Muscle synergies inherent in simulated hypogravity running reveal flexible but not unconstrained locomotor control.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
01 Feb 2024
01 Feb 2024
Historique:
received:
21
08
2023
accepted:
15
12
2023
medline:
2
2
2024
pubmed:
2
2
2024
entrez:
1
2
2024
Statut:
epublish
Résumé
With human space exploration back in the spotlight, recent studies have investigated the neuromuscular adjustments to simulated hypogravity running. They have examined the activity of individual muscles, whereas the central nervous system may rather activate groups of functionally related muscles, known as muscle synergies. To understand how locomotor control adjusts to simulated hypogravity, we examined the temporal (motor primitives) and spatial (motor modules) components of muscle synergies in participants running sequentially at 100%, 60%, and 100% body weight on a treadmill. Our results highlighted the paradoxical nature of simulated hypogravity running: The reduced mechanical constraints allowed for a more flexible locomotor control, which correlated with the degree of spatiotemporal adjustments. Yet, the increased temporal (shortened stance phase) and sensory (deteriorated proprioceptive feedback) constraints required wider motor primitives and a higher contribution of the hamstring muscles during the stance phase. These results are a first step towards improving astronaut training protocols.
Identifiants
pubmed: 38302569
doi: 10.1038/s41598-023-50076-6
pii: 10.1038/s41598-023-50076-6
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
2707Informations de copyright
© 2024. The Author(s).
Références
Bramble, D. M. & Lieberman, D. E. Endurance running and the evolution of Homo. Nature 432, 345–352 (2004).
pubmed: 15549097
doi: 10.1038/nature03052
Cavagna, G. A., Thys, H. & Zamboni, A. The sources of external work in level walking and running. J. Physiol. 262, 639–657 (1976).
pubmed: 1011078
pmcid: 1307665
doi: 10.1113/jphysiol.1976.sp011613
Komi, P. V. Stretch-shortening cycle: A powerful model to study normal and fatigued muscle. J. Biomech. 33, 1197–1206 (2000).
pubmed: 10899328
doi: 10.1016/S0021-9290(00)00064-6
Lacquaniti, F. et al. Human locomotion in hypogravity: From basic research to clinical applications. Front. Physiol. 8, 893 (2017).
pubmed: 29163225
pmcid: 5682019
doi: 10.3389/fphys.2017.00893
Martino de, E., Green, D. A., Ciampi Andrade de, D., Weber, T. & Herssens, N. Human movement in simulated hypogravity—Bridging the gap between space research and terrestrial rehabilitation. Front. Neurol. 14, 1062349-16 (2023).
Whalen, R. T. & Hargens, A. R. Exercise Method and Apparatus Utilizing Differential Air Pressure. (1992).
Farina, K. A., Wright, A. A., Ford, K. R., Wirfel, L. A. & Smoliga, J. M. Physiological and biomechanical responses to running on lower body positive pressure treadmills in healthy populations. Sports Med. 47, 261–275 (2017).
pubmed: 27380101
doi: 10.1007/s40279-016-0581-2
Liebenberg, J. et al. Determination of muscle activity during running at reduced body weight. J. Sports Sci. 29, 207–214 (2011).
pubmed: 21170806
doi: 10.1080/02640414.2010.534806
Sainton, P. et al. Influence of short-term unweighing and reloading on running kinetics and muscle activity. Eur. J. Appl. Physiol. 115, 1135–1145 (2015).
pubmed: 25566954
doi: 10.1007/s00421-014-3095-3
Sainton, P., Nicol, C., Cabri, J., Barthèlemy-Montfort, J. & Chavet, P. Kinetics and muscle activity patterns during unweighting and reloading transition phases in running. PLoS ONE 11, e0168545 (2016).
pubmed: 27992539
pmcid: 5167401
doi: 10.1371/journal.pone.0168545
Fazzari, C. et al. Neuromuscular adjustments to unweighted running: the increase in hamstring activity is sensitive to trait anxiety. Front. Physiol. 14, 1212198 (2023).
pubmed: 37334048
pmcid: 10272775
doi: 10.3389/fphys.2023.1212198
Mercer, J. A., Applequist, B. C. & Masumoto, K. Muscle activity while running at 20%–50% of normal body weight. Res. Sports Med. 21, 217–228 (2013).
pubmed: 23777377
doi: 10.1080/15438627.2013.792084
Hunter, I., Seeley, M. K., Hopkins, J. T., Carr, C. & Franson, J. J. EMG activity during positive-pressure treadmill running. J. Electromyogr. Kinesiol. 24, 348–352 (2014).
pubmed: 24613660
doi: 10.1016/j.jelekin.2014.01.009
Jensen, B. R., Hovgaard-Hansen, L. & Cappelen, K. L. Muscle activation and estimated relative joint force during running with weight support on a lower-body positive-pressure treadmill. J. Appl. Biomech. 32, 335–341 (2016).
pubmed: 26957520
doi: 10.1123/jab.2015-0075
Lee, W. A. Neuromotor synergies as a basis for coordinated intentional action. J. Mot. Behav. 16, 135–170 (1984).
pubmed: 14713663
doi: 10.1080/00222895.1984.10735316
Bizzi, E., Mussa-Ivaldi, F. A. & Giszter, S. Computations underlying the execution of movement: A biological perspective. Science 253, 287–291 (1991).
pubmed: 1857964
doi: 10.1126/science.1857964
Giszter, S., Mussa-Ivaldi, F. & Bizzi, E. Convergent force fields organized in the frog’s spinal cord. J. Neurosci. 13, 467–491 (1993).
pubmed: 8426224
pmcid: 6576636
doi: 10.1523/JNEUROSCI.13-02-00467.1993
Mussa-Ivaldi, F. A., Giszter, S. F. & Bizzi, E. Linear combinations of primitives in vertebrate motor control. Proc. Natl. Acad. Sci. USA 91, 7534–7538 (1994).
pubmed: 8052615
pmcid: 44436
doi: 10.1073/pnas.91.16.7534
Lashley, K. S. Integrative functions of the cerebral cortex. Physiol.l Rev. 13, 1–42 (1933).
Hebb, D. O. The organization of behavior; a neuropsychological theory. (Wiley, 1949).
Bernstein, N. The Co-ordination and Regulation of Movements. (Pergamon Press, 1967).
Lee, D. D. & Seung, H. S. Learning the parts of objects by non-negative matrix factorization. Nature 401, 788–791 (1999).
pubmed: 10548103
doi: 10.1038/44565
Lee, D. & Seung, H. S. Algorithms for non-negative matrix factorization. in Adv. Neural Inf. Process. 13 (MIT Press, 2000).
Santuz, A., Ekizos, A., Janshen, L., Baltzopoulos, V. & Arampatzis, A. On the methodological implications of extracting muscle synergies from human locomotion. Int. J. Neural. Syst. 27, 1750007 (2017).
pubmed: 27873551
doi: 10.1142/S0129065717500071
Cappellini, G., Ivanenko, Y. P., Poppele, R. E. & Lacquaniti, F. Motor patterns in human walking and running. J. Neurophysiol. 95, 3426–3437 (2006).
pubmed: 16554517
doi: 10.1152/jn.00081.2006
Santuz, A., Ekizos, A., Eckardt, N., Kibele, A. & Arampatzis, A. Challenging human locomotion: Stability and modular organisation in unsteady conditions. Sci. Rep. 8, 2780 (2018).
doi: 10.1038/s41598-018-21018-4
Santuz, A. et al. Neuromotor dynamics of human locomotion in challenging settings. Iscience 23, 100796–100816 (2020).
pubmed: 31962235
doi: 10.1016/j.isci.2019.100796
Santuz, A. et al. Lower complexity of motor primitives ensures robust control of high-speed human locomotion. Heliyon 6, e05377 (2020).
pubmed: 33163662
pmcid: 7610320
doi: 10.1016/j.heliyon.2020.e05377
Mileti, I. et al. Muscle activation patterns are more constrained and regular in treadmill than in overground human locomotion. Front. Bioeng. Biotechnol. 8, 581619 (2020).
pubmed: 33195143
pmcid: 7644811
doi: 10.3389/fbioe.2020.581619
Janshen, L., Santuz, A., Ekizos, A. & Arampatzis, A. Fuzziness of muscle synergies in patients with multiple sclerosis indicates increased robustness of motor control during walking. Sci. Rep. 10, 7249 (2020).
pubmed: 32350313
pmcid: 7190675
doi: 10.1038/s41598-020-63788-w
Santuz, A. & Akay, T. Fractal analysis of muscle activity patterns during locomotion: Pitfalls and how to avoid them. J. Neurophysiol. 124, 1083–1091 (2020).
pubmed: 32816603
doi: 10.1152/jn.00360.2020
Stergiou, N., Harbourne, R. T. & Cavanaugh, J. T. Optimal movement variability: A new theoretical perspective for neurologic physical therapy. J. Neurol. Phys. Ther. 30, 120–129 (2006).
pubmed: 17029655
doi: 10.1097/01.NPT.0000281949.48193.d9
Harbourne, R. T. & Stergiou, N. Movement variability and the use of nonlinear tools: Principles to guide physical therapist practice. Phys. Ther. 89, 267–282 (2009).
pubmed: 19168711
pmcid: 2652347
doi: 10.2522/ptj.20080130
Santuz, A., Laflamme, O. D. & Akay, T. The brain integrates proprioceptive information to ensure robust locomotion. J. Physiol. 600, 5267–5294 (2022).
pubmed: 36271747
doi: 10.1113/JP283181
Pataky, T. C. One-dimensional statistical parametric mapping in Python. Comput. Methods Biomech. Biomed. Eng. 15, 295–301 (2012).
doi: 10.1080/10255842.2010.527837
Minetti, A. E. The biomechanics of skipping gaits: A third locomotion paradigm?. Proc. R. Soc. Lond. B 265, 1227–1233 (1998).
doi: 10.1098/rspb.1998.0424
Rader, A. A., Newman, D. J. & Carr, C. E. Loping: a strategy for reduced gravity human locomotion? SAE Tech. Pap. 2007–01–3134 (2007).
Holubarsch, J. et al. Stumbling reactions in hypo and hyper gravity – muscle synergies are robust across different perturbations of human stance during parabolic flights. Sci. Rep. 9, 10490 (2019).
pubmed: 31324854
pmcid: 6642199
doi: 10.1038/s41598-019-47091-x
Hagio, S., Nakazato, M. & Kouzaki, M. Modulation of spatial and temporal modules in lower limb muscle activations during walking with simulated reduced gravity. Sci. Rep. 11, 14749 (2021).
pubmed: 34285306
pmcid: 8292403
doi: 10.1038/s41598-021-94201-9
Gambara, G. et al. Gene expression profiling in slow-type calf soleus muscle of 30 days space-flown mice. PLOS ONE 12, e0169314 (2017).
pubmed: 28076365
pmcid: 5226721
doi: 10.1371/journal.pone.0169314
Smoliga, J. M., Wirfel, L. A., Paul, D., Doarnberger, M. & Ford, K. R. Effects of unweighting and speed on in-shoe regional loading during running on a lower body positive pressure treadmill. J. Biomech. 48, 1950–1956 (2015).
pubmed: 25931271
doi: 10.1016/j.jbiomech.2015.04.009
Neal, M., Fleming, N., Eberman, L., Games, K. & Vaughan, J. Effect of body-weight-support running on lower-limb biomechanics. J. Orthop. Sports Phys. Ther. 46, 784–793 (2016).
pubmed: 27581179
doi: 10.2519/jospt.2016.6503
Ivanenko, Y. P., Grasso, R., Macellari, V. & Lacquaniti, F. Control of foot trajectory in human locomotion: Role of ground contact forces in simulated reduced gravity. J. Neurophysiol. 87, 3070–3089 (2002).
pubmed: 12037209
doi: 10.1152/jn.2002.87.6.3070
Suzuki, T., Ogane, R., Yaeshima, K. & Kinugasa, R. Forefoot running requires shorter gastrocnemius fascicle length than rearfoot running. J. Sports Sci. 37, 1972–1980 (2019).
pubmed: 31032698
doi: 10.1080/02640414.2019.1610146
Higashihara, A., Ono, T., Kubota, J., Okuwaki, T. & Fukubayashi, T. Functional differences in the activity of the hamstring muscles with increasing running speed. J. Sports Sci. 28, 1085–1092 (2010).
pubmed: 20672221
doi: 10.1080/02640414.2010.494308
Prilutsky, B. I. & Gregor, R. J. Swing- and support-related muscle actions differentially trigger human walk-run and run-walk transitions. J. Exp. Biol. 204, 2277–2287 (2001).
pubmed: 11507111
doi: 10.1242/jeb.204.13.2277
Jankowska, E., Jukes, M. G., Lund, S. & Lundberg, A. Reciprocal innervation through interneuronal inhibition. Nature 206, 198–199 (1965).
pubmed: 5830959
doi: 10.1038/206198a0
Santuz, A. et al. Modular organization of murine locomotor pattern in the presence and absence of sensory feedback from muscle spindles. J. Physiol. 597, 3147–3165 (2019).
pubmed: 30916787
doi: 10.1113/JP277515
Rol, P. et al. Sensorimotor and perceptual function of muscle proprioception in microgravity. J. Vestib. Res. 3, 259–273 (1973).
doi: 10.3233/VES-1993-3307
Mouchnino, L., Lhomond, O., Morant, C. & Chavet, P. Plantar sole unweighting alters the sensory transmission to the cortical areas. Front. Hum. Neurosci. 11, 220 (2017).
pubmed: 28539876
pmcid: 5423901
doi: 10.3389/fnhum.2017.00220
Dingwell, J. B. & Cusumano, J. P. Re-interpreting detrended fluctuation analyses of stride-to-stride variability in human walking. Gait Posture 32, 348–353 (2010).
pubmed: 20605097
pmcid: 2942973
doi: 10.1016/j.gaitpost.2010.06.004
Grabowski, A. M. & Kram, R. Effects of velocity and weight support on ground reaction forces and metabolic power during running. Front. Hum. Neurosci. 24, 288–297 (2008).
Todorov, E. & Jordan, M. I. Optimal feedback control as a theory of motor coordination. Nat. Neurosci. 5, 1226–1235 (2002).
pubmed: 12404008
doi: 10.1038/nn963
De Witt, J. K. et al. Locomotion in simulated and real microgravity: Horizontal suspension vs parabolic flight. Aviat. Space Environ. Med. 81, 1092–1099 (2010).
pubmed: 21197853
doi: 10.3357/ASEM.2413.2010
Hermens, H. J., Freriks, B., Disselhorst-Klug, C. & Rau, G. Development of recommendations for SEMG sensors and sensor placement procedures. J. Electromyogr. Kinesiol. 10, 361–374 (2000).
pubmed: 11018445
doi: 10.1016/S1050-6411(00)00027-4
Santuz, A. et al. Modular control of human movement during running: An open access data set. Front. Physiol. 9, 1508 (2018).
doi: 10.3389/fphys.2018.01509
Santuz, A. musclesyneRgies: Factorization of electromyographic data in R with sensible defaults. J. Open Source Soft. 7, 4439 (2022).
doi: 10.21105/joss.04439
d’Avella, A. & Bizzi, E. Shared and specific muscle synergies in natural motor behaviors. Proc. Natl. Acad. Sci. USA 102, 3076–3081 (2005).
pubmed: 15708969
pmcid: 549495
doi: 10.1073/pnas.0500199102
Cheung, V. C. K., d’Avella, A., Tresch, M. C. & Bizzi, E. Central and sensory contributions to the activation and organization of muscle synergies during natural motor behaviors. J. Neurosci. 25, 6419–6434 (2005).
pubmed: 16000633
pmcid: 6725265
doi: 10.1523/JNEUROSCI.4904-04.2005
Santuz, A. et al. Sex-specific tuning of modular muscle activation patterns for locomotion in young and older adults. PLoS ONE 17, e0269417 (2022).
pubmed: 35658057
pmcid: 9165881
doi: 10.1371/journal.pone.0269417
Cappellini, G. et al. Immature spinal locomotor output in children with cerebral palsy. Front. Physiol. 7, 478 (2016).
pubmed: 27826251
pmcid: 5078720
doi: 10.3389/fphys.2016.00478
Munoz-Martel, V., Santuz, A., Bohm, S. & Arampatzis, A. Proactive modulation in the spatiotemporal structure of muscle synergies minimizes reactive responses in perturbed landings. Front. Bioeng. Biotech. 9, 761766 (2021).
doi: 10.3389/fbioe.2021.761766
Higuchi, T. Approach to an irregular time series on the basis of the fractal theory. Physica D: Nonlinear Phenom. 31, 277–283 (1988).
doi: 10.1016/0167-2789(88)90081-4
Kesić, S. & Spasić, S. Z. Application of Higuchi’s fractal dimension from basic to clinical neurophysiology: A review. Comput. Methods Programs Biomed. 133, 55–70 (2016).
pubmed: 27393800
doi: 10.1016/j.cmpb.2016.05.014
Hurst, H. E. Long-term storage capacity of reservoirs. Trans. Am. Soc. Civil Eng. Eng. 116, 770–799 (1951).
doi: 10.1061/TACEAT.0006518
Mandelbrot, B. B. & Wallis, J. R. Robustness of the rescaled range R/S in the measurement of noncyclic long run statistical dependence. Water Resour. Res. 5, 967–988 (1969).
doi: 10.1029/WR005i005p00967
Hartigan, J. A. & Wong, M. A. A K-Means clustering algorithm. J. R. Stat. Soc. Ser. C. Appl. Stat. 28, 100–108 (1979).
Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: Tests in linear mixed effects models. J. Stat. Soft. 82, 1–26 (2017).
doi: 10.18637/jss.v082.i13
Cohen, J. Statistical power analysis for the behavioral sciences. (L. Erlbaum Associates, 1988).
Hopkins, W., Marshall, S., Batterham, A. & Hanin, J. Progressive statistics for studies in sports medicine and exercise science. Med. Sci. Sport Exerc. 41, 3–13 (2009).
doi: 10.1249/MSS.0b013e31818cb278