiology, 74(3), 323-333.
West, J. B., Boyer, S. J., Graber, D. J., Hackett, P. H., Maret, K. H., Milledge, J. S., Peters, R. M., Pizzo, C. J., Samaja, M., Sarnquist, F. H., Schoene R. B., & Winslow, R. M. (1983). Maximal exercise at extreme altitudes on Mount Everest. Journal of Applied Physiology, 55(3), 688-698.
West, J. B., Hackett, P. H., Maret, K. H., Milledge, J. S., Peters, R. M., Pizzo, C. J., & Winslow, R. M. (1983). Pulmonary gas exchange on the summit of Mount Everest. Journal of Applied Physiology, 55(3), 678-687.
West JB, Lahiri S (eds.) (1984). High altitude and man. Clinical Physiology Series, American Physiological Society.
West, J. B., Lahiri, S., Maret, K. H., Peters, R. M., & Pizzo, C. J. (1983). Barometric pressure at extreme altitudes on Mount Everest: Physiological significance. Journal of Applied Physiology, 54(5), 1188-1194.
Winslow, R. M., Samaja, M., & West, J. B. (1984). Red cell function at extreme altitude on Mount Everest. Journal of Applied Physiology, 56(1), 109-116.
Zuntz, N., Loewy, A., Müller, F., & Caspari, W. (1906). Höhenklima und Bergwanderungen. Deutsches Verlagshaus, Berlin.

Auteurs

Guido Ferretti (G)

Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.

Giacomo Strapazzon (G)

Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy.
SIMeM Italian Society of Mountain Medicine, Padova, Italy.

Classifications MeSH