Enhanced oxygen reduction reaction on caffeine-modified platinum single-crystal electrodes.


Journal

Communications chemistry
ISSN: 2399-3669
Titre abrégé: Commun Chem
Pays: England
ID NLM: 101725670

Informations de publication

Date de publication:
03 Feb 2024
Historique:
received: 28 06 2023
accepted: 23 01 2024
medline: 4 2 2024
pubmed: 4 2 2024
entrez: 3 2 2024
Statut: epublish

Résumé

Enhancing the activity of the oxygen reduction reaction (ORR) is crucial for fuel cell development, and hydrophobic species are known to increase the ORR activity. This paper reports that caffeine enhanced the specific ORR activity of Pt(111) 11-fold compared to that without caffeine in a 0.1 M HClO

Identifiants

pubmed: 38310168
doi: 10.1038/s42004-024-01113-6
pii: 10.1038/s42004-024-01113-6
doi:

Types de publication

Journal Article

Langues

eng

Pagination

23

Subventions

Organisme : New Energy and Industrial Technology Development Organization (NEDO)
ID : 20001187-0

Informations de copyright

© 2024. The Author(s).

Références

Hoshi, N. & Nakamura, M. Enhancement of the activity for the oxygen reduction reaction on well-defined single crystal electrodes of Pt by hydrophobic species. Chem. Lett. 50, 72–79 (2021).
doi: 10.1246/cl.200608
Markovic, N. M., Adzic, R. R., Cahan, B. D. & Yeager, E. B. Structural effects in electrocatalysis: oxygen reduction on platinum low index single-crystal surfaces in perchloric acid solutions. J. Electroanal. Chem. 377, 249–259 (1994).
doi: 10.1016/0022-0728(94)03467-2
Maciá, M. D., Campiña, J. M., Herrero, E. & Feliu, J. M. On the kinetics of oxygen reduction on platinum stepped surfaces in acidic media. J. Electroanal. Chem. 564, 141–150 (2004).
doi: 10.1016/j.jelechem.2003.09.035
Kuzume, A., Herrero, E. & Feliu, J. M. Oxygen reduction on stepped platinum surfaces in acidic media. J. Electroanal. Chem. 599, 333–343 (2007).
doi: 10.1016/j.jelechem.2006.05.006
Hoshi, N., Nakamura, M. & Hitotsuyanagi, A. Active site for the oxygen reduction reaction on the high index planes of Pt. Electrochim. Acta. 112, 899–904 (2013).
doi: 10.1016/j.electacta.2013.05.045
Markovic, N. M., Gasteiger, H. A., Grgur, B. N. & Ross, P. N. Oxygen reduction reaction on Pt(111): effects of bromide. J. Electroanal. Chem. 467, 157 (1999).
doi: 10.1016/S0022-0728(99)00020-0
Tanaka, H. et al. Infrared reflection absorption spectroscopy of OH adsorption on the low-index planes of Pt. Electrocatalysis 6, 295–299 (2015).
doi: 10.1007/s12678-014-0245-7
Ueno, T. et al. Infrared spectroscopy of adsorbed OH on n(111)–(100) and n(111)–(111) series of Pt electrode. J. Electroanal. Chem. 800, 162–166 (2017).
doi: 10.1016/j.jelechem.2016.11.028
Sugimura, F. et al. In-situ observation of Pt oxides on the low index planes of Pt with surface enhanced raman spectroscopy. Phys. Chem. Chem. Phys. 19, 27570–27579 (2017).
doi: 10.1039/C7CP04277A pubmed: 28980691
Jinnouchi, R., Kodama, K. & Morimoto, Y. DFT calculations on H, OH and O adsorbate formations on Pt(111) and Pt(332) electrodes. J. Electroanal. Chem. 716, 31–44 (2014).
doi: 10.1016/j.jelechem.2013.09.031
Miyabayashi, K., Nishihara, H. & Miyake, M. Platinum nanoparticles modified with alkylamine derivatives as an active and stable catalyst for oxygen reduction reaction. Langmuir 30, 2936–2942 (2014).
doi: 10.1021/la402412k pubmed: 24528164
Saikawa, K., Nakamura, M. & Hoshi, N. Structural effects on the enhancement of ORR activity on Pt single-crystal electrodes modified with alkylamines. Electrochem. Commun. 87, 5–8 (2018).
doi: 10.1016/j.elecom.2017.12.016
Asahi, M., Yamazaki, S., Taguchi, N. & Ioroi, T. Facile approach to enhance oxygen reduction activity by modification of platinum nanoparticles by melamine-formaldehyde polymer. J. Electrochem. Soc. 8, F498–F506 (2019).
doi: 10.1149/2.0641908jes
Wada, N., Nakamura, M. & Hoshi, N. Structural effects on the oxygen reduction reaction on Pt single-crystal electrodes modified with melamine. Electrocatalysis 11, 275–281 (2020).
doi: 10.1007/s12678-020-00584-0
Snyder, J., Fujita, T., Chen, M. W. & Erlebacher, J. Oxygen reduction in nanoporous metal–ionic liquid composite electrocatalysts. Nat. Mater. 9, 904–907 (2010).
doi: 10.1038/nmat2878 pubmed: 20953182
Suzuki, R., Nakamura, M. & Hoshi, N. Oxygen reduction reaction on platinum single-crystal electrodes modified with protonic ionic liquid. Electrochem. Commun. 140, 107337 (2022).
doi: 10.1016/j.elecom.2022.107337
Wang, T. et al. Enhancing oxygen reduction electrocatalysis by tuning interfacial hydrogen bonds. Nat. Catal. 4, 753–762 (2021).
doi: 10.1038/s41929-021-00668-0
Kumeda, T., Tajiri, H., Sakata, O., Hoshi, N. & Nakamura, M. Effect of hydrophobic cations on the oxygen reduction reaction on single-crystal platinum electrodes. Nat. Commun. 9, 4378 (2018).
doi: 10.1038/s41467-018-06917-4 pubmed: 30397202 pmcid: 6218472
Intikhab, S. et al. Caffeinated interfaces enhance alkaline hydrogen electrocatalysis. ACS Catal. 10, 6798–6802 (2020).
doi: 10.1021/acscatal.0c01635
Zhang, Q.-L., Feng, J.-X., Wang, A.-J., Weia, J. & Feng, J.-J. Simple synthesis of bimetallic alloyed Pd–Au nanochain networks supported on reduced graphene oxide for enhanced oxygen reduction reaction. RSC Adv. 4, 52640–52646 (2014).
doi: 10.1039/C4RA10746B
Chen, M.-T. et al. Caffeine derived graphene-wrapped Fe3C nanoparticles entrapped in hierarchically porous Fe-N-C nanosheets for boosting oxygen reduction reaction. J. Colloid Interface Sci. 637, 216–224 (2023).
doi: 10.1016/j.jcis.2023.01.077 pubmed: 36701867
Rizo, R. et al. Nat. Commun. 13, 2550 (2022).
doi: 10.1038/s41467-022-30241-7 pubmed: 35538173 pmcid: 9090771
McCrum, I. T. & Koper, M. T. M. The role of adsorbed hydroxide in hydrogen evolution reaction kinetics on modified platinum. Nat. Energy 5, 891–899 (2020).
doi: 10.1038/s41560-020-00710-8
Chen, X., McCrum, I. T., Schwarz, K. A., Janik, M. J. & Koper, M. T. M. Co-adsorption of cations as the cause of the apparent pH dependence of hydrogen adsorption on a stepped platinum single-crystal electrode. Angew. Chem. Int. Ed. 56, 15025–15029 (2017).
doi: 10.1002/anie.201709455
Fisher, G. B. & Sexton, B. A. Identification of an adsorbed hydroxyl species on the Pt(111) surface. Phys. Rev. Lett. 44, 683–686 (1980).
doi: 10.1103/PhysRevLett.44.683
Griffiths, P. R. Spectrosc. Prop. Inorg. Organomet. Compd. 44, 95–122 (2013).
Osawa, M., Tsushima, M., Mogami, H., Samjeske, G. & Yamakata, A. Structure of water at the electrified platinum-water interface: a study by surface-enhanced infrared absorption spectroscopy. J. Phys. Chem. C 112, 4248–4256 (2008).
doi: 10.1021/jp710386g
Nakamura, M., Shingaya, Y. & Ito, M. The vibrational spectra of water cluster molecules on Pt(111) surface at 20 K,. Chem. Phys. Lett. 309, 123–128 (1999).
doi: 10.1016/S0009-2614(99)00673-9
Nakamura, M. & Ito, M. Coadsorption of water dimer and ring-hexamer clusters on M(111) (M = Cu, Ni, Pt) and Ru(001) surfaces at 25 K as studied by infrared reflection absorption spectroscopy. Chem. Phys. Lett. 404, 346–350 (2005).
doi: 10.1016/j.cplett.2005.01.106
Chang, S.-G. & Weaver, M. J. Coverage-dependent dipole coupling for carbon monoxide adsorbed at ordered platinum(111)-aqueous interfaces: structural and electrochemical implications. J. Chem. Phys. 92, 4582–4594 (1990).
doi: 10.1063/1.457719
Gan, T. et al. Electron donation of non-oxide supports boosts O
doi: 10.1038/s41467-021-22946-y pubmed: 33980837 pmcid: 8115247
Ham, K., Shin, D. & Lee, J. The role of lone-pair electrons in Pt–N interactions for the oxygen reduction reaction in polymer exchange membrane fuel cells. J. Chem. Sus. Chem. 13, 1751–1758 (2020).
doi: 10.1002/cssc.201903403
Gao, Y. et al. Protection against absorption passivation on platinum by a nitrogen-doped carbon shell for enhanced oxygen reduction reaction. ACS Appl. Mater. Interfaces 15, 30240–30248 (2023).
doi: 10.1021/acsami.3c04459 pubmed: 37329311
Clavilier, J., Faure, R., Guinet, G. & Durand, R. Preparation of monocrystalline Pt microelectrodes and electrochemical study of the plane surfaces cut in the direction of the {111} and {110} planes. J. Electroanal. Chem. 107, 205–209 (1980).
doi: 10.1016/S0022-0728(79)80022-4
Furuya, N. & Koide, S. Hydrogen adsorption on platinum single crystal surfaces. Surf. Sci. 220, 18–28 (1989).
doi: 10.1016/0039-6028(89)90460-3

Auteurs

Nagahiro Hoshi (N)

Department of Applied Chemistry and Biotechnology, Faculty of Engineering, Chiba University, 1-33 Yayoi-cho Inage-ku, Chiba, 263-8522, Japan. hoshi@faculty.chiba-u.jp.

Masashi Nakamura (M)

Department of Applied Chemistry and Biotechnology, Faculty of Engineering, Chiba University, 1-33 Yayoi-cho Inage-ku, Chiba, 263-8522, Japan.

Ryuta Kubo (R)

Department of Applied Chemistry and Biotechnology, Faculty of Engineering, Chiba University, 1-33 Yayoi-cho Inage-ku, Chiba, 263-8522, Japan.

Rui Suzuki (R)

Department of Applied Chemistry and Biotechnology, Faculty of Engineering, Chiba University, 1-33 Yayoi-cho Inage-ku, Chiba, 263-8522, Japan.

Classifications MeSH