Intraoperative Neurophysiologic Monitoring and Mapping in Children Undergoing Brainstem Surgery.


Journal

Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society
ISSN: 1537-1603
Titre abrégé: J Clin Neurophysiol
Pays: United States
ID NLM: 8506708

Informations de publication

Date de publication:
01 Feb 2024
Historique:
medline: 2 2 2024
pubmed: 2 2 2024
entrez: 2 2 2024
Statut: ppublish

Résumé

Intraoperative neurophysiologic monitoring during surgery for brainstem lesions is a challenge for intraoperative neurophysiologists and surgeons. The brainstem is a small structure packed with vital neuroanatomic networks of long and short pathways passing through the brainstem or originating from it. Many central pattern generators exist within the brainstem for breathing, swallowing, chewing, cardiovascular regulation, and eye movement. During surgery around the brainstem, these generators need to be preserved to maintain their function postoperatively. This short review presents neurophysiologic and neurosurgical experiences of brainstem surgery in children.

Identifiants

pubmed: 38306218
doi: 10.1097/WNP.0000000000001037
pii: 00004691-202402000-00003
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

108-115

Informations de copyright

Copyright © 2024 by the American Clinical Neurophysiology Society.

Déclaration de conflit d'intérêts

The authors have no funding or conflicts of interest to disclose.

Références

Sala F, Manganotti P, Tramontano V, Bricolo A, Gerosa M. Monitoring of motor pathways during brain stem surgery: what we have achieved and what we still miss? Clin Neurophysiol 2007;37:399–406.
De Witt Hamer PC, Robles SG, Zwinderman AH, Duffau H, Berger MS. Impact of intraoperative stimulation brain mapping on glioma surgery outcome: a meta-analysis. J Clin Oncol 2012;30:2559–2565.
Kyoshima K, Kobayashi S, Gibo H, Kuroyanagi T. A study of safe entry zones via the floor of the fourth ventricle for brainstem lesions. Report of three cases. J Neurosurg 1993;78:987–993.
Yang Y, van Niftrik B, Ma X, et al. Analysis of safe entry zones into the brainstem. Neurosurg Rev 2019;42:721–729.
Lawton MT, Lang MJ. The future of open vascular neurosurgery: perspectives on cavernous malformations, AVMs, and bypasses for complex aneurysms. J Neurosurg 2019;130:1409–1425.
Deletis V, Fernandez-Conejero I. Intraoperative monitoring and mapping of the functional integrity of the brainstem. J Clin Neurol (Seoul, Korea) 2016;12:262–273.
Bellia CGL, Junior HA, Marques JM, Lüders D, Gonçalves CGO. Brainstem auditory evoked potentials in infants aged 1 to 24 months during a hearing health care service. Clinics (Sao Paulo) 2020;75:e157.
Park SK, Joo BE, Lee S, et al. The critical warning sign of real-time brainstem auditory evoked potentials during microvascular decompression of hemifacial spasm. Clin Neurohysiol 2018;129:1097–1102.
Thirumala PD, Carnovale G, Loke Y, et al. Brainstem auditory evoked potentials’ diagnostic accuracy for hearing loss: systematic review and meta-analysis. J Neurol Surg B Skull Base 2017;78:43–51.
Fernández-Conejero I, Ulkatan S, Deletis V. Monitoring cerebellopontine angle and skull base surgeries. Handb Clin Neurol 2022;186:163–176.
Gilmore R. Somatosensory evoked potential testing in infants and children. J Clin Neurophysiol 1992;9:324–341.
Lieberman JA, Lyon R, Feisner J, Diab M, Gregory GA. The effect of age on motor evoked potentials in children under propofol/isoflurane anesthesia. Anesth Analg 2006;103:316–321.
Quiñones-Hinojosa A, Alam M, Lyon R, Yingling CD, Lawton MT. Transcranial motor evoked potentials during basilar artery aneurysm surgery: technique application for 30 consecutive patients. Neurosurgery 2004;54:916–924. discussion 924.
Neuloh G, Bogucki J, Schramm J. Intraoperative preservation of cor- ticospinal function in the brainstem. J Neurol Neurosurg Psychiatry 2009;80:417–422.
Deletis V. Evoked potentials. In: Lake CL, ed. Clinical Monitoring for Anesthesia and Critical Care. 2nd ed. Lake Carol: W.B. Saunders, 1994; 282–314.
Macdonald DB, Skinner S, Shils J, Yingling C; American Society of Neurophysiological Monitoring. Intraoperative motor evoked potential monitoring—a position statement by the American Society of Neurophysiological Monitoring. Clin Neurophysiol 2013;124:2291–2316.
Dong CC, Macdonald DB, Akagami R, et al. Intraoperative facial motor evoked potential monitoring with transcranial electrical stimulation during skull base surgery. Clin Neurophysiol 2005;116:588–596.
Fukuda M, Oishi M, Takao T, Saito A, Fujii Y. Facial nerve motor-evoked potential monitoring during skull base surgery predicts facial nerve outcome. J Neurol Neurosurg Psychiatry 2008;79:1066–1070.
Acioly MA, Liebsch M, Carvalho CH, Gharabaghi A, Tatagiba M. Transcranial electrocortical stimulation to monitor the facial nerver motor function during erebellopontine angle surgery. Neurosurgery 2010;66(6 Suppl Operative):354–361.
Fernández-Conejero I, Ulkatan S, Sen C, Miró-Lladó J, Deletis V. Intraoperative monitoring of facial corticobulbar motor evoked potentials: methodological improvement and analysis of 100 patients. Clin Neurophysiol 2022;142:228–235.
Deletis V, Fernandez-Conejero I, Ulkatan S, Costantino P. Methodology for intraoperatively eliciting motor evoked potentials in the vocal muscles by electrical stimulation of the corticobulbar tract. Clin Neurophysiol 2009;120:336–341.
Deletis V, Fernández-Conejero I, Ulkatan S, Rogić M, Carbó EL, Hiltzik D. Methodology for intra-operative recording of the corticobulbar motor evoked potentials from cricothyroid muscles. Clin Neurophysiol 2011;122:1883–1889.
Ulkatan S, Deletis V, Fernandez-Conejero I. Central or peripheral activations of the facial nerve? J Neurosurg 2007;106:519–520. author reply 520.
Deletis V, Urriza J, Ulkatan S, Fernandez-Conejero I, Lesser J, Misita D. The feasibility of recording blink reflexes under general anesthesia. Muscle Nerve 2009;39:642–646.
Holdefer RN, Kinney GA, Robinson LR, Slimp JC. Alternative sites for intraoperative monitoring of cranial nerves X and XII during intracranial surgeries. J Clin Neurophysiol 2013;30:275–279.
Tomita Y, Shichida K, Takeshita K, Takashima S. Maturation of blink reflex in children. Brain Dev 1989;11:389–393.
Godaux E, Desmedt JE. Exteroceptive suppression and motor control of the masseter and temporalis muscles in normal man. Brain Res 1975;85:447–458.
Kimura J. Electrodiagnosis in diseases of nerve and muscle: principles and practice. Philadelphia, PA: F.A. Davis Company, 1989; 361–362.
Szentagothai J. Anatomical considerations on monosynaptic reflex arcs. J Neurophysiol 1948;11:445–454.
Koehler J, Hölker C. Masseter reflex in childhood and adolescence. Pediatr Neurol 2004;30:320–323.
Ulkatan S, Jaramillo AM, Téllez M, Goodman RR, Deletis V. Feasibility of eliciting the H reflex in the masseter muscle in patients under general anesthesia. Clin Neurophysiol 2017;128:123–127.
Henriques VM, Schulz GM, Bielamowicz S, Ludlow CL. Laryngeal réflex responses are not modulated during human voice and respiratory tasks. J Physiol 2007;585:779–789.
Sasaki CT, Yu Z, Xu J, Hundal J, Rosenblatt W. Effects of altered consciousness on the protective glottic closure reflex. Ann Otol Rhinol Laryngol 2006;10:759–763.
Ludlow CL, Van Pelt F, Koda J. Characteristics of late responses to superioraryngeal nerve stimulation in humans. Ann Otol Rhinol Laryngol 1992;101:127–134.
Téllez MJ, Ulkatan S, Blitzer A, Sinclair CF. Unearthing a consistent bilateral R1 component of the laryngeal adductor reflex in awake humans. Laryngoscope 2018;128:2581–2587.
Sinclair CF, Téllez MJ, Ulkatan S. Noninvasive, tube-based, continuous vagal nerve monitoring using the laryngeal adductor reflex: feasibility study of 134 nerves at risk. Head Neck 2018;40:2498–2506.
Téllez MJ, Mirallave-Pescador A, Seidel K, et al. Neurophysiological monitoring of the laryngeal adductor reflex during cerebellar-pontine angle and brainstem surgery. Clin Neurophysiol 2021;132:622–631.
Szelényi A, Fava E. Long latency responses in tongue muscle elicited by various stimulation sites in anesthetized humans—new insights into tongue-related brainstem reflexes. Brain Stimul 2022;15:566–575.
Mirallave-Pescador A, Téllez M, Sánchez Roldán MA, et al. Methodology for eliciting the brianstem trigeminal-hypoglossal reflex in humans under general anesthesia. Clin Neurophysiol 2022;137:1–10.
Strauss C, Romstock J, Nimsky C, Fahlbusch R. Intraoperative identification of motor areas of the rhomboid fossa using direct stimulation. J Neurosurg 1993;79:393–399.
Morota N, Deletis V, Epstein FJ, et al. Brain stem mapping: neurophysiological localization of motor nuclei on the floor of the fourth ventricle. Neurosurgery 1995;37:922–930.
Morota N, Deletis V, Lee M, Epstein FJ. Functional anatomic relationship between brainstem tumors and cranial motor nuclei. Neurosurgery 1996;39:787–793. discussion 93–4.
Seidel K, Biner MS, Zubak I, Rychen J, Beck J, Raabe A. Continuous dynamic mapping to avoid accidental injury of the facial nerve during surgery for large vestibular schwannomas. Neurosurg Rev 2020;43:241–248.
Kartush JM, Larouere MJ, Graham MD, Bouchard KR, Audet BV. Intraoperative cranial nerve monitoring during posterior skull base surgery. Skull Base Surg 1991;1:85–92.
Raabe A, Beck J, Schucht P, Seidel K. Continuous dynamic mapping of the corticospinal tract during surgery of motor eloquent brain tumors: evaluation of a new method. J Neurosurg 2014;120:1015–1024.
Shiban E, Krieg SM, Obermueller T, Wostrack M, Meyer B, Ringel F. Continuous subcortical motor evoked potential stimulation using the tip of an ultrasonic aspirator for the resection of motor eloquent lesions. J Neurosurg 2015;123:301–306.
Roth J, Korn A, Bitan-Talmor Y, Kaufman R, Ekstein M, Constantini S. Subcortical mapping using an Electrified Cavitron UltraSonic aspirator in pediatric supratentorial surgery. World Neurosurg 2017;101:357–364.

Auteurs

Vedran Deletis (V)

Department of Neurosurgery, University Hospital Dubrava, Zagreb, Croatia.
Albert Einstein College of Medicine, New York, New York, U.S.A.

Kathleen Seidel (K)

Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; and.

Isabel Fernández-Conejero (I)

Department of Clinical Neurophysiology, University Hospital of Bellvitge, Barcelona, Spain.

Classifications MeSH