Bacterial crude oil and polyaromatic hydrocarbon degraders from Kazakh oil fields as barley growth support.

Arthrobacter Bacillus Dietzia Hydrocarbon transformation Kocuria Micrococcus

Journal

Applied microbiology and biotechnology
ISSN: 1432-0614
Titre abrégé: Appl Microbiol Biotechnol
Pays: Germany
ID NLM: 8406612

Informations de publication

Date de publication:
02 Feb 2024
Historique:
received: 27 10 2023
accepted: 11 01 2024
revised: 21 12 2023
medline: 2 2 2024
pubmed: 2 2 2024
entrez: 2 2 2024
Statut: epublish

Résumé

Bacterial strains of the genera Arthrobacter, Bacillus, Dietzia, Kocuria, and Micrococcus were isolated from oil-contaminated soils of the Balgimbaev, Dossor, and Zaburunye oil fields in Kazakhstan. They were selected from 1376 isolated strains based on their unique ability to use crude oil and polyaromatic hydrocarbons (PAHs) as sole source of carbon and energy in growth experiments. The isolated strains degraded a wide range of aliphatic and aromatic components from crude oil to generate a total of 170 acid metabolites. Eight metabolites were detected during the degradation of anthracene and of phenanthrene, two of which led to the description of a new degradation pathway. The selected bacterial strains Arthrobacter bussei/agilis SBUG 2290, Bacillus atrophaeus SBUG 2291, Bacillus subtilis SBUG 2285, Dietzia kunjamensis SBUG 2289, Kocuria rosea SBUG 2287, Kocuria polaris SBUG 2288, and Micrococcus luteus SBUG 2286 promoted the growth of barley shoots and roots in oil-contaminated soil, demonstrating the enormous potential of isolatable and cultivable soil bacteria in soil remediation. KEY POINTS: • Special powerful bacterial strains as potential crude oil and PAH degraders. • Growth on crude oil or PAHs as sole source of carbon and energy. • Bacterial support of barley growth as resource for soil remediation.

Identifiants

pubmed: 38305872
doi: 10.1007/s00253-024-13010-y
pii: 10.1007/s00253-024-13010-y
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

189

Subventions

Organisme : German Academic Exchange Service
ID : 50754935
Organisme : German Academic Exchange Service
ID : 57525256
Organisme : Ministry of Education and Science of the Republic of Kazakhstan
ID : AP14871512

Informations de copyright

© 2024. The Author(s).

Références

Ahmed RZ, Ahmed N, Gadd GM (2010) Isolation of two Kocuria species capable of growing on various polycyclic aromatic hydrocarbons. Afr J Biotechnol 9(24):3611–3617
Aitken CM, Head IM, Jones DM, Rowland SJ, Scarlett AG, West CE (2018) Comprehensive two-dimensional gas chromatography-mass spectrometry of complex mixtures of anaerobic bacterial metabolites of petroleum hydrocarbons. J Chromatogr A 1536:96–109. https://doi.org/10.1016/j.chroma.2017.06.027
doi: 10.1016/j.chroma.2017.06.027 pubmed: 28652003
Al-Mailem DM, Al-Deieg M, Eliyas M, Radwan SS (2017) Biostimulation of indigenous microorganisms for bioremediation of oily hypersaline microcosms from the Arabian Gulf Kuwaiti coasts. J Environ Manage 193:576–583. https://doi.org/10.1016/j.jenvman.2017.02.054
doi: 10.1016/j.jenvman.2017.02.054 pubmed: 28262419
Alonso-Gutierrez J, Teramoto M, Yamazoe A, Harayama S, Figueras A, Novoa B (2011) Alkane-degrading properties of Dietzia sp HOB, a key player in the prestige oil spill biodegradation (NW Spain). J Appl Microbiol 111(4):800–810. https://doi.org/10.1111/j.1365-2672.2011.05104.x
doi: 10.1111/j.1365-2672.2011.05104.x pubmed: 21767337
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410. https://doi.org/10.1006/jmbi.1990.9999
doi: 10.1006/jmbi.1990.9999 pubmed: 2231712
Alvarez HM (2003) Relationship between beta-oxidation pathway and the hydrocarbon-degrading profile in actinomycetes bacteria. Int Biodeterior Biodegrad 52(1):35–42. https://doi.org/10.1016/s0964-8305(02)00120-8
doi: 10.1016/s0964-8305(02)00120-8
Annweiler E, Materna A, Safinowski M, Kappler A, Richnow HH, Michaelis W, Meckenstock RU (2000a) Anaerobic degradation of 2-methylnaphthalene by a sulfate-reducing enrichment culture. Appl Environ Microbiol 66(12):5329–5333. https://doi.org/10.1128/aem.66.12.5329-5333.2000
doi: 10.1128/aem.66.12.5329-5333.2000 pubmed: 11097910 pmcid: 92464
Annweiler E, Richnow HH, Antranikian G, Hebenbrock S, Garms C, Franke S, Francke W, Michaelis W (2000b) Naphthalene degradation and incorporation of naphthalene-derived carbon into biomass by the thermophile Bacillus thermoleovorans. Appl Environ Microbiol 66(2):518–523. https://doi.org/10.1128/aem.66.2.518-523.2000
doi: 10.1128/aem.66.2.518-523.2000 pubmed: 10653712 pmcid: 91857
Ausuri J, Vitale GA, Coppola D, Esposito FP, Buonocore C, de Pascale D (2021) Assessment of the degradation potential and genomic insights towards phenanthrene by Dietzia psychralcaliphila JI1D. Microorganisms 9(6) doi: https://doi.org/10.3390/microorganisms9061327
Awe S, Mikolasch A, Hammer E, Schauer F (2008) Degradation of phenylalkanes and characterization of aromatic intermediates acting as growth inhibiting substances in hydrocarbon utilizing yeast Candida maltosa. Int Biodeterior Biodegrad 62(4):408–414. https://doi.org/10.1016/j.ibiod.2008.03.007
doi: 10.1016/j.ibiod.2008.03.007
Baboshin MA, Baskunov BP, Finkelstein ZI, Golovlev EL, Golovleva LA (2005) The microbial transformation of phenanthrene and anthracene. Microbiology 74(3):303–309. https://doi.org/10.1007/s11021-005-0067-y
doi: 10.1007/s11021-005-0067-y
Baruah R, Kalita DJ, Saikia BK, Gautam A, Singh AK, Boruah HPD (2016) Native hydrocarbonoclastic bacteria and hydrocarbon mineralization processes. Int Biodeterior Biodegrad 112:18–30. https://doi.org/10.1016/j.ibiod.2016.04.032
doi: 10.1016/j.ibiod.2016.04.032
Beskoski VP, Miletic S, Ilic M, Gojgic-Cvijovic G, Papic P, Maric N, Solevic-Knudsen T, Jovancicevic BS, Nakano T, Vrvic MM (2017) Biodegradation of isoprenoids, steranes, terpanes, and phenanthrenes during in situ bioremediation of petroleum-contaminated groundwater. Clean (Weinh) 45(2) doi: https://doi.org/10.1002/clen.201600023
Bibi N, Hamayun M, Khan SA, Iqbal A, Islam B, Shah F, Khan MA, Lee IJ (2018) Anthracene biodegradation capacity of newly isolated rhizospheric bacteria Bacillus cereus S-13. PLos One 13(8) doi: https://doi.org/10.1371/journal.pone.0201620
Bihari Z, Szabo Z, Szvetnik A, Balazs M, Bartos P, Tolmacsov P, Zombori Z, Kiss I (2010) Characterization of a novel long-chain n-alkane-degrading strain, Dietzia sp E1. Z Naturforsch C J Biosci 65(11–12):693–700
doi: 10.1515/znc-2010-11-1210 pubmed: 21319712
Busse HJ (2016) Review of the taxonomy of the genus Arthrobacter, emendation of the genus Arthrobacter sensu lato, proposal to reclassify selected species of the genus Arthrobacter in the novel genera Glutamicibacter gen. nov., Paeniglutamicibacter gen. nov., Pseudoglutamicibacter gen. nov., Paenarthrobacter gen. nov and Pseudarthrobacter gen. nov., and emended description of Arthrobacter roseus. Int J Syst Evol Microbiol 66:9–37. https://doi.org/10.1099/ijsem.0.000702
doi: 10.1099/ijsem.0.000702 pubmed: 26486726
Cabral L, Giovanella P, Pellizzer EP, Teramoto EH, Kiang CH, Sette LD (2022) Microbial communities in petroleum-contaminated sites: structure and metabolisms. Chemosphere 286 doi: https://doi.org/10.1016/j.chemosphere.2021.131752
Casellas M, Grifoll M, Bayona JM, Solanas AM (1997) New metabolites in the degradation of fluorene by Arthrobacter sp strain F101. Appl Environ Microbiol 63(3):819–826. https://doi.org/10.1128/aem.63.3.819-826.1997
doi: 10.1128/aem.63.3.819-826.1997 pubmed: 9055403 pmcid: 168377
Cerniglia CE, Freeman JP, Evans FE (1984) Evidence for an arene oxide-NIH shift pathway in the transformation of naphthalene to 1-naphthol by Bacillus cereus. Arch Microbiol 138(4):283–286. https://doi.org/10.1007/bf00410891
doi: 10.1007/bf00410891 pubmed: 6433850
Chaudhary P, Sahay H, Sharma R, Pandey AK, Singh SB, Saxena AK, Nain L (2015) Identification and analysis of polyaromatic hydrocarbons (PAHs)-biodegrading bacterial strains from refinery soil of India. Environ Monit Assess 187(6):391–400. https://doi.org/10.1007/s10661-015-4617-0
doi: 10.1007/s10661-015-4617-0 pubmed: 26026847
Chen WW, Li JD, Sun XN, Min J, Hu XK (2017) High efficiency degradation of alkanes and crude oil by a salt-tolerant bacterium Dietzia species CN-3. Int Biodeterior Biodegrad 118:110–118. https://doi.org/10.1016/j.ibiod.2017.01.029
doi: 10.1016/j.ibiod.2017.01.029
Creed D, Caldwell RA, Ulrich MM (1978) Triplet sensitization and exciplex quenching of the photochemical reaction between phenanthrene and dimethyl fumarate. J Am Chem Soc 100(18):5831–5841. https://doi.org/10.1021/ja00486a040
doi: 10.1021/ja00486a040
Cui JQ, Li YQ, He QS, Li BZ, Yuan YJ, Wen JP (2022) Effects of different surfactants on the degradation of petroleum hydrocarbons by mixed-bacteria. J Chem Technol Biotechnol 97(1):208–217. https://doi.org/10.1002/jctb.6931
doi: 10.1002/jctb.6931
Dellagnezze BM, de Sousa GV, Martins LL, Domingos DF, Limache EEG, de Vasconcellos SP, da Cruz GF, de Oliveira VM (2014) Bioremediation potential of microorganisms derived from petroleum reservoirs. Mar Pollut Bull 89(1–2):191–200. https://doi.org/10.1016/j.marpolbul.2014.10.003
doi: 10.1016/j.marpolbul.2014.10.003 pubmed: 25457810
Doddamani HP, Ninnekar HZ (2000) Biodegradation of phenanthrene by a Bacillus species. Curr Microbiol 41(1):11–14. https://doi.org/10.1007/s002840010083
doi: 10.1007/s002840010083 pubmed: 10919392
Dworkin M (2001) The prokaryotes: an evolving electronic resource for the microbiological community, 3rd edn. Springer, New York
Espinosa-Ortiz EJ, Rene ER, Gerlach R (2022) Potential use of fungal-bacterial co-cultures for the removal of organic pollutants. Crit Rev Biotechnol 42(3):361–383. https://doi.org/10.1080/07388551.2021.1940831
doi: 10.1080/07388551.2021.1940831 pubmed: 34325585
Farid S, Williams JL, Doty JC (1972) Reactions of the exciplex from singlet-excited phenanthrene and dimethyl fumarate: oxetan formation, intersystem crossing, and emission. J Chem Soc Chem Commun(12):711-& doi: https://doi.org/10.1039/c39720000711
Ferrari VB, Cesar A, Cayo R, Choueri RB, Okamoto DN, Freitas JG, Favero M, Gales AC, Niero CV, Saia FT, de Vasconcellos SP (2019) Hexadecane biodegradation of high efficiency by bacterial isolates from Santos Basin sediments. Mar Pollut Bull 142:309–314. https://doi.org/10.1016/j.marpolbul.2019.03.050
doi: 10.1016/j.marpolbul.2019.03.050 pubmed: 31232308
Foght J (2008) Anaerobic biodegradation of aromatic hydrocarbons: pathways and prospects. J Mol Microbiol Biotechnol 15(2–3):93–120. https://doi.org/10.1159/000121324
doi: 10.1159/000121324 pubmed: 18685265
Fritze D, Pukall R (2001) Reclassification of bioindicator strains Bacillus subtilis DSM 675 and Bacillus subtilis DSM 2277 as Bacillus atrophaeus. Int J Syst Evol Microbiol 51:35–37. https://doi.org/10.1099/00207713-51-1-35
doi: 10.1099/00207713-51-1-35 pubmed: 11211269
Gerbeth A, Krausse S, Gemende B, Muller RH (2004) Search of microorganisms that degrade PAHs under alkaline conditions. Eng Life Sci 4(4):311–318. https://doi.org/10.1002/elsc.200420034
doi: 10.1002/elsc.200420034
Gerhardt KE, Huang X-D, Glick BR, Greenberg BM (2009) Phytoremediation and rhizoremediation of organic soil contaminants: potential and challenges. Plant Sci 176(1):20–30. https://doi.org/10.1016/j.plantsci.2008.09.014
doi: 10.1016/j.plantsci.2008.09.014
Ghosh BB, Banerjee AK (1982) Hydrocarbon utilization by Aeromonas, Arthrobacter, Brevibacterium, Corynebacterium, Micrococcus, Mycobacterium Nocardia and Serratia-Spp. Curr Sci 51(22):1072–1075
Gurav R, Lyu HH, Ma JL, Tang JC, Liu QL, Zhang HR (2017) Degradation of n-alkanes and PAHs from the heavy crude oil using salt-tolerant bacterial consortia and analysis of their catabolic genes. Environ Sci Pollut Res 24(12):11392–11403. https://doi.org/10.1007/s11356-017-8446-2
doi: 10.1007/s11356-017-8446-2
Heider J, Spormann AM, Beller HR, Widdel F (1998) Anaerobic bacterial metabolism of hydrocarbons. FEMS Microbiol Rev 22(5):459–473. https://doi.org/10.1111/j.1574-6976.1998.tb00381.x
doi: 10.1111/j.1574-6976.1998.tb00381.x
Holstein A, Kappas M, Propastin P, Renchin T (2018) Oil spill detection in the Kazakhstan sector of the Caspian Sea with the help of ENVISAT ASAR data. Environ Earth Sci 77(5) doi: https://doi.org/10.1007/s12665-018-7347-0
Holt JG, Krieg NR, Sneath PHA, Bergey DH (1994) Bergey’s manual of determinative bacteriology, 9th edn. Lippincott Williams and Wilkins, Philadelphia
Hori MON, Amund DI (2000) Degradation of anthracene by bacteria isolated from oil polluted tropical soils. Z Naturforsch C J Biosci 55(11–12):890–897
Hugh R, Leifson E (1953) The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various gram negative bacteria. J Bacteriol 66(1):24–26
doi: 10.1128/jb.66.1.24-26.1953 pubmed: 13069461 pmcid: 357086
Hundt K, Wagner M, Becher D, Hammer E, Schauer F (1998) Effect of selected environmental factors on degradation and mineralization of biaryl compounds by the bacterium Ralstonia pickettii in soil and compost. Chemosphere 36(10):2321–2335. https://doi.org/10.1016/S0045-6535(97)10201-6
doi: 10.1016/S0045-6535(97)10201-6 pubmed: 9566302
Imron MF, Kurniawan SB, Ismail NI, Abdullah SRS (2020) Future challenges in diesel biodegradation by bacteria isolates: a review. J Clean Prod 251 doi: https://doi.org/10.1016/j.jclepro.2019.119716
Interfax international information group (2022) Kazakhstan produces 53.3 bcm of gas in 2022, 84.2 mln tonnes of oil - energy minister. https://interfax.com/newsroom/top-stories/86790/ . Accessed 18.07.2023 2023
Issayeva A, Mametova A, Baiduisenova T, Kossauova A, Zhumakhanova R, Zhumadulayeva A, Ashirbayeva S, Patashova A (2023) The effect of oil pollution of the gray soils on revegetation in the south of Kazakhstan. J Ecol Eng 24(1):28–33. https://doi.org/10.12911/22998993/155997
doi: 10.12911/22998993/155997
Kachholz T, Rehm HJ (1978) Degradation of long chain alkanes by bacilli II Metabolic Pathways. Appl Microbiol Biotechnol 6(1):39–54. https://doi.org/10.1007/bf00500855
doi: 10.1007/bf00500855
Kallimanis A, Kavakiotis K, Perisynakis A, Sproer C, Pukall R, Drainas C, Koukkou AI (2009) Arthrobacter phenanthrenivorans sp nov., to accommodate the phenanthrene-degrading bacterium Arthrobacter sp strain Sphe3. Int J Syst Evol Microbiol 59:275–279. https://doi.org/10.1099/ijs.0.000984-0
doi: 10.1099/ijs.0.000984-0 pubmed: 19196765
Kämpfer P, Steiof M, Dott W (1991) Microbiological characterization of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria. Microb Ecol 21(3):227–251. https://doi.org/10.1007/bf02539156
doi: 10.1007/bf02539156 pubmed: 24194213
Khandelwal A, Sugavanam R, Ramakrishnan B, Dutta A, Varghese E, Banerjee T, Nain L, Singh SB, Singh N (2022) Bio-polysaccharide composites mediated degradation of polyaromatic hydrocarbons in a sandy soil using free and immobilized consortium of Kocuria rosea and Aspergillus sydowii. Environ Sci Pollut Res 29(53):80005–80020. https://doi.org/10.1007/s11356-022-19252-5
doi: 10.1007/s11356-022-19252-5
Khanna P, Goyal D, Khanna S (2011) Pyrene degradation by Bacillus pumilus isolated from crude oil contaminated soil. Polycycl Aromat Compd 31(1):1–15. https://doi.org/10.1080/10406638.2010.542792
doi: 10.1080/10406638.2010.542792
Kiamarsi Z, Soleimani M, Nezami A, Kafi M (2019) Biodegradation of n-alkanes and polycyclic aromatic hydrocarbons using novel indigenous bacteria isolated from contaminated soils. Int J Environ Sci Technol (tehran) 16(11):6805–6816. https://doi.org/10.1007/s13762-018-2087-y
doi: 10.1007/s13762-018-2087-y
Kiyohara H, Nagao K, Yana K (1982) Rapid screen for bacteria degrading water-insoluble, solid hydrocarbons on agar plates. Appl Environ Microbiol 43(2):454–457. https://doi.org/10.1128/aem.43.2.454-457.1982
doi: 10.1128/aem.43.2.454-457.1982 pubmed: 16345951 pmcid: 241847
Klein DA, Davis JA, Casida LE (1968) Oxidation of n-alkanes to ketones by an Arthrobacter species. Antonie Van Leeuwenhoek J Microbiol 34(4):495–0. https://doi.org/10.1007/bf02046471
doi: 10.1007/bf02046471 pubmed: 5304023
Kniemeyer O, Fischer T, Wilkes H, Glockner FO, Widdel F (2003) Anaerobic degradation of ethylbenzene by a new type of marine sulfate-reducing bacterium. Appl Environ Microbiol 69(2):760–768. https://doi.org/10.1128/aem.69.2.760-768.2003
doi: 10.1128/aem.69.2.760-768.2003 pubmed: 12570993 pmcid: 143655
Koronelli TV, Nesterova ED (1990) Ecological strategies of bacteria utilizing hydrophobic substrates. Microbiology 59(6):691–694
Kuiper I, Lagendijk EL, Bloemberg GV, Lugtenberg BJ (2004) Rhizoremediation: a beneficial plant-microbe interaction. Mol Plant Microbe Interact 17(1):6–15. https://doi.org/10.1094/MPMI.2004.17.1.6
doi: 10.1094/MPMI.2004.17.1.6 pubmed: 14714863
Kumar R, Pandey S, Pandey A (2006) Plant roots and carbon sequestration. Curr Sci 91(7):885–890
Kurtzman C, Fell JW, Boekhout T (2011) The yeasts: a taxonomic study. Elsevier Science
Lara-Severino RD, Camacho-Lopez MA, Casanova-Gonzalez E, Gomez-Olivan LM, Sandoval-Trujillo AH, Isaac-Olive K, Ramirez-Duran N (2016) Haloalkalitolerant Actinobacteria with capacity for anthracene degradation isolated from soils close to areas with oil activity in the State of Veracruz. Mexico Int Microbiol 19(1):15–26. https://doi.org/10.2436/20.1501.01.259
doi: 10.2436/20.1501.01.259 pubmed: 27762425
Lawniczak L, Wozniak-Karczewska M, Loibner AP, Heipieper HJ, Chrzanowski L (2020) Microbial degradation of hydrocarbons-basic principles for bioremediation: a review. Molecules 25(4) doi: https://doi.org/10.3390/molecules25040856
Liu M, Chen XM, Zhang E, Wang C, Ruan C, Xu Y, Liu XL, Luo XG (2013) Study of microbial distribution in the Arid Desert Terrain, Beishan Mountains Area. Gansu J Pure Appl Microbiol 7(4):3111–3119
Lors C, Mossmann JR, Barbe P (2004) Phenotypic responses of the soil bacterial community to polycyclic aromatic hydrocarbon contamination in soils. Polycycl Aromat Compd 24(1):21–36. https://doi.org/10.1080/10406630490277434
doi: 10.1080/10406630490277434
Lurie J (1978) Handbook of analytical chemistry, 2nd edn. Mir Publishers, Moscow
Mahjoubi M, Jaouani A, Guesmi A, Ben Amor S, Jouini A, Cherif H, Najjari A, Boudabous A, Koubaa N, Cherif A (2013) Hydrocarbonoclastic bacteria isolated from petroleum contaminated sites in Tunisia: isolation, identification and characterization of the biotechnological potential. New Biotech 30(6):723–733. https://doi.org/10.1016/j.nbt.2013.03.004
doi: 10.1016/j.nbt.2013.03.004
Mandree P, Masika W, Naicker J, Moonsamy G, Ramchuran S, Lalloo R (2021) Bioremediation of polycyclic aromatic hydrocarbons from industry contaminated soil using indigenous Bacillus spp. Processes 9(9) doi: https://doi.org/10.3390/pr9091606
Margesin R, Moertelmaier C, Mair J (2013) Low-temperature biodegradation of petroleum hydrocarbons (n-alkanes, phenol, anthracene, pyrene) by four actinobacterial strains. Int Biodeterior Biodegrad 84:185–191. https://doi.org/10.1016/j.ibiod.2012.05.004
doi: 10.1016/j.ibiod.2012.05.004
Mayilraj S, Suresh K, Kroppenstedt RM, Saini HS (2006) Dietzia kunjamensis sp nov., isolated from the Indian Himalayas. Int J Syst Evol Microbiol 56:1667–1671. https://doi.org/10.1099/ijs.0.64212-0
doi: 10.1099/ijs.0.64212-0 pubmed: 16825647
Meckenstock RU, Boll M, Mouttaki H, Koelschbach JS, Tarouco PC, Weyrauch P, Dong XY, Himmelberg AM (2016) Anaerobic degradation of benzene and polycyclic aromatic hydrocarbons. J Mol Microbiol Biotechnol 26(1–3):92–118. https://doi.org/10.1159/000441358
doi: 10.1159/000441358 pubmed: 26960214
Meckenstock RU, Safinowski M, Griebler C (2004) Anaerobic degradation of polycyclic aromatic hydrocarbons. FEMS Microbiol Ecol 49(1):27–36. https://doi.org/10.1016/j.femsec.2004.02.019
doi: 10.1016/j.femsec.2004.02.019 pubmed: 19712381
Mikolasch A, Berzhanova R, Omirbekova A, Reinhard A, Zühlke D, Meister M, Mukasheva T, Riedel K, Urich T, Schauer F (2020) Moniliella spathulata, an oil-degrading yeast, which promotes growth of barley in oil-polluted soil. Appl Microbiol Biotechnol https://doi.org/10.1007/s00253-020-11011-1
Mikolasch A, Donath M, Reinhard A, Herzer C, Zayadan B, Urich T, Schauer F (2019) Diversity and degradative capabilities of bacteria and fungi isolated from oil-contaminated and hydrocarbon-polluted soils in Kazakhstan. Appl Microbiol Biotechnol 103(17):7261–7274. https://doi.org/10.1007/s00253-019-10032-9
doi: 10.1007/s00253-019-10032-9 pubmed: 31346684
Mikolasch A, Omirbekova A, Schumann P, Reinhard A, Sheikhany H, Berzhanova R, Mukasheva T, Schauer F (2015) Enrichment of aliphatic, alicyclic and aromatic acids by oil-degrading bacteria isolated from the rhizosphere of plants growing in oil-contaminated soil from Kazakhstan. Appl Microbiol Biotechnol 99(9):4071–4084. https://doi.org/10.1007/s00253-014-6320-4
doi: 10.1007/s00253-014-6320-4 pubmed: 25592733
Mikolasch A, Reinhard A, Alimbetova A, Omirbekova A, Pasler L, Schumann P, Kabisch J, Mukasheva T, Schauer F (2016) From oil spills to barley growth - oil-degrading soil bacteria and their promoting effects. J Basic Microbiol 56(11):1252–1273. https://doi.org/10.1002/jobm.201600300
doi: 10.1002/jobm.201600300 pubmed: 27624187
Mukasheva TD, Ignatova LV, Berzhanova RZ, Sydykbekova RK, Omirbekova AA, Dautova D (2012) Screening of plants – phytoremediators resistant to oil pollution. 5th International Symposium on Biosorption and Bioremediation:56–59
Mullakhanbhai MF, Bhat JV (1966) The degradation of aromatic compounds by Arthrobacter Species. Curr Sci 35(3):58–59
Mülner P, Schwarz E, Dietel K, Junge H, Herfort S, Weydmann M, Lasch P, Cernava T, Berg G, Vater J (2020) Profiling for bioactive peptides and volatiles of plant growth promoting strains of the Bacillus subtilis complex of industrial relevance. Front Microbiol 11:1432. https://doi.org/10.3389/fmicb.2020.01432
doi: 10.3389/fmicb.2020.01432 pubmed: 32695084 pmcid: 7338577
Nakamura LK (1989) Taxonomic relationship of black-pigmented Bacillus subtilis strains and a proposal for Bacillus atrophaeus sp. nov. . Int J Syst Bacteriol 39(3):295–300 doi: https://doi.org/10.1099/00207713-39-3-295
Navarro-Llorens JM, Drzyzga O, Perera J (2008) Genetic analysis of phenylacetic acid catabolism in Arthrobacter oxydans CECT386. Arch Microbiol 190(1):89–100. https://doi.org/10.1007/s00203-008-0370-x
doi: 10.1007/s00203-008-0370-x pubmed: 18437357
Nhi-Cong LT, Mikolasch A, Awe S, Sheikhany H, Klenk H-P, Schauer F (2010) Oxidation of aliphatic, branched chain, and aromatic hydrocarbons by Nocardia cyriacigeorgica isolated from oil-polluted sand samples collected in the Saudi Arabian Desert. J Basic Microbiol 50(3):241–253. https://doi.org/10.1002/jobm.200900358
doi: 10.1002/jobm.200900358
Nhi-Cong LT, Mikolasch A, Klenk H-P, Schauer F (2009) Degradation of the multiple branched alkane 2,6,10,14-tetramethyl-pentadecane (pristane) in Rhodococcus ruber and Mycobacterium neoaurum. Int Biodeterior Biodegrad 63(2):201–207. https://doi.org/10.1016/j.ibiod.2008.09.002
doi: 10.1016/j.ibiod.2008.09.002
Olowomofe TO, Oluyege JO, Aderiye BI, Oluwole OA (2019) Degradation of poly aromatic fractions of crude oil and detection of catabolic genes in hydrocarbon-degrading bacteria isolated from Agbabu bitumen sediments in Ondo State. AIMS Microbiol 5(4):308–323. https://doi.org/10.3934/microbiol.2019.4.308
doi: 10.3934/microbiol.2019.4.308 pubmed: 31915745 pmcid: 6946641
Passarello M, Abbate S, Longhi G, Lepri S, Ruzziconi R, Nicu VP (2014) Importance of C*-H based modes and large amplitude motion effects in vibrational circular dichroism spectra: the case of the chiral adduct of dimethyl fumarate and anthracene. J Phys Chem A 118(24):4339–4350. https://doi.org/10.1021/jp502544v
doi: 10.1021/jp502544v pubmed: 24840313
Peng H, Yin H, Deng J, Ye JS, Chen SN, He BY, Zhang N (2012) Biodegradation of Benzo a pyrene by Arthrobacter oxydans B4. Pedosphere 22(4):554–561. https://doi.org/10.1016/s1002-0160(12)60040-x
doi: 10.1016/s1002-0160(12)60040-x
Plotnikova EG, Altyntseva OV, Kosheleva IA, Puntus IF, Filonov AE, Gavrish EY, Demakov VA, Boronin AM (2001) Bacterial degraders of polycyclic aromatic hydrocarbons isolated from salt-contaminated soils and bottom sediments in salt mining areas. Microbiology 70(1):51–58. https://doi.org/10.1023/a:1004892804670
doi: 10.1023/a:1004892804670
Plotnikova EG, Yastrebova OV, Anan’ina LN, Dorofeeva LV, Lysanskaya VY, Demakov VA (2011) Halotolerant bacteria of the genus Arthrobacter degrading polycyclic aromatic hydrocarbons. Russ J Ecol 42(6):502–509. https://doi.org/10.1134/s1067413611060130
doi: 10.1134/s1067413611060130
Quatrini P, Scaglione G, De Pasquale C, Riela S, Puglia AM (2008) Isolation of Gram-positive n-alkane degraders from a hydrocarbon-contaminated Mediterranean shoreline. J Appl Microbiol 104(1):251–259
pubmed: 17922832
Radwan SS, Sorkhoh NA, Felzmann H, ElDesouky AF (1996) Uptake and utilization of n-octacosane and n-nonacosane by Arthrobacter nicotianae KCC B35. J Appl Bacteriol 80(4):370–374. https://doi.org/10.1111/j.1365-2672.1996.tb03231.x
doi: 10.1111/j.1365-2672.1996.tb03231.x pubmed: 8849639
Raju MN, Leo R, Herminia SS, Moran REB, Venkateswarlu K, Laura S (2017) Biodegradation of diesel, crude oil and spent lubricating oil by soil isolates of Bacillus spp. Bull Environ Contam Toxicol 98(5):698–705. https://doi.org/10.1007/s00128-017-2039-0
doi: 10.1007/s00128-017-2039-0 pubmed: 28210752
Reddy GSN, Prakash JSS, Prabahar V, Matsumoto GI, Stackebrandt E, Shivaji S (2003) Kocuria polaris sp nov., an orange-pigmented psychrophilic bacterium isolated from an Antarctic cyanobacterial mat sample. Int J Syst Evol Microbiol 53:183–187. https://doi.org/10.1099/ijs.0.02336-0
doi: 10.1099/ijs.0.02336-0 pubmed: 12656171
Safinowski M, Griebler C, Meckenstock RU (2006) Anaerobic cometabolic transformation of polycyclic and heterocyclic aromatic hydrocarbons: Evidence from laboratory and field studies. Environ Sci Technol 40(13):4165–4173. https://doi.org/10.1021/es0525410
doi: 10.1021/es0525410 pubmed: 16858866
Sakshi SSK, Haritash AK (2021) Catabolic enzyme activities during biodegradation of three-ring PAHs by novel DTU-1Y and DTU-7P strains isolated from petroleum-contaminated soil. Arch Microbiol 203(6):3101–3110. https://doi.org/10.1007/s00203-021-02297-4
doi: 10.1007/s00203-021-02297-4 pubmed: 33797590
Sakshi, Singh SK, Haritash AK (2023) Bacterial degradation of mixed-PAHs and expression of PAH-catabolic genes. World J Microbiol Biotechnol 39(2) doi: https://doi.org/10.1007/s11274-022-03489-w
Seo JS, Keum YS, Hu YT, Lee SE, Li QX (2006) Phenanthrene degradation in Arthrobacter sp P1–1: Initial 1,2-, 3,4- and 9,10-dioxygenation, and meta- and ortho-cleavages of naphthalene-1,2-diol after its formation from naphthalene-1,2-dicarboxylic acid and hydroxyl naphthoic acids. Chemosphere 65(11):2388–2394. https://doi.org/10.1016/j.chemosphere.2006.04.067
doi: 10.1016/j.chemosphere.2006.04.067 pubmed: 16777186
Sezen S, Gulluce M, Karadayi M, Isik C, Alaylar B, Dogan S, Koc TY (2020) Characterization of bacterial flora from Afsin-Elbistan lignite mine for potential microbial biotech applications. Geomicrobiol J 37(9):798–803. https://doi.org/10.1080/01490451.2020.1779418
doi: 10.1080/01490451.2020.1779418
Shi SN, Qu YY, Ma F, Zhou JT (2014) Bioremediation of coking wastewater containing carbazole, dibenzofuran, dibenzothiophene and naphthalene by a naphthalene-cultivated Arthrobacter sp. W1. Bioresour Technol 164:28–33. https://doi.org/10.1016/j.biortech.2014.04.010
doi: 10.1016/j.biortech.2014.04.010 pubmed: 24835915
Shimura M, Mukerjee-Dhar G, Kimbara K, Nagato H, Kiyohara H, Hatta T (1999) Isolation and characterization of a thermophilic Bacillus sp JF8 capable of degrading polychlorinated biphenyls and naphthalene. FEMS Microbiol Lett 178(1):87–93. https://doi.org/10.1111/j.1574-6968.1999.tb13763.x
doi: 10.1111/j.1574-6968.1999.tb13763.x pubmed: 10483727
Silva DDP, Cavalcanti DD, de Melo EJV, dos Santos PNF, da Luz ELP, de Gusmao NB, Sousa M (2015) Bio-removal of diesel oil through a microbial consortium isolated from a polluted environment. Int Biodeterior Biodegrad 97:85–89. https://doi.org/10.1016/j.ibiod.2014.09.021
doi: 10.1016/j.ibiod.2014.09.021
Solyanikova IP, Golovleva LA (2019) Hexadecane and hexadecane-degrading bacteria: mechanisms of interaction. Microbiology 88(1):15–26. https://doi.org/10.1134/s0026261718060152
doi: 10.1134/s0026261718060152
Spormann AM, Widdel F (2000) Metabolism of alkylbenzenes, alkanes, and other hydrocarbons in anaerobic bacteria. Biodegradation 11(2–3):85–105. https://doi.org/10.1023/a:1011122631799
doi: 10.1023/a:1011122631799 pubmed: 11440245
Stackebrandt E, Koch C, Gvozdiak O, Schumann P (1995) Taxonomic dissection of the genus Micrococcus: Kocuria gen nov, Nesterenkonia gen nov, Kytococcus gen nov, Dermacoccus gen nov, and Micrococcus Cohn 1872 gen emend. Int J Syst Bacteriol 45(4):682–692. https://doi.org/10.1099/00207713-45-4-682
doi: 10.1099/00207713-45-4-682 pubmed: 7547287
Staff report in business, The Astana times (2022) Kazakhstan exceeds oil extraction expectations in 2022. https://astanatimes.com/2023/01/kazakhstan-exceeds-oil-extraction-expectations-in-2022/ . Accessed 18.07. 2023
Stevenson IL (1967) Utilization of aromatic hydrocarbons by Arthrobacter spp. Can J Microbiol 13(2):205-+ doi: https://doi.org/10.1139/m67-027
Suslow TV, Schroth MN, Isaka M (1982) Application of a rapid method for Gram differentiation of plant pathogenic and saprophytic bacteria without staining. Phytopathology 72(7):917–918. https://doi.org/10.1094/Phyto-72-917
doi: 10.1094/Phyto-72-917
Swaathy S, Kavitha V, Pravin AS, Mandal AB, Gnanamani A (2014) Microbial surfactant mediated degradation of anthracene in aqueous phase by marine Bacillus licheniformis MTCC 5514. Biotechnol Rep (amst) 4:161–170. https://doi.org/10.1016/j.btre.2014.10.004
doi: 10.1016/j.btre.2014.10.004 pubmed: 28626676
Tanasheva D, Zulunov D, Fesenko V, Yurtayev R, Mukanov A (2022) Kazakhstan oil and gas tax guide 2022. Ernst & Young LLC, Building a better working world, https://assetseycom/content/dam/ey-sites/ey-com/ru_kz/topics/oil-and-gas/ey-kazakhstan-oil-and-gas-tax-guide-2022pdf:1-20. Accessed 18.07.2023 2023
Thunberg L, Allenmark S (2003) Asymmetric cycloaddition routes to both enantiomers of trans-9,10-dihydro-9,10-ethanoanthracene-11,12-dicarboxylic acid. Tetrahedron Asymmetry 14(10):1317–1322. https://doi.org/10.1016/s0957-4166(03)00172-1
doi: 10.1016/s0957-4166(03)00172-1
Toledo FL, Calvo C, Rodelas B, Gonzalez-Lopez J (2006) Selection and identification of bacteria isolated from waste crude oil with polycyclic aromatic hydrocarbons removal capacities. Syst Appl Microbiol 29(3):244–252. https://doi.org/10.1016/j.syapm.2005.09.003
doi: 10.1016/j.syapm.2005.09.003 pubmed: 16564960
Trading economics (2023) Crude oil production. https://tradingeconomics.com/country-list/crude-oil-production . Accessed 18.07. 2023
Tuleva B, Christova N, Cohen R, Antonova D, Todorov T, Stoineva I (2009) Isolation and characterization of trehalose tetraester biosurfactants from a soil strain Micrococcus luteus BN56. Process Biochem 44(2):135–141. https://doi.org/10.1016/j.procbio.2008.09.016
doi: 10.1016/j.procbio.2008.09.016
Twin A (2022) The world’s 10 biggest oil exporters. https://www.investopedia.com/articles/company-insights/082316/worlds-top-10-oil-exporters.asp#toc-9-kazakhstan . Accessed 18.07. 2023
Ummara U, Noreen S, Afzal M, Ahmad P (2021) Bacterial bioaugmentation enhances hydrocarbon degradation, plant colonization and gene expression in diesel-contaminated soil. Physiol Plant 173(1):58–66. https://doi.org/10.1111/ppl.13171
doi: 10.1111/ppl.13171 pubmed: 32691441
UNECE (2019) Environmental performance reviews - Kazakhstan. https://unece.org/sites/default/files/2021-08/ECE_CEP_185_Eng_0.pdf . Accessed 18.07. 2023
Vandera E, Samiotaki M, Parapouli M, Panayotou G, Koukkou AI (2015) Comparative proteomic analysis of Arthrobacter phenanthreniuorans Sphe3 on phenanthrene, phthalate and glucose. J Proteomics 113:73–89. https://doi.org/10.1016/j.jprot.2014.08.018
doi: 10.1016/j.jprot.2014.08.018 pubmed: 25257624
von der Weid I, Marques JM, Cunha CD, Lippi RK, dos Santos SCC, Rosado AS, Lins U, Seldin L (2007) Identification and biodegradation potential of a novel strain of Dietzia cinnamea isolated from a petroleum-contaminated tropical soil. Syst Appl Microbiol 30(4):331–339. https://doi.org/10.1016/j.syapm.2006.11.001
doi: 10.1016/j.syapm.2006.11.001 pubmed: 17174505
Wang LY, Tan YZ, Sun SW, Zhou LJ, Wu GJ, Shao YT, Wang MX, Xin ZH (2022) Improving degradation of polycyclic aromatic hydrocarbons by Bacillus atrophaeus laccase fused with Vitreoscilla hemoglobin and a novel strong promoter replacement. Biology (Basel) 11(8) doi: https://doi.org/10.3390/biology11081129
Wang XB, Chi CQ, Nie Y, Tang YQ, Tan Y, Wu G, Wu XL (2011) Degradation of petroleum hydrocarbons (C6–C40) and crude oil by a novel Dietzia strain. Bioresour Technol 102(17):7755–7761. https://doi.org/10.1016/j.biortech.2011.06.009
doi: 10.1016/j.biortech.2011.06.009 pubmed: 21715162
Wang XX, Sun LN, Wang H, Wu H, Chen S, Zheng XH (2018) Surfactant-enhanced bioremediation of DDTs and PAHs in contaminated farmland soil. Environ Technol 39(13):1733–1744. https://doi.org/10.1080/09593330.2017.1337235
doi: 10.1080/09593330.2017.1337235 pubmed: 28562189
WECOOP (2021) Environmental code of the republic of Kazakhstan. https://wecoop.eu/wp-content/uploads/2021/04/2021-KZ-ENV-Code_full-text_en.pdf . Accessed 18.07. 2023
Xu HX, Tang YQ, Nie Y, Wu XL (2022) Comparative transcriptome analysis reveals different adaptation mechanisms for degradation of very long-chain and normal long-chain alkanes in Dietzia sp. DQ12–45–1b. Environ Microbiol 24(4):1932–1945 doi: https://doi.org/10.1111/1462-2920.15928
Yano I, Furukawa Y, Kusunose M (1971) Fatty-acid composition of Arthrobacter simplex grown on hydrocarbons. Eur J Biochem 23(2):220–0. https://doi.org/10.1111/j.1432-1033.1971.tb01612.x
doi: 10.1111/j.1432-1033.1971.tb01612.x pubmed: 5156370
Yermenbay A, Osipov S, Livinsky Y (2020) Groundwater anthropogenic pollution in the oil and gas fields of Kazakhstan. Paper presented at the 20th International Multidisciplinary Scientific GeoConference SGEM 2020, Albena, Bulgaria https://doi.org/10.5593/sgem2020/1.1/s02.069
Yuan SY, Su LM, Chang BV (2009) Biodegradation of phenanthrene and pyrene in compost-amended soil. J Environ Sci Health A Tox Hazard Subst Environ Eng 44(7):648–653. https://doi.org/10.1080/10934520902847638
doi: 10.1080/10934520902847638 pubmed: 19412845
Zhang JH, Xue QH, Gao H, Lai HX, Wang P (2016) Bacterial degradation of crude oil using solid formulations of Bacillus strains isolated from oil-contaminated soil towards microbial enhanced oil recovery application. RSC Adv 6(7):5566–5574. https://doi.org/10.1039/c5ra23772f
doi: 10.1039/c5ra23772f
Zoltan B, Attila S, Zsolt S, Andras B, Zoltan Z, Margit B, Istvan K (2011) Functional analysis of long-chain n-alkane degradation by Dietzia spp. FEMS Microbiol Lett 316(2):100–107. https://doi.org/10.1111/j.1574-6968.2010.02198.x
doi: 10.1111/j.1574-6968.2010.02198.x

Auteurs

Kuralay Yessentayeva (K)

Department of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi Ave 71, 050040, Almaty, Kazakhstan.

Anne Reinhard (A)

Institute of Microbiology, University Greifswald, Felix-Hausdorff-Straße 8, 17487, Greifswald, Germany.

Ramza Berzhanova (R)

Department of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi Ave 71, 050040, Almaty, Kazakhstan.

Togzhan Mukasheva (T)

Department of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi Ave 71, 050040, Almaty, Kazakhstan.

Tim Urich (T)

Institute of Microbiology, University Greifswald, Felix-Hausdorff-Straße 8, 17487, Greifswald, Germany.

Annett Mikolasch (A)

Institute of Microbiology, University Greifswald, Felix-Hausdorff-Straße 8, 17487, Greifswald, Germany. annett.mikolasch@uni-greifswald.de.

Classifications MeSH