A 3D printable tissue adhesive.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
09 Feb 2024
Historique:
received: 20 11 2023
accepted: 15 01 2024
medline: 9 2 2024
pubmed: 9 2 2024
entrez: 8 2 2024
Statut: epublish

Résumé

Tissue adhesives are promising alternatives to sutures and staples for joining tissues, sealing defects, and immobilizing devices. However, existing adhesives mostly take the forms of glues or hydrogels, which offer limited versatility. We report a direct-ink-write 3D printable tissue adhesive which can be used to fabricate bioadhesive patches and devices with programmable architectures, unlocking new potential for application-specific designs. The adhesive is conformable and stretchable, achieves robust adhesion with wet tissues within seconds, and exhibits favorable biocompatibility. In vivo rat trachea and colon defect models demonstrate the fluid-tight tissue sealing capability of the printed patches, which maintained adhesion over 4 weeks. Moreover, incorporation of a blood-repelling hydrophobic matrix enables the printed patches to seal actively bleeding tissues. Beyond wound closure, the 3D printable adhesive has broad applicability across various tissue-interfacing devices, highlighted through representative proof-of-concept designs. Together, this platform offers a promising strategy toward developing advanced tissue adhesive technologies.

Identifiants

pubmed: 38331971
doi: 10.1038/s41467-024-45147-9
pii: 10.1038/s41467-024-45147-9
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1215

Subventions

Organisme : Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
ID : 1R01HL153857

Informations de copyright

© 2024. The Author(s).

Références

Dobson, G. P. Trauma of major surgery: A global problem that is not going away. Int J. Surg. 81, 47–54 (2020).
doi: 10.1016/j.ijsu.2020.07.017 pubmed: 32738546 pmcid: 7388795
Reece, T. B., Maxey, T. S. & Kron, I. L. A prospectus on tissue adhesives. Am. J. Surg. 182, 40S–44S (2001).
doi: 10.1016/S0002-9610(01)00742-5 pubmed: 11566476
Taboada, G. M. et al. Overcoming the translational barriers of tissue adhesives. Nat. Rev. Mater. 5, 310–329 (2020).
doi: 10.1038/s41578-019-0171-7
Nam, S. & Mooney, D. Polymeric Tissue Adhesives. Chem. Rev. 121, 11336–11384 (2021).
doi: 10.1021/acs.chemrev.0c00798 pubmed: 33507740
Mehdizadeh, M. & Yang, J. Design Strategies and Applications of Tissue Bioadhesives. Macromol. Biosci. 13, 271–288 (2013).
doi: 10.1002/mabi.201200332 pubmed: 23225776
Lang, N. et al. A blood-resistant surgical glue for minimally invasive repair of vessels and heart defects. Sci. Transl. Med. 6, 218ra6 (2014).
doi: 10.1126/scitranslmed.3006557 pubmed: 24401941 pmcid: 4157752
Annabi, N., Yue, K., Tamayol, A. & Khademhosseini, A. Elastic sealants for surgical applications. Eur. J. Pharmaceutics Biopharmaceutics 95, 27–39 (2015).
doi: 10.1016/j.ejpb.2015.05.022
Annabi, N. et al. Engineering a highly elastic human protein–based sealant for surgical applications. Sci. Transl. Med. 9, eaai7466 (2017).
Yuk, H. et al. Dry double-sided tape for adhesion of wet tissues and devices. Nature 575, 169–174 (2019).
doi: 10.1038/s41586-019-1710-5 pubmed: 31666696
Pinnaratip, R., Bhuiyan, M. S. A., Meyers, K., Rajachar, R. M. & Lee, B. P. Multifunctional Biomedical Adhesives. Adv. Healthc. Mater. 8, 1801568 (2019).
doi: 10.1002/adhm.201801568
Li, J. et al. Tough adhesives for diverse wet surfaces. Science 357, 378–381 (2017).
doi: 10.1126/science.aah6362 pubmed: 28751604 pmcid: 5905340
Yuk, H. et al. Rapid and coagulation-independent haemostatic sealing by a paste inspired by barnacle glue. Nat. Biomed. Eng. 5, 1131–1142 (2021).
doi: 10.1038/s41551-021-00769-y pubmed: 34373600 pmcid: 9254891
Chen, X., Yuk, H., Wu, J., Nabzdyk, C. S. & Zhao, X. Instant tough bioadhesive with triggerable benign detachment. PNAS 117, 15497–15503 (2020).
doi: 10.1073/pnas.2006389117 pubmed: 32576692 pmcid: 7376570
Wang, S. et al. A double-network strategy for the tough tissue adhesion of hydrogels with long-term stability under physiological environment. Soft Matter 18, 6192–6199 (2022).
doi: 10.1039/D2SM00688J pubmed: 35856647
Chia, H. N. & Wu, B. M. Recent advances in 3D printing of biomaterials. J. Biol. Eng. 9, 4 (2015).
doi: 10.1186/s13036-015-0001-4 pubmed: 25866560 pmcid: 4392469
Lai, J., Wang, C. & Wang, M. 3D printing in biomedical engineering: Processes. Mater., Appl. Appl. Phys. Rev. 8, 021322 (2021).
Do, A.-V., Khorsand, B., Geary, S. M. & Salem, A. K. 3D Printing of Scaffolds for Tissue Regeneration Applications. Adv. Healthc. Mater. 4, 1742–1762 (2015).
doi: 10.1002/adhm.201500168 pubmed: 26097108 pmcid: 4597933
ten Kate, J., Smit, G. & Breedveld, P. 3D-printed upper limb prostheses: a review. Disabil. Rehabilitation: Assistive Technol. 12, 300–314 (2017).
Prasad, L. K. & Smyth, H. 3D Printing technologies for drug delivery: a review. Drug Dev. Ind. Pharm. 42, 1019–1031 (2016).
doi: 10.3109/03639045.2015.1120743 pubmed: 26625986
Lewis, J. A. Direct Ink Writing of 3D Functional Materials. Adv. Funct. Mater. 16, 2193–2204 (2006).
doi: 10.1002/adfm.200600434
Yuk, H., Zhang, T., Lin, S., Parada, G. A. & Zhao, X. Tough bonding of hydrogels to diverse non-porous surfaces. Nat. Mater. 15, 190–196 (2016).
doi: 10.1038/nmat4463 pubmed: 26552058
Naficy, S., Spinks, G. M. & Wallace, G. G. Thin, Tough, pH-Sensitive Hydrogel Films with Rapid Load Recovery. ACS Appl. Mater. Interfaces 6, 4109–4114 (2014).
doi: 10.1021/am405708v pubmed: 24628406
Wang, W. & Wang, C. Polyurethane for biomedical applications: A review of recent developments. The design and manufacture of medical devices, 115–151 https://doi.org/10.1533/9781908818188.115 (2012).
Wu, S. J., Yuk, H., Wu, J., Nabzdyk, C. S. & Zhao, X. A Multifunctional Origami Patch for Minimally Invasive Tissue Sealing. Adv. Mater. 33, 2007667 (2021).
doi: 10.1002/adma.202007667
Wu, J. et al. An off-the-shelf bioadhesive patch for sutureless repair of gastrointestinal defects. Sci. Transl. Med 14, eabh2857 (2022).
doi: 10.1126/scitranslmed.abh2857 pubmed: 35108064
Theocharidis, G. et al. A strain-programmed patch for the healing of diabetic wounds. Nat. Biomed. Eng. 6, 1118–1133 (2022).
doi: 10.1038/s41551-022-00905-2 pubmed: 35788686
Yu, Y. et al. Multifunctional “Hydrogel Skins” on Diverse Polymers with Arbitrary Shapes. Adv. Mater. 31, 1807101 (2019).
doi: 10.1002/adma.201807101
Gorbachev, A. A., Tretinnikov, O. N., Shkrabatovskaya, L. V. & Prikhodchenko, L. K. Photoinduced Graft-Polymerization of Acrylic Acid on Polyethylene and Polypropylene Surfaces: Comparative Study Using IR-ATR Spectroscopy. J. Appl Spectrosc. 81, 754–757 (2014).
doi: 10.1007/s10812-014-0001-z
Rånby, B. & Guo, F. Z. “Surface-photografting”: new applications to synthetic fibers. Polym. Adv. Technol. 5, 829–836 (1994).
doi: 10.1002/pat.1994.220051210
Schneider, M. H., Tran, Y. & Tabeling, P. Benzophenone Absorption and Diffusion in Poly(dimethylsiloxane) and Its Role in Graft Photo-polymerization for Surface Modification. Langmuir 27, 1232–1240 (2011).
doi: 10.1021/la103345k pubmed: 21207954
Michel, R. et al. Interfacial fluid transport is a key to hydrogel bioadhesion. PNAS 116, 738–743 (2019).
doi: 10.1073/pnas.1813208116 pubmed: 30602456 pmcid: 6338857
Shea, L. Tensile Strength and Burst Pressure Comparison of TissuePatchTM3 with other Commonly Used Surgical Sealants. Adhesive Sealant Biomaterials Technical Bulletin (Tissuemed Ltd, 2009).
The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure (National Heart, Lung, and Blood Institute (US), 2004).
Javaheri, S. Chapter 32 - Heart Failure as a Consequence of Sleep-Disordered Breathing. in Heart Failure: A Companion to Braunwald’s Heart Disease (Second Edition) (ed. Mann, D. L.) 477–494 (W.B. Saunders). https://doi.org/10.1016/B978-1-4160-5895-3.10032-4 . (2011).
Ling, Y. et al. Bioinspired elastomer composites with programmed mechanical and electrical anisotropies. Nat. Commun. 13, 524 (2022).
doi: 10.1038/s41467-022-28185-z pubmed: 35082331 pmcid: 8791960
Loh, X. J., Tan, K. K., Li, X. & Li, J. The in vitro hydrolysis of poly(ester urethane)s consisting of poly[(R)-3-hydroxybutyrate] and poly(ethylene glycol). Biomaterials 27, 1841–1850 (2006).
doi: 10.1016/j.biomaterials.2005.10.038 pubmed: 16305807
Daniels, J. IBS20.01 Airway Fistulas. J. Thorac. Oncol. 14, S111–S112 (2019).
doi: 10.1016/j.jtho.2019.08.239
Fang, A. H., Chao, W. & Ecker, M. Review of Colonic Anastomotic Leakage and Prevention Methods. J. Clin. Med. 9, 4061 (2020).
doi: 10.3390/jcm9124061 pubmed: 33339209 pmcid: 7765607
Epstein, A. K., Wong, T.-S., Belisle, R. A., Boggs, E. M. & Aizenberg, J. Liquid-infused structured surfaces with exceptional anti-biofouling performance. Proc. Natl Acad. Sci. 109, 13182–13187 (2012).
doi: 10.1073/pnas.1201973109 pubmed: 22847405 pmcid: 3421179
Bao, G. et al. Liquid-infused microstructured bioadhesives halt non-compressible hemorrhage. Nat. Commun. 13, 1–14 (2022).
doi: 10.1038/s41467-022-32803-1
Li, S., Cong, Y. & Fu, J. Tissue adhesive hydrogel bioelectronics. J. Mater. Chem. B 9, 4423–4443 (2021).
doi: 10.1039/D1TB00523E pubmed: 33908586
Liu, X. et al. Controlling energy dissipation during deformation by selection of the hard-segment component for thermoplastic polyurethanes. Ind. Eng. Chem. Res. 61, 8821–8831 (2022).
doi: 10.1021/acs.iecr.2c01018

Auteurs

Sarah J Wu (SJ)

Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.

Jingjing Wu (J)

Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.

Samuel J Kaser (SJ)

Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.

Heejung Roh (H)

Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.

Ruth D Shiferaw (RD)

Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.

Hyunwoo Yuk (H)

Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA. hyunwooyuk@sanaheal.com.
SanaHeal, Inc., Cambridge, MA, USA. hyunwooyuk@sanaheal.com.

Xuanhe Zhao (X)

Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA. zhaox@mit.edu.
Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA. zhaox@mit.edu.

Classifications MeSH