Sterically hindered phenolic derivatives: effect on the production of Pseudomonas aeruginosa virulence factors, high-throughput virtual screening and ADME properties prediction.
Molecular docking
Phenolic compounds
Pseudomonas aeruginosa
Quorum sensing
Virulence factors
Journal
Archives of microbiology
ISSN: 1432-072X
Titre abrégé: Arch Microbiol
Pays: Germany
ID NLM: 0410427
Informations de publication
Date de publication:
06 Feb 2024
06 Feb 2024
Historique:
received:
16
11
2023
accepted:
30
12
2023
revised:
13
12
2023
medline:
6
2
2024
pubmed:
6
2
2024
entrez:
5
2
2024
Statut:
epublish
Résumé
Inhibition of quorum sensing is considered to be an effective strategy of control and treatment of a wide range of acute and persistent infections. Pseudomonas aeruginosa is an opportunistic bacterium with a high adaptation potential that contributes to healthcare-associated infections. In the present study, the effects of the synthesized hybrid structures bearing sterically hindered phenolic and heterocyclic moieties in a single scaffold on the production of virulence factors by P. aeruginosa were determined. It has been shown that the obtained compounds significantly reduce both pyocyanin and alginate production and stimulate the biosynthesis of siderophores in vitro, which may be attributed to their iron-chelating properties. The results of docking-based inverse high-throughput virtual screening indicate that transcription regulator LasR and Cu-transporter OPRC could be potential molecular targets for these compounds. Investigation of the impact small molecules exert on the molecular mechanisms of the production of bacterial virulence factors may pave the way for the design and development of novel antibacterial agents.
Identifiants
pubmed: 38316691
doi: 10.1007/s00203-023-03827-y
pii: 10.1007/s00203-023-03827-y
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
91Informations de copyright
© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Références
Allan JR, Paton AD, Pendlowski MJ (1985) The preparation, characterisation and thermal analysis studies on complexes of cobalt (II), nickel (II), and copper (II) with 3-picolylamine. J Therm Anal 30:579–586
doi: 10.1007/BF01913603
Aminov RI (2009) The role of antibiotics and antibiotic resistance in nature. Environ Microbiol 11:2970–2988
doi: 10.1111/j.1462-2920.2009.01972.x
pubmed: 19601960
Aziz NH, Farag SE, Mousa LA, Abo-Zaid MA (1998) Comparative antibacterial and antifungal effects of some phenolic compounds. Microbios 93:43–54
pubmed: 9670554
Balasundram N, Sundram K, Samman S (2006) Phenolic compounds in plants and agri-industrial by-products: antioxidant activity, occurrence, and potential uses. Food Chem 99:191–203
doi: 10.1016/j.foodchem.2005.07.042
Barreteau H, Bouhss A, Fourgeaud M, Mainardi J, Touzé T, Gérard F, Blanot D, Arthur M, Mengin-Lecreulx DJ (2009) Human-and plant-pathogenic Pseudomonas species produce bacteriocins exhibiting colicin M-like hydrolase activity towards peptidoglycan precursors. J Bacteriol 191:3657–3664
doi: 10.1128/JB.01824-08
pubmed: 19346308
pmcid: 2681890
Daina A, Michielin O, Zoete V (2017) SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. https://doi.org/10.1038/srep42717
doi: 10.1038/srep42717
pubmed: 28256516
pmcid: 5335600
Das T, Kutty SK, Tavallaie R, Ibugo AI, Panchompoo J, Sehar S, Aldous L, Yeung AWS, Thomas SR, Kumar N, Gooding JJ, Manefield M (2015) Phenazine virulence factor binding to extracellular DNA is important for Pseudomonas aeruginosa biofilm formation. Sci Rep 5:8398
doi: 10.1038/srep08398
pubmed: 25669133
pmcid: 4323658
Dharshini RS, Manickam R, Curtis WR, Rathinasabapathi P, Ramya M (2021) Genome analysis of alginate synthesizing Pseudomonas aeruginosa strain SW1 isolated from degraded seaweeds. Antonie Van Leeuwenhoek 114:2205–2217
doi: 10.1007/s10482-021-01673-w
pubmed: 34661815
Dumas Z, Ross-Gillespie A, Kummerli R (2013) Switching between apparently redundant iron-uptake mechanisms benefits bacteria in changeable environments. Proc R Soc B. https://doi.org/10.1098/rspb.2013.1055
doi: 10.1098/rspb.2013.1055
pubmed: 23760867
pmcid: 3712426
Durrant JD, McCammon JA (2011) BINANA: a novel algorithm for ligand-binding characterization. J Mol Graph Model. https://doi.org/10.1016/j.jmgm.2011.01.004
doi: 10.1016/j.jmgm.2011.01.004
pubmed: 21880522
pmcid: 3218086
Franklin MJ, Nivens DE, Weadge JT, Howell PL (2011) Biosynthesis of the Pseudomonas aeruginosa extracellular polysaccharides, alginate, Pel, and Psl. Front Microbiol 2:167
doi: 10.3389/fmicb.2011.00167
pubmed: 21991261
pmcid: 3159412
Gao L, Kim KJ, Yankaskas JR, Forman HJ (1999) Abnormal glutathione transport in cystic fibrosis airway epithelia. Am J Physiol Lung Cell Mol 277:L113–L118
doi: 10.1152/ajplung.1999.277.1.L113
Gao P, Guo K, Pu Q, Wang Z, Lin P, Qin S, Khan N, Hur J, Liang H, Wu M (2020) oprC impairs host defense by increasing the quorum-sensing-mediated virulence of Pseudomonas aeruginosa. Front Immunol 11:1696
doi: 10.3389/fimmu.2020.01696
pubmed: 32849593
pmcid: 7417366
Ghannay S, Kadri A, Aouadi K (2020) Synthesis, in vitro antimicrobial assessment, and computational investigation of pharmacokinetic and bioactivity properties of novel trifluoromethylated compounds using in silico ADME and toxicity prediction tools. Monatsh Chem. https://doi.org/10.1007/s00706-020-02550-4
doi: 10.1007/s00706-020-02550-4
Ghssein G, Ezzeddine Z (2002) A review of Pseudomonas aeruginosa metallophores: pyoverdine, pyochelin and pseudopaline. Biology 11:1711
doi: 10.3390/biology11121711
Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchison GR (2012) Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J Cheminform. https://doi.org/10.1186/1758-2946-4-17
doi: 10.1186/1758-2946-4-17
pubmed: 22889332
pmcid: 3542060
Heidari A, Noshiranzadeh N, Haghi F, Bikas R (2017) Inhibition of quorum sensing related virulence factors of Pseudomonas aeruginosa by pyridoxal lactohydrazone. Microb Pathog 112:103–110
doi: 10.1016/j.micpath.2017.09.043
pubmed: 28939255
Hentzer M, Teitzel GM, Balzer GJ, Heydorn A, Molin S, Givskov M, Parsek MR (2001) Alginate overproduction affects Pseudomonas aeruginosa biofilm structure and function. J Bacteriol 183:5395–5401
doi: 10.1128/JB.183.18.5395-5401.2001
pubmed: 11514525
pmcid: 95424
Hoegy F, Mislin GLA, Schalk IJ (2014) Pyoverdine and pyochelin measurements. Pseudomonas Methods Protoc. https://doi.org/10.1007/978-1-4939-0473-0_24
doi: 10.1007/978-1-4939-0473-0_24
Hoffmann N, Lee B, Hentzer M, Rasmussen TB, Song Z, Johansen HK, Givskov M, Høiby N (2007) Azithromycin blocks quorum sensing and alginate polymer formation and increases the sensitivity to serum and stationary-growth-phase killing of Pseudomonas aeruginosa and attenuates chronic P. aeruginosa lung infection in Cftr(−/−) mice. Antimicrob Agents Chemother. https://doi.org/10.1128/AAC.01011-06
doi: 10.1128/AAC.01011-06
pubmed: 17620382
pmcid: 2043275
Jagani S, Chelikani R, Kim DS (2009) Effects of phenol and natural phenolic compounds on biofilm formation by Pseudomonas aeruginosa. Biofouling 25:321–324
doi: 10.1080/08927010802660854
pubmed: 19197579
Jia CY, Li JY, Hao GF, Yang GF (2020) A drug-likeness toolbox facilitates ADMET study in drug discovery. Drug Discov Today 25:248–258
doi: 10.1016/j.drudis.2019.10.014
pubmed: 31705979
Kerr KG, Snelling AM (2009) Pseudomonas aeruginosa: a formidable and ever-present adversary. J Hosp Infect. https://doi.org/10.1016/j.jhin.2009.04.020
doi: 10.1016/j.jhin.2009.04.020
pubmed: 19699552
Kidambi SP, Sundin GW, Palmer DA, Chakrabarty AM, Bender CL (1995) Copper as a signal for alginate synthesis in Pseudomonas syringae pv. syringae. Appl Environ Microbiol 61:2172–2179
doi: 10.1128/aem.61.6.2172-2179.1995
pubmed: 7793938
pmcid: 167489
Kim SK, Ngo HX, Dennis EK, Thamban Chandrika N, DeShong P, Garneau-Tsodikova S, Lee VT (2021) Inhibition of Pseudomonas aeruginosa alginate synthesis by ebselen oxide and its analogues. ACS Infect Dis. https://doi.org/10.1021/acsinfecdis.1c00045
doi: 10.1021/acsinfecdis.1c00045
pubmed: 34590817
pmcid: 7901237
Lagorce D, Douguet D, Miteva M, Villoutreix BO (2017) Computational analysis of calculated physicochemical and ADMET properties of protein-protein interaction inhibitors. Sci Rep. https://doi.org/10.1038/srep46277
doi: 10.1038/srep46277
pubmed: 28775266
pmcid: 5543074
Lau GW, Hassett DJ, Ran H, Kong F (2004) The role of pyocyanin in Pseudomonas aeruginosa infection. Trends Mol Med. https://doi.org/10.1016/j.molmed.2004.10.002
doi: 10.1016/j.molmed.2004.10.002
pubmed: 15567330
Ledgham F, Ventre I, Soscia C, Foglino M, Sturgis JN, Lazdunski A (2003) Interactions of the quorum sensing regulator QscR: interaction with itself and the other regulators of Pseudomonas aeruginosa LasR and RhlR. Mol Microbiol 48:199–210
doi: 10.1046/j.1365-2958.2003.03423.x
pubmed: 12657055
Li Q, Mao S, Wang H, Ye X (2022) The molecular architecture of Pseudomonas aeruginosa quorum-sensing inhibitors. Mar Drugs. https://doi.org/10.3390/md20080488
doi: 10.3390/md20080488
pubmed: 36662191
pmcid: 9866299
Loginova N, Gvozdev M, Osipovich N, Khodosovskaya A, Koval’chuk-Rabchinskaya T, Ksendzova G, Kotsikau D, Evtushenkov A (2022) Silver(I) complexes with phenolic Schiff bases: synthesis, antibacterial evaluation and interaction with biomolecules. ADMET DMPK. https://doi.org/10.5599/admet.1167
doi: 10.5599/admet.1167
pubmed: 36131890
pmcid: 9484703
Lyczak JB, Cannon CL, Pier GB (2000) Establishment of Pseudomonas aeruginosa infection: lessons from a versatile opportunist. Microbes Infect 2:1051–1060
doi: 10.1016/S1286-4579(00)01259-4
pubmed: 10967285
Miller LC, O’Loughlin CT, Zhang Z, Siryaporn A, Silpe JE, Bassler BL, Semmelhack MF (2015) Development of potent inhibitors of pyocyanin production in Pseudomonas aeruginosa. J Med Chem 58:1298–1306
doi: 10.1021/jm5015082
pubmed: 25597392
pmcid: 4332565
Min KB, Hwang W, Lee KM, Kim JB, Yoon SS (2021) Chemical inhibitors of the conserved bacterial transcriptional regulator DksA1 suppressed quorum sensing-mediated virulence of Pseudomonas aeruginosa. J Biol Chem. https://doi.org/10.1016/j.jbc.2021.100576
doi: 10.1016/j.jbc.2021.100576
pubmed: 34973336
pmcid: 8808179
Mishra R, Kushveer J, Khan MIK, Pagal S, Meena CK, Murali A, Dhayalan A, Sarma V (2020) 2,4-Di-tert-butylphenol isolated from an endophytic fungus, Daldinia eschscholtzii, reduces virulence and quorum sensing in Pseudomonas aeruginosa. Front Microbiol 11:1668
doi: 10.3389/fmicb.2020.01668
pubmed: 32849344
pmcid: 7418596
Müh U, Schuster M, Heim R, Singh A, Olson ER, Greenberg EP (2006) Novel Pseudomonas aeruginosa quorum-sensing inhibitors identified in an ultra-high-throughput screen. Antimicrob Agents Chemother 50:3674–3679
doi: 10.1128/AAC.00665-06
pubmed: 16966394
pmcid: 1635174
Panda SS, Kumari S, Dixit M, Sharma NK (2023) N-salicyl-AA n-picolamide foldameric peptides exhibit quorum sensing inhibition of Pseudomonas aeruginosa (PA14). ACS Omega 8:30349–30358
doi: 10.1021/acsomega.3c03404
pubmed: 37636905
pmcid: 10448664
Qais FA, Khan MS, Ahmad I, Husain FM, Khan RA, Hassan I, Shahzad SA, AlHarbi W (2021) Coumarin exhibits broad-spectrum antibiofilm and antiquorum sensing activity against Gram-negative bacteria: in vitro and in silico investigation. ACS Omega 6:18823–18835
doi: 10.1021/acsomega.1c02046
pubmed: 34337222
pmcid: 8320077
Sanner MF (1999) Python: a programming language for software integration and development. J Mol Graph Mod 17:57–61
Santos JS, Alvarenga Brizola VR, Granato D (2017) High-throughput assay comparison and standardization for metal chelating capacity screening: a proposal and application. Food Chem. https://doi.org/10.1016/j.foodchem.2016.07.09
doi: 10.1016/j.foodchem.2016.07.09
pubmed: 30292370
Simanek KA, Taylor IR, Richael EK, Lasek-Nesselquist E, Bassler BL, Paczkowski JE (2022) The PqsE-RhlR interaction regulates RhlR DNA binding to control virulence factor production in Pseudomonas aeruginosa. Microbiol Spectr 10:e02108-e2121
doi: 10.1128/spectrum.02108-21
pubmed: 35019777
pmcid: 8754118
Singh A, Mishra AK, Singh SS, Sarma HK, Shukla E (2008) Influence of iron and chelator on siderophore production in Frankia strains nodulating Hippophae salicifolia D. Don J Basic Microbiol 48:104–111
doi: 10.1002/jobm.200700262
pubmed: 18383221
Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comp Chem. https://doi.org/10.1002/jcc.21334
doi: 10.1002/jcc.21334
Williams P, Cámara M (2009) Quorum sensing and environmental adaptation in Pseudomonas aeruginosa: a tale of regulatory networks and multifunctional signal molecules. Curr Opin Microbiol 12:182–191
doi: 10.1016/j.mib.2009.01.005
pubmed: 19249239
Wood LG (2003) Improved antioxidant and fatty acid status of patients with cystic fibrosis after antioxidant supplementation is linked to improved lung function. Am J Clin Nutr 77:150–159
doi: 10.1093/ajcn/77.1.150
pubmed: 12499335
Xiong G, Wu Z, Yi J, Fu L, Yang Z, Hsieh C, Yin M, Zeng X, Wu C, Lu A, Chen X, Hou T, Cao D (2021) ADMETlab 2.0: an integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Res. https://doi.org/10.1093/nar/gkab255
doi: 10.1093/nar/gkab255
pubmed: 34871455
pmcid: 8754660
Yakovets P, Staravoitava V, Faletrov Y, Shkumatov V (2022) High-throughput virtual screening of compounds with electrophilic fragments for new potential covalent inhibitors of bacterial proteins. Chem Proc. https://doi.org/10.3390/ecsoc-26-13574
doi: 10.3390/ecsoc-26-13574
Zeng YF, Su YL, Liu WL, Chen HG, Zeng SG, Zhou HB, Chen W, Zheng J, Sun PH (2022) Design and synthesis of caffeic acid derivatives and evaluation of their inhibitory activity against Pseudomonas aeruginosa. Med Chem Res 31:177–194
doi: 10.1007/s00044-021-02810-w
Zhou E, Seminara AB, Kim S-K, Hall CL, Wang Y, Lee VT (2017) Thiol-benzo-triazolo-quinazolinone Inhibits Alg44 Binding to c-di-GMP and reduces alginate production by Pseudomonas aeruginosa. ACS Chem Biol. https://doi.org/10.1021/acschembio.7b00826
doi: 10.1021/acschembio.7b00826
pubmed: 29227619
pmcid: 6325032