Success rates of single-thread and double-thread orthodontic miniscrews in the maxillary arch.

Dental implant Miniscrew Orthodontic anchorage Orthodontic appliances Orthodontic treatment Success rate Survival rate

Journal

BMC oral health
ISSN: 1472-6831
Titre abrégé: BMC Oral Health
Pays: England
ID NLM: 101088684

Informations de publication

Date de publication:
05 Feb 2024
Historique:
received: 10 06 2023
accepted: 05 01 2024
medline: 6 2 2024
pubmed: 6 2 2024
entrez: 5 2 2024
Statut: epublish

Résumé

There is limited research on the clinical performance of double-thread orthodontic miniscrews. This study aimed to compare the stability of double-thread and single-thread orthodontic miniscrews and identify the potential associations between patient-related and location-related factors with miniscrew stability. This retrospective cohort study involved 90 orthodontic miniscrews (45 single-thread, 45 double-thread) with identical dimensions (8 mm length, 1.6 mm diameter). The screws were inserted in various locations within the upper jaw of 83 patients (54 females, 29 males; mean age = 15.1 ± 2.4 years). Failure was defined as excessive mobility or loss of miniscrew after placement. The data recorded were patient age, gender, insertion site, side of insertion (buccal or lingual), duration of force application, and failure occurrence. The overall success rate within the sample was 92.2%. Double-thread miniscrews exhibited a significantly higher success rate than single-thread miniscrews (P = 0.049), with 97.8% and 86.7% success rates, respectively. Gender, age, insertion location, and side of insertion did not show significant associations with failure (P > 0.05). Log-rank analysis revealed a significant difference between the two groups (P = 0.046), indicating a higher probability of survival for the double-thread design. The overall success rate of orthodontic miniscrews was high in the present sample. Double-thread miniscrews placed in various locations within the maxillary arch demonstrated superior stability and survival rates compared to their single-thread counterparts. Therefore, double-thread miniscrews may be preferred when bone quality is inadequate, such as in young patients.

Identifiants

pubmed: 38317101
doi: 10.1186/s12903-024-03866-x
pii: 10.1186/s12903-024-03866-x
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

191

Informations de copyright

© 2024. The Author(s).

Références

Umalkar SS, Jadhav VV, Paul P, Reche A. Modern anchorage systems in orthodontics. Cureus. 2022;14(11):e31476.
Budsabong C, Trachoo V, Pittayapat P, Chantarawaratit PO. The association between thread pitch and cortical bone thickness influences the primary stability of orthodontic miniscrew implants: a study in human cadaver palates. J World Fed Orthod. 2022;11(2):68–73.
pubmed: 35000882
Watanabe K, Mitchell B, Sakamaki T, Hirai Y, Kim DG, Deguchi T, et al. Mechanical stability of orthodontic miniscrew depends on a thread shape. J Dent Sci. 2022;17(3):1244–52.
doi: 10.1016/j.jds.2021.11.010 pubmed: 35784157
Gracco A, Giagnorio C, Incerti Parenti S, Alessandri Bonetti G, Siciliani G. Effects of thread shape on the pullout strength of miniscrews. Am J Orthod Dentofacial Orthop. 2012;142(2):186–90.
doi: 10.1016/j.ajodo.2012.03.023 pubmed: 22858327
Cha JY, Hwang CJ, Kwon SH, Jung HS, Kim KM, Yu HS. Strain of bone-implant interface and insertion torque regarding different miniscrew thread designs using an artificial bone model. Eur J Orthod. 2015;37(3):268–74.
doi: 10.1093/ejo/cju037 pubmed: 25296728
Manni A, Cozzani M, Tamborrino F, De Rinaldis S, Menini A. Factors influencing the stability of miniscrews. A retrospective study on 300 miniscrews. Eur J Orthod. 2011;33(4):388–95.
doi: 10.1093/ejo/cjq090 pubmed: 20926556
Sarul M, Lis J, Park HS, Rumin K. Evidence-based selection of orthodontic miniscrews, increasing their success rate in the mandibular buccal shelf. A randomized, prospective clinical trial. BMC Oral Health. 2022;22(1):414.
doi: 10.1186/s12903-022-02460-3 pubmed: 36127718 pmcid: 9487090
Mashreghi A, Bardideh E, Shafaee H, Dadgarmoghaddam M. Bone-borne Maxillary Expansion and Traditional Rapid Maxillary expansion: a systematic review and Meta-analysis. J Dent Mater Tech. 2019;8(4):159–68.
Khojastepour L, Naderi A. Symphysis morphology and mandibular alveolar bone thickness in patients with β-thalassemia major and different growth patterns. Dent Press J Orthod. 2022;27(2):e22205.
doi: 10.1590/2177-6709.27.2.e22205.oar
Moghaddam SF, Mohammadi A, Behroozian A. The effect of sandblasting and acid etching on survival rate of orthodontic miniscrews: a split-mouth randomized controlled trial. Prog Orthod. 2021;22(1):2.
doi: 10.1186/s40510-020-00347-z pubmed: 33409700 pmcid: 7788110
Melo AC, Andrighetto AR, Hirt SD, Bongiolo AL, Silva SU, Silva MA. Risk factors associated with the failure of miniscrews - a ten-year cross sectional study. Braz Oral Res. 2016;30(1):e124.
doi: 10.1590/1807-3107BOR-2016.vol30.0124 pubmed: 27783770
Lee Y, Choi SH, Yu HS, Erenebat T, Liu J, Cha JY. Stability and success rate of dual-thread miniscrews. Angle Orthod. 2021;91(4):509–14.
doi: 10.2319/083020-756.1 pubmed: 34181723 pmcid: 8259760
Lim SA, Cha JY, Hwang CJ. Insertion torque of orthodontic miniscrews according to changes in shape, diameter and length. Angle Orthod. 2008;78(2):234–40.
doi: 10.2319/121206-507.1 pubmed: 18251617
Kim YK, Kim YJ, Yun PY, Kim JW. Effects of the taper shape, dual-thread, and length on the mechanical properties of mini-implants. Angle Orthod. 2009;79(5):908–14.
doi: 10.2319/071808-374.1 pubmed: 19705930
Sakamaki T, Watanabe K, Iwasa A, Deguchi T, Horiuchi S, Tanaka E. Thread shape, cortical bone thickness, and magnitude and distribution of stress caused by the loading of orthodontic miniscrews: finite element analysis. Sci Rep. 2022;12(1):12367.
doi: 10.1038/s41598-022-16662-w pubmed: 35859046 pmcid: 9300621
Ye Y, Yi W, Fan S, Zhao L, Yu Y, Lu Y, et al. Effect of thread depth and thread pitch on the primary stability of miniscrews receiving a torque load: a finite element analysis. J Orofac Orthop. 2023;84(2):79–87.
doi: 10.1007/s00056-021-00351-w pubmed: 34581834
Choi JY, Cho J, Oh SH. Effect of different surface designs on the Rotational Resistance and Stability of Orthodontic Miniscrews: A three-dimensional finite element study. Sens (Basel). 2021;21(6):1964.
doi: 10.3390/s21061964
Han CM, Watanabe K, Tsatalis AE, Lee D, Zheng F, Kyung HM, et al. Evaluations of miniscrew type-dependent mechanical stability. Clin Biomech (Bristol Avon). 2019;69:21–7.
doi: 10.1016/j.clinbiomech.2019.06.016 pubmed: 31280063
Fattahi H, Ajami S, Nabavizadeh Rafsanjani A. The effects of different Miniscrew thread designs and force directions on stress distribution by 3-dimensional finite element analysis. J Dent (Shiraz). 2015;16(4):341–8.
pubmed: 26636123
Duaibis R, Kusnoto B, Natarajan R, Zhao L, Evans C. Factors affecting stresses in cortical bone around miniscrew implants: a three-dimensional finite element study. Angle Orthod. 2012;82(5):875–80.
doi: 10.2319/111011-696.1 pubmed: 22390634 pmcid: 8823118
Migliorati M, Benedicenti S, Signori A, Drago S, Cirillo P, Barberis F, et al. Thread shape factor: evaluation of three different orthodontic miniscrews stability. Eur J Orthod. 2013;35(3):401–5.
doi: 10.1093/ejo/cjr145 pubmed: 22267706
Radwan ES, Montasser MA, Maher A. Influence of geometric design characteristics on primary stability of orthodontic miniscrews. J Orofac Orthop. 2018;79(3):191–203.
doi: 10.1007/s00056-018-0131-7 pubmed: 29637214
Nenen F, Garnica N, Rojas V, Oyonarte R. Comparison of the primary stability of orthodontic miniscrews after repeated insertion cycles. Angle Orthod. 2021;91(3):336–42.
doi: 10.2319/050120-375.1 pubmed: 33378455
Migliorati M, Benedicenti S, Signori A, Drago S, Barberis F, Tournier H, et al. Miniscrew design and bone characteristics: an experimental study of primary stability. Am J Orthod Dentofacial Orthop. 2012;142(2):228–34.
doi: 10.1016/j.ajodo.2012.03.029 pubmed: 22858333
Florvaag B, Kneuertz P, Lazar F, Koebke J, Zöller JE, Braumann B, et al. Biomechanical properties of orthodontic miniscrews. An in-vitro study. J Orofac Orthop. 2010;71(1):53–67.
doi: 10.1007/s00056-010-9933-y pubmed: 20135250
Exposto CR, Oz U, Westgate PM, Huja SS. Influence of mini-screw diameter and loading conditions on static and dynamic assessments of bone-implant contact: an animal study. Orthod Craniofac Res. 2019;22(Suppl 1):96–100.
doi: 10.1111/ocr.12293 pubmed: 31074154
Topcuoglu T, Bicakci AA, Avunduk MC, Sahin Inan ZD. Evaluation of the effects of different surface configurations on stability of miniscrews. ScientificWorldJournal. 2013;2013:396091.
doi: 10.1155/2013/396091 pubmed: 23935417 pmcid: 3712205
Luzi C, Verna C, Melsen B. Immediate loading of orthodontic mini-implants: a histomorphometric evaluation of tissue reaction. Eur J Orthod. 2009;31(1):21–9.
doi: 10.1093/ejo/cjn087 pubmed: 19164411
Migliorati M, Drago S, Gallo F, Amorfini L, Dalessandri D, Calzolari C, et al. Immediate versus delayed loading: comparison of primary stability loss after miniscrew placement in orthodontic patients-a single-centre blinded randomized clinical trial. Eur J Orthod. 2016;38(6):652–59.
doi: 10.1093/ejo/cjv095 pubmed: 26728036
Aly SA, Alyan D, Fayed MS, Alhammadi MS. Success rates and factors associated with failure of temporary anchorage devices: a prospective clinical trial. J Investig Clin Dent. 2018;9(3):e12331.
doi: 10.1111/jicd.12331 pubmed: 29512336
Dalessandri D, Salgarello S, Dalessandri M, Lazzaroni E, Piancino M, Paganelli C, et al. Determinants for success rates of temporary anchorage devices in orthodontics: a meta-analysis (n > 50). Eur J Orthod. 2014;36(3):303–13.
doi: 10.1093/ejo/cjt049 pubmed: 23873818
Papageorgiou SN, Zogakis IP, Papadopoulos MA. Failure rates and associated risk factors of orthodontic miniscrew implants: a meta-analysis. Am J Orthod Dentofacial Orthop. 2012;142(5):577–95e7.
doi: 10.1016/j.ajodo.2012.05.016 pubmed: 23116500
Yu J-H, Lin Y-S, Chang W-J, Chang Y-Z, Lin C-L. Mechanical effects of micro-thread orthodontic mini-screw design on artificial cortical bone. J Med Biol Eng. 2014;34(1):49–55.
doi: 10.5405/jmbe.1132
Fukumoto T, Fukasawa S, Yamada K, Nakajima R, Yamaguchi M. Evaluation of the success rate of single- and dual-thread orthodontic miniscrews inserted in the palatal side of the maxillary tuberosity. J World Fed Orthod. 2022;11(3):69–74.
pubmed: 35589502
Park HS, Jeong SH, Kwon OW. Factors affecting the clinical success of screw implants used as orthodontic anchorage. Am J Orthod Dentofacial Orthop. 2006;130(1):18–25.
doi: 10.1016/j.ajodo.2004.11.032 pubmed: 16849067
Kuroda S, Sugawara Y, Deguchi T, Kyung HM, Takano-Yamamoto T. Clinical use of miniscrew implants as orthodontic anchorage: success rates and postoperative discomfort. Am J Orthod Dentofacial Orthop. 2007;131(1):9–15.
doi: 10.1016/j.ajodo.2005.02.032 pubmed: 17208101
Chen YJ, Chang HH, Huang CY, Hung HC, Lai EH, Yao CC. A retrospective analysis of the failure rate of three different orthodontic skeletal anchorage systems. Clin Oral Implants Res. 2007;18(6):768–75.
doi: 10.1111/j.1600-0501.2007.01405.x pubmed: 17868386
Lee SJ, Ahn SJ, Lee JW, Kim SH, Kim TW. Survival analysis of orthodontic mini-implants. Am J Orthod Dentofacial Orthop. 2010;137(2):194–9.
doi: 10.1016/j.ajodo.2008.03.031 pubmed: 20152674

Auteurs

Mohsen Merati (M)

Department of Orthodontics, School of Dentistry, Shahed University, Tehran, Iran.

Hassanali Ghaffari (H)

Department of Orthodontics, School of Dentistry, Shahed University, Tehran, Iran.

Fatemeh Javid (F)

School of Dentistry, Shahed University of Medical Sciences, Tehran, Iran.

Farzaneh Ahrari (F)

Dental Research Center, School of Dentistry, Mashhad University of Medical Sciences, Vakilabad Blvd, Mashhad, Iran. Ahrarif@mums.ac.ir.

Classifications MeSH