Effect of Octamer-Binding Transcription Factor 4 Overexpression on the Neural Induction of Human Dental Pulp Stem Cells.

Cell-based therapy Cellular reprogramming Dental pulp stem cells Neural Neuronal Octamer-binding transcription factor 4

Journal

Stem cell reviews and reports
ISSN: 2629-3277
Titre abrégé: Stem Cell Rev Rep
Pays: United States
ID NLM: 101752767

Informations de publication

Date de publication:
05 Feb 2024
Historique:
accepted: 08 01 2024
medline: 6 2 2024
pubmed: 6 2 2024
entrez: 5 2 2024
Statut: aheadofprint

Résumé

Stem cell-based therapy is a potential alternative strategy for brain repair, with neural stem cells (NSC) presenting as the most promising candidates. Obtaining sufficient quantities of NSC for clinical applications is challenging, therefore alternative cell types, such as neural crest-derived dental pulp stem cells (DPSC), may be considered. Human DPSC possess neurogenic potential, exerting positive effects in the damaged brain through paracrine effects. However, a method for conversion of DPSC into NSC has yet to be developed. Here, overexpression of octamer-binding transcription factor 4 (OCT4) in combination with neural inductive conditions was used to reprogram human DPSC along the neural lineage. The reprogrammed DPSC demonstrated a neuronal-like phenotype, with increased expression levels of neural markers, limited capacity for sphere formation, and enhanced neuronal but not glial differentiation. Transcriptomic analysis further highlighted the expression of genes associated with neural and neuronal functions. In vivo analysis using a developmental avian model showed that implanted DPSC survived in the developing central nervous system and respond to endogenous signals, displaying neuronal phenotypes. Therefore, OCT4 enhances the neural potential of DPSC, which exhibited characteristics aligning with neuronal progenitors. This method can be used to standardise DPSC neural induction and provide an alternative source of neural cell types.

Identifiants

pubmed: 38316679
doi: 10.1007/s12015-024-10678-7
pii: 10.1007/s12015-024-10678-7
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : The Hospital Research Foundation
ID : 2019-060-25252
Organisme : Stroke SA Inc.
ID : 2016
Organisme : Rebecca L. Cooper Medical Research Foundation
ID : 2017

Informations de copyright

© 2024. The Author(s).

Références

Barker, R. A., Gotz, M., & Parmar, M. (2018). New approaches for brain repair-from rescue to reprogramming. Nature, 557(7705), 329–334.
pubmed: 29769670 doi: 10.1038/s41586-018-0087-1
Nguyen, H., Zarriello, S., Coats, A., Nelson, C., Kingsbury, C., Gorsky, A., et al. (2019). Stem cell therapy for neurological disorders: A focus on aging. Neurobiology of Diseases, 126, 85–104.
doi: 10.1016/j.nbd.2018.09.011
Anthony, S., Cabantan, D., Monsour, M., & Borlongan, C. V. (2022). Neuroinflammation, stem cells, and stroke. Stroke, 53(5), 1460–1472.
pubmed: 35380050 pmcid: 9038685 doi: 10.1161/STROKEAHA.121.036948
Zhao, C., Deng, W., & Gage, F. H. (2008). Mechanisms and functional implications of adult neurogenesis. Cell, 132(4), 645–660.
pubmed: 18295581 doi: 10.1016/j.cell.2008.01.033
Barthels, D., & Das, H. (2020). Current advances in ischemic stroke research and therapies. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1866(4):165260.
Ming, G. L., & Song, H. (2011). Adult neurogenesis in the mammalian brain: Significant answers and significant questions. Neuron, 70(4), 687–702.
pubmed: 21609825 pmcid: 3106107 doi: 10.1016/j.neuron.2011.05.001
Andres, R. H., Horie, N., Slikker, W., Keren-Gill, H., Zhan, K., Sun, G., et al. (2011). Human neural stem cells enhance structural plasticity and axonal transport in the ischaemic brain. Brain, 134(6), 1777–1789.
pubmed: 21616972 pmcid: 3102243 doi: 10.1093/brain/awr094
Ryu, S., Lee, S. H., Kim, S. U., & Yoon, B. W. (2016). Human neural stem cells promote proliferation of endogenous neural stem cells and enhance angiogenesis in ischemic rat brain. Neural Regeneration Research, 11(2), 298–304.
pubmed: 27073384 pmcid: 4810995 doi: 10.4103/1673-5374.177739
Mine, Y., Tatarishvili, J., Oki, K., Monni, E., Kokaia, Z., & Lindvall, O. (2013). Grafted human neural stem cells enhance several steps of endogenous neurogenesis and improve behavioral recovery after middle cerebral artery occlusion in rats. Neurobiology of Disease, 52, 191–203.
pubmed: 23276704 doi: 10.1016/j.nbd.2012.12.006
Kelly, S., Bliss, T. M., Shah, A. K., Sun, G. H., Ma, M., Foo, W. C., et al. (2004). Transplanted human fetal neural stem cells survive, migrate, and differentiate in ischemic rat cerebral cortex. Proceedings of the National Academy of Sciences of the United States of America, 101(32), 11839–11844.
pubmed: 15280535 pmcid: 511061 doi: 10.1073/pnas.0404474101
Chu, K., Kim, M., Park, K. I., Jeong, S. W., Park, H. K., Jung, K. H., et al. (2004). Human neural stem cells improve sensorimotor deficits in the adult rat brain with experimental focal ischemia. Brain Research, 1016(2), 145–153.
pubmed: 15246850 doi: 10.1016/j.brainres.2004.04.038
Jin, K., Xie, L., Mao, X., Greenberg, M. B., Moore, A., Peng, B., et al. (2011). Effect of human neural precursor cell transplantation on endogenous neurogenesis after focal cerebral ischemia in the rat. Brain Research, 1374, 56–62.
pubmed: 21167824 doi: 10.1016/j.brainres.2010.12.037
Darsalia, V., Kallur, T., & Kokaia, Z. (2007). Survival, migration and neuronal differentiation of human fetal striatal and cortical neural stem cells grafted in stroke-damaged rat striatum. European Journal of Neuroscience, 26(3), 605–614.
pubmed: 17686040 doi: 10.1111/j.1460-9568.2007.05702.x
Zhang, P., Li, J., Liu, Y., Chen, X., Lu, H., Kang, Q., et al. (2011). Human embryonic neural stem cell transplantation increases subventricular zone cell proliferation and promotes peri-infarct angiogenesis after focal cerebral ischemia. Neuropathology, 31(4), 384–391.
pubmed: 21175862 doi: 10.1111/j.1440-1789.2010.01182.x
Martino, G., & Pluchino, S. (2006). The therapeutic potential of neural stem cells. Nature Reviews Neuroscience, 7, 395–406.
pubmed: 16760919 doi: 10.1038/nrn1908
Yao, H., Gao, M., Ma, J., Zhang, M., Li, S., Wu, B., et al. (2015). Transdifferentiation-induced neural stem cells promote recovery of middle cerebral artery stroke rats. PLoS ONE, 10(9), e0137211.
pubmed: 26352672 pmcid: 4564190 doi: 10.1371/journal.pone.0137211
Yuan, T., Liao, W., Feng, N.-H., Lou, Y.-L., Niu, X., Zhang, A.-J., et al. (2013). Human induced pluripotent stem cell-derived neural stem cells survive, migrate, differentiate, and improve neurologic function in a rat model of middle cerebral artery occlusion. Stem Cell Research & Therapy, 4(73), 1–10.
Hicks, A. U., Lappalainen, R. S., Narkilahti, S., Suuronen, R., Corbett, D., Sivenius, J., et al. (2009). Transplantation of human embryonic stem cell-derived neural precursor cells and enriched environment after cortical stroke in rats: Cell survival and functional recovery. European Journal of Neuroscience, 29(3), 562–574.
pubmed: 19175403 doi: 10.1111/j.1460-9568.2008.06599.x
Gronthos, S., Mankani, M., Brahim, J., Robey, P. G., & Shi, S. (2000). Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proceedings of the National Academy of Sciences of the United States of America, 97(25), 13625–13630.
pubmed: 11087820 pmcid: 17626 doi: 10.1073/pnas.240309797
Shi, S., & Gronthos, S. (2003). Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp. Journal of Bone and Mineral Research, 18(4), 696–704.
pubmed: 12674330 doi: 10.1359/jbmr.2003.18.4.696
Zhang, W., Walboomers, X. F., Van Kuppevelt, T. H., Daamen, W. F., Van Damme, P. A., Bian, Z., et al. (2008). In vivo evaluation of human dental pulp stem cells differentiated towards multiple lineages. Journal of Tissue Engineering and Regenerative Medicine, 2(2–3), 117–125.
pubmed: 18338838 doi: 10.1002/term.71
Govindasamy, V., Abdullah, A. N., Ronald, V. S., Musa, S., Ab Aziz, Z. A., Zain, R. B., et al. (2010). Inherent differential propensity of dental pulp stem cells derived from human deciduous and permanent teeth. Journal of Endodontics, 36(9), 1504–1515.
pubmed: 20728718 doi: 10.1016/j.joen.2010.05.006
Gronthos, S., Brahim, J., Li, W., Fisher, L. W., Cherman, N., Boyde, A., et al. (2002). Stem cell properties of human dental pulp stem cells. Journal of Dental Research, 81(8), 531–535.
pubmed: 12147742 doi: 10.1177/154405910208100806
Arthur, A., Rychkov, G., Shi, S., Koblar, S. A., & Gronthos, S. (2008). Adult human dental pulp stem cells differentiate toward functionally active neurons under appropriate environmental cues. Stem Cells, 26(7), 1787–1795.
pubmed: 18499892 doi: 10.1634/stemcells.2007-0979
Gervois, P., Struys, T., Hilkens, P., Bronckaers, A., Ratajczak, J., Politis, C., et al. (2015). Neurogenic maturation of human dental pulp stem cells following neurosphere generation induces morphological and electrophysiological characteristics of functional neurons. Stem Cells and Development, 24(3), 296–311.
pubmed: 25203005 doi: 10.1089/scd.2014.0117
Kiraly, M., Porcsalmy, B., Pataki, A., Kadar, K., Jelitai, M., Molnar, B., et al. (2009). Simultaneous PKC and cAMP activation induces differentiation of human dental pulp stem cells into functionally active neurons. Neurochemistry International, 55(5), 323–332.
pubmed: 19576521 doi: 10.1016/j.neuint.2009.03.017
Yamazaki, H., Tsuneto, M., Yoshino, M., Yamamura, K., & Hayashi, S. (2007). Potential of dental mesenchymal cells in developing teeth. Stem Cells, 25, 78–87.
pubmed: 16945997 doi: 10.1634/stemcells.2006-0360
Kaukua, N., Shahidi, M. K., Konstantinidou, C., Dyachuk, V., Kaucka, M., Furlan, A., et al. (2014). Glial origin of mesenchymal stem cells in a tooth model system. Nature, 513(7519), 551–554.
pubmed: 25079316 doi: 10.1038/nature13536
Chai, Y., Jiang, X., Ito, Y., Bringas, P., Jr., Han, J., Rowitch, D. H., et al. (2000). Fate of the mammalian cranial neural crest during tooth and mandibular morphogenesis. Development, 127(8), 1671–1679.
pubmed: 10725243 doi: 10.1242/dev.127.8.1671
Janebodin, K., Horst, O. V., Ieronimakis, N., Balasundaram, G., Reesukumal, K., Pratumvinit, B., et al. (2011). Isolation and characterization of neural crest-derived stem cells from dental pulp of neonatal mice. PLoS ONE, 6(11), e27526.
pubmed: 22087335 pmcid: 3210810 doi: 10.1371/journal.pone.0027526
Mullen, R. J., Buck, C. R., & Smith, A. M. (1992). NeuN, a neuronal specific nuclear protein in vertebratesxs. Development, 116(1), 201–211.
pubmed: 1483388 doi: 10.1242/dev.116.1.201
Shi, S., Robey, P. G., & Gronthos, S. (2001). Comparison of human dental pulp and done marrow stromal stem cells by cDNA microarray analysis. Bone, 29(6), 532–539.
pubmed: 11728923 doi: 10.1016/S8756-3282(01)00612-3
Leong, W. K., Henshall, T. L., Arthur, A., Kremer, K. L., Lewis, M. D., Helps, S. C., et al. (2012). Human adult dental pulp stem cells enhance poststroke functional recovery through non-neural replacement mechanisms. Stem Cells Translational Medicine, 1(3), 177–187.
pubmed: 23197777 pmcid: 3659845 doi: 10.5966/sctm.2011-0039
Song, M., Lee, J. H., Bae, J., Bu, Y., & Kim, E. C. (2017). Human dental pulp stem cells are more effective than human bone marrow-derived mesenchymal stem cells in cerebral ischemic injury. Cell Transplantation, 26(6), 1001–1016.
pubmed: 28105979 pmcid: 5657745 doi: 10.3727/096368916X694391
Nito, C., Sowa, K., Nakajima, M., Sakamoto, Y., Suda, S., Nishiyama, Y., et al. (2018). Transplantation of human dental pulp stem cells ameliorates brain damage following acute cerebral ischemia. Biomedicine and Pharmacotherapy, 108, 1005–1014.
pubmed: 30372800 doi: 10.1016/j.biopha.2018.09.084
Nosrat, I. V., Smith, C. A., Mullally, P., Olson, L., & Nosrat, C. A. (2004). Dental pulp cells provide neurotrophic support for dopaminergic neurons and differentiate into neurons in vitro; implications for tissue engineering and repair in the nervous system. European Journal of Neuroscience, 19, 2388–2398.
pubmed: 15128393 doi: 10.1111/j.0953-816X.2004.03314.x
Tamaoki, N., Takahashi, K., Tanaka, T., Ichisaka, T., Aoki, H., Takeda-Kawaguchi, T., et al. (2010). Dental pulp cells for induced pluripotent stem cell banking. Journal of Dental Research, 89(8), 773–778.
pubmed: 20554890 doi: 10.1177/0022034510366846
Liu, P., Cai, J., Dong, D., Chen, Y., Liu, X., Wang, Y., et al. (2015). Effects of SOX2 on proliferation, migration and adhesion of human dental pulp stem cells. PLoS ONE, 10(10), 1–17.
doi: 10.1371/journal.pone.0141346
Liu, L., Wu, L., Wei, X., & Ling, J. (2015). Induced overexpression of Oct4A in human dental pulp cells enhances pluripotency and multilineage differentiation capability. Stem Cells and Development, 24(8), 962–972.
pubmed: 25422984 doi: 10.1089/scd.2014.0388
Yan, X., Qin, H., Qu, C., Tuan, R. S., Shi, S., & Huang, G. T. (2010). iPS cells reprogrammed from human mesenchymal-like stem/progenitor cells of dental tissue origin. Stem Cells and Development, 19(4), 469–480.
pubmed: 19795982 pmcid: 2851830 doi: 10.1089/scd.2009.0314
Chang, Y. C., Li, W. C., Twu, N. F., Li, H. Y., Lo, W. L., Chang, Y. L., et al. (2014). Induction of dental pulp-derived induced pluripotent stem cells in the absence of c-Myc for differentiation into neuron-like cells. Journal of the Chinese Medical Association, 77(12), 618–625.
pubmed: 25441769 doi: 10.1016/j.jcma.2014.08.009
Shi, G., & Jin, Y. (2010). Role of OCT4 in maintaining and regaining stem cell pluripotency. Stem Cell Research & Therapy, 1(5), 39.
Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., et al. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131(5), 861–872.
pubmed: 18035408 doi: 10.1016/j.cell.2007.11.019
Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126(4), 663–676.
pubmed: 16904174 doi: 10.1016/j.cell.2006.07.024
Lee, J. H., Mitchell, R. R., McNicol, J. D., Shapovalova, Z., Laronde, S., Tanasijevic, B., et al. (2015). Single transcription factor conversion of human blood fate to NPCs with CNS and PNS developmental capacity. Cell Reports., 11(9), 1367–1376.
pubmed: 26004181 doi: 10.1016/j.celrep.2015.04.056
Liao, W., Huang, N., Yu, J., Jares, A., Yang, J., Zieve, G., et al. (2015). Direct conversion of cord blood CD34+ cells into neural stem cells by OCT4. Stem Cells Translational Medicine, 4(7), 755–763.
pubmed: 25972144 pmcid: 4479625 doi: 10.5966/sctm.2014-0289
Thier, M., Worsdorfer, P., Lakes, Y. B., Gorris, R., Herms, S., Opitz, T., et al. (2012). Direct conversion of fibroblasts into stably expandable neural stem cells. Cell Stem Cell, 10(4), 473–479.
pubmed: 22445518 doi: 10.1016/j.stem.2012.03.003
Mitchell, R. R., Szabo, E., Benoit, Y. D., Case, D. T., Mechael, R., Alamilla, J., et al. (2014). Activation of neural cell fate programs toward direct conversion of adult human fibroblasts into tri-potent neural progenitors using OCT-4. Stem Cells and Development, 23(16), 1937–1946.
pubmed: 24694094 pmcid: 4120813 doi: 10.1089/scd.2014.0023
Mitchell, R., Szabo, E., Shapovalova, Z., Aslostovar, L., Makondo, K., & Bhatia, M. (2014). Molecular evidence for OCT4-induced plasticity in adult human fibroblasts required for direct cell fate conversion to lineage specific progenitors. Stem Cells, 32(8), 2178–2187.
pubmed: 24740884 doi: 10.1002/stem.1721
Sterneckert, J., Hoing, S., & Scholer, H. R. (2012). Concise review: Oct4 and more: The reprogramming expressway. Stem Cells, 30(1), 15–21.
pubmed: 22009686 doi: 10.1002/stem.765
Cheng, Z., Gong, Y., Ma, Y., Lu, K., Lu, X., Pierce, L. A., et al. (2013). Inhibition of BET bromodomain targets genetically diverse glioblastoma. Clinical Cancer Research, 19(7), 1748–1759.
pubmed: 23403638 pmcid: 4172367 doi: 10.1158/1078-0432.CCR-12-3066
Stewart, S. A., Dykxhoorn, D. M., Palliser, D., Mizuno, H., Yu, E. Y., An, D. S., et al. (2003). Lentivirus-delivered stable gene silencing by RNAi in primary cells. RNA, 9(4), 493–501.
pubmed: 12649500 pmcid: 1370415 doi: 10.1261/rna.2192803
Feng, N., Han, Q., Li, J., Wang, S., Li, H., Yao, X., et al. (2014). Generation of highly purified neural stem cells from human adipose-derived mesenchymal stem cells by Sox1 activation. Stem Cells and Development, 23(5), 515–529.
pubmed: 24138016 doi: 10.1089/scd.2013.0263
Fusco, S., Leone, L., Barbati, S. A., Samengo, D., Piacentini, R., Maulucci, G., et al. (2016). A CREB-Sirt1-Hes1 circuitry mediates neural stem cell response to glucose availability. Cell Reports, 14(5), 1195–1205.
pubmed: 26804914 doi: 10.1016/j.celrep.2015.12.092
Bardy, C., van den Hurk, M., Eames, T., Marchand, C., Hernandez, R. V., Kellogg, M., et al. (2015). Neuronal medium that supports basic synaptic functions and activity of human neurons in vitro. Proceedings of the National Academy of Sciences of the United States of America, 112(20), E2725–E2734.
pubmed: 25870293 pmcid: 4443325
Lujan, E., Chanda, S., Ahlenius, H., Sudhof, T. C., & Wernig, M. (2012). Direct conversion of mouse fibroblasts to self-renewing, tripotent neural precursor cells. Proceedings of the National Academy of Sciences of the United States of America, 109(7), 2527–2532.
pubmed: 22308465 pmcid: 3289376 doi: 10.1073/pnas.1121003109
Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 25(4), 402–8.
pubmed: 11846609 doi: 10.1006/meth.2001.1262
Andrews, S. (2010). FastQC: A quality control tool for high throughput sequence data. [Available from: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ . Accessed Sept 2019.
Ward, C. M., To, T. H., & Pederson, S. M. (2020). ngsReports: A bioconductor package for managing FastQC reports and other NGS related log files. Bioinformatics, 36(8):2587–2588.
Schubert, M., Lindgreen, S., & Orlando, L. (2016). AdapterRemoval v2: rapid adapter trimming, identification, and read merging. BMC Research Notes, 9(1), 88.
pubmed: 26868221 pmcid: 4751634 doi: 10.1186/s13104-016-1900-2
Dobin, A., Davis, C. A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., et al. (2013). STAR: Ultrafast universal RNA-seq aligner. Bioinformatics, 29(1), 15–21.
pubmed: 23104886 doi: 10.1093/bioinformatics/bts635
Liao, Y., Smyth, G. K., & Shi, W. (2019). The R package Rsubread is easier, faster, cheaper and better for alignment and quantification of RNA sequencing reads. Nucleic Acids Research, 47(8), e47.
pubmed: 30783653 pmcid: 6486549 doi: 10.1093/nar/gkz114
Cunningham, F., Achuthan, P., Akanni, W., Allen, J., Amode, M. R., Armean, I. M., et al. (2018). Ensembl 2019. Nucleic Acids Research, 47(D1), D745–D751.
pmcid: 6323964 doi: 10.1093/nar/gky1113
Robinson, M. D., & Oshlack, A. (2010). A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biology, 11(3), R25.
pubmed: 20196867 pmcid: 2864565 doi: 10.1186/gb-2010-11-3-r25
Law, C. W., Chen, Y., Shi, W., & Smyth, G. K. (2014). voom: Precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biology, 15(2), R29.
pubmed: 24485249 pmcid: 4053721 doi: 10.1186/gb-2014-15-2-r29
Liu, R., Holik, A. Z., Su, S., Jansz, N., Chen, K., Leong, H. S., et al. (2015). Why weight? Modelling sample and observational level variability improves power in RNA-seq analyses. Nucleic Acids Research, 43(15), e97.
pubmed: 25925576 pmcid: 4551905 doi: 10.1093/nar/gkv412
Robinson, M. D., McCarthy, D. J., & Smyth, G. K. (2009). edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26(1), 139–140.
pubmed: 19910308 pmcid: 2796818 doi: 10.1093/bioinformatics/btp616
Kolde, R. (2019). pheatmap: Pretty Heatmaps. [R package version 1.0.12:[Available from: https://cran.r-project.org/web/packages/pheatmap/index.html . Accessed Sept 2019.
Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, M. A., et al. (2005). Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proceedings of the National Academy of Sciences of the United States of America, 102(43), 15545–15550.
pubmed: 16199517 pmcid: 1239896 doi: 10.1073/pnas.0506580102
Liberzon, A., Subramanian, A., Pinchback, R., Thorvaldsdóttir, H., Tamayo, P., & Mesirov, J. P. (2011). Molecular signatures database (MSigDB) 3.0. Bioinformatics, 27(12), 1739–40.
pubmed: 21546393 pmcid: 3106198 doi: 10.1093/bioinformatics/btr260
Ge, S. X., Jung, D., & Yao, R. (2020). ShinyGO: A graphical gene-set enrichment tool for animals and plants. Bioinformatics, 36(8), 2628–2629.
pubmed: 31882993 doi: 10.1093/bioinformatics/btz931
Tang, D., Chen, M., Huang, X., Zhang, G., Zeng, L., Zhang, G., et al. (2023). SRplot: A free online platform for data visualization and graphing. PLoS ONE, 18(11), e0294236.
pubmed: 37943830 pmcid: 10635526 doi: 10.1371/journal.pone.0294236
Hamburger, V., & Hamilton, H. L. (1951). A series of normal stages in the development of the chick embryo. Journal of Morphology, 88(1), 49–92.
pubmed: 24539719 doi: 10.1002/jmor.1050880104
Chao, M. V. (2003). Neurotrophins and their receptors: A convergence point for many signalling pathways. Nature Reviews Neuroscience, 4(4), 299–309.
pubmed: 12671646 doi: 10.1038/nrn1078
Louvi, A., & Artavanis-Tsakonas, S. (2006). Notch signalling in vertebrate neural development. Nature Reviews Neuroscience, 7(2), 93–102.
pubmed: 16429119 doi: 10.1038/nrn1847
Maucksch, C., Jones, K. S., & Connor, B. (2013). Concise review: The involvement of SOX2 in direct reprogramming of induced neural stem/precursor cells. Stem Cells Translational Medicine, 2(8), 579–583.
pubmed: 23817132 pmcid: 3726137 doi: 10.5966/sctm.2012-0179
He, S., Guo, Y., Zhang, Y., Li, Y., Feng, C., Li, X., et al. (2015). Reprogramming somatic cells to cells with neuronal characteristics by defined medium both in vitro and in vivo. Cell Regeneration, 4, 12.
pubmed: 26719791 pmcid: 4696146 doi: 10.1186/s13619-015-0027-6
Ables, J. L., Breunig, J. J., Eisch, A. J., & Rakic, P. (2011). Not(ch) just development: Notch signalling in the adult brain. Nature Reviews Neuroscience, 12(5), 269–283.
pubmed: 21505516 pmcid: 3159580 doi: 10.1038/nrn3024
Inestrosa, N. C., & Arenas, E. (2010). Emerging roles of Wnts in the adult nervous system. Nature Reviews Neuroscience, 11(2), 77–86.
pubmed: 20010950 doi: 10.1038/nrn2755
Adams, R. H., Betz, H., & Püschel, A. W. (1996). A novel class of murine semaphorins with homology to thrombospondin is differentially expressed during early embryogenesis. Mechanisms of Development, 57(1), 33–45.
pubmed: 8817451 doi: 10.1016/0925-4773(96)00525-4
Pinheiro, P. S., & Mulle, C. (2008). Presynaptic glutamate receptors: Physiological functions and mechanisms of action. Nature Reviews Neuroscience, 9(6), 423–436.
pubmed: 18464791 doi: 10.1038/nrn2379
Arthur, A., Shi, S., Zannettino, A. C., Fujii, N., Gronthos, S., & Koblar, S. A. (2009). Implanted adult human dental pulp stem cells induce endogenous axon guidance. Stem Cells, 27(9), 2229–2237.
pubmed: 19544412 doi: 10.1002/stem.138
Hilkens, P., Gervois, P., Fanton, Y., Vanormelingen, J., Martens, W., Struys, T., et al. (2013). Effect of isolation methodology on stem cell properties and multilineage differentiation potential of hDPSCs. Cell Tissue Research, 353, 65–78.
pubmed: 23715720 doi: 10.1007/s00441-013-1630-x
Patil, V. R., Kharat, A. H., Kulkarni, D. G., Kheur, S. M., & Bhonde, R. R. (2018). Long term explant culture for harvesting homogeneous population of human dental pulp stem cells. Cell Biology International, 42(12), 1602–1610.
pubmed: 30353965 doi: 10.1002/cbin.11065
Harkness, L., Zaher, W., Ditzel, N., Isa, A., & Kassem, M. (2016). CD146/MCAM defines functionality of human bone marrow stromal stem cell populations. Stem Cell Research and Therapy, 7, 4.
pubmed: 26753846 pmcid: 4710006 doi: 10.1186/s13287-015-0266-z
Russell, K. C., Phinney, D. G., Lacey, M. R., Barrilleaux, B. L., Meyertholen, K. E., & O’Connor, K. C. (2010). In vitro high-capacity assay to quantify the clonal heterogeneity in trilineage potential of mesenchymal stem cells reveals a complex hierarchy of lineage commitment. Stem Cells, 28(4), 788–798.
pubmed: 20127798 doi: 10.1002/stem.312
Pan, W., Kremer, K. L., Kaidonis, X., Ludlow, V. E., Rogers, M. L., Xie, J., et al. (2016). Characterization of p75 neurotrophin receptor expression in human dental pulp stem cells. International Journal of Developmental Neuroscience, 53, 90–98.
pubmed: 27469433 doi: 10.1016/j.ijdevneu.2016.07.007

Auteurs

Maria R Gancheva (MR)

Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, 5005, Australia. maria.gancheva@adelaide.edu.au.
School of Biological Sciences, Faculty of Science, Engineering and Technology, The University of Adelaide, Adelaide, 5005, Australia. maria.gancheva@adelaide.edu.au.

Karlea Kremer (K)

Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, 5005, Australia.

James Breen (J)

Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, 5005, Australia.
School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, 5005, Australia.

Agnes Arthur (A)

School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, 5005, Australia.

Anne Hamilton-Bruce (A)

Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, 5005, Australia.
Stroke Research Programme, Basil Hetzel Institute, The Queen Elizabeth Hospital, Central Adelaide Local Health Network, Woodville South, 5011, Australia.

Paul Thomas (P)

School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, 5005, Australia.
South Australian Health and Medical Research Institute, Adelaide, 5000, Australia.

Stan Gronthos (S)

School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, 5005, Australia.
South Australian Health and Medical Research Institute, Adelaide, 5000, Australia.

Simon Koblar (S)

Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, 5005, Australia.

Classifications MeSH