Rotator cuff tears.


Journal

Nature reviews. Disease primers
ISSN: 2056-676X
Titre abrégé: Nat Rev Dis Primers
Pays: England
ID NLM: 101672103

Informations de publication

Date de publication:
08 Feb 2024
Historique:
accepted: 08 01 2024
medline: 9 2 2024
pubmed: 9 2 2024
entrez: 8 2 2024
Statut: epublish

Résumé

Rotator cuff tears are the most common upper extremity condition seen by primary care and orthopaedic surgeons, with a spectrum ranging from tendinopathy to full-thickness tears with arthritic change. Some tears are traumatic, but most rotator cuff problems are degenerative. Not all tears are symptomatic and not all progress, and many patients in whom tears become more extensive do not experience symptom worsening. Hence, a standard algorithm for managing patients is challenging. The pathophysiology of rotator cuff tears is complex and encompasses an interplay between the tendon, bone and muscle. Rotator cuff tears begin as degenerative changes within the tendon, with matrix disorganization and inflammatory changes. Subsequently, tears progress to partial-thickness and then full-thickness tears. Muscle quality, as evidenced by the overall size of the muscle and intramuscular fatty infiltration, also influences symptoms, tear progression and the outcomes of surgery. Treatment depends primarily on symptoms, with non-operative management sufficient for most patients with rotator cuff problems. Modern arthroscopic repair techniques have improved recovery, but outcomes are still limited by a lack of understanding of how to improve tendon to bone healing in many patients.

Identifiants

pubmed: 38332156
doi: 10.1038/s41572-024-00492-3
pii: 10.1038/s41572-024-00492-3
doi:

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

8

Informations de copyright

© 2024. Springer Nature Limited.

Références

Gray, M., Wallace, A. & Aldridge, S. Assessment of shoulder pain for non-specialists. BMJ 355, i5783 (2016).
pubmed: 27927638 doi: 10.1136/bmj.i5783
Rugg, C. M., Gallo, R. A., Craig, E. V. & Feeley, B. T. The pathogenesis and management of cuff tear arthropathy. J. Shoulder Elbow Surg. 27, 2271–2283 (2018).
pubmed: 30268586 doi: 10.1016/j.jse.2018.07.020
Millar, N. L. et al. Tendinopathy. Nat. Rev. Dis. Primers 7, 1 (2021).
pubmed: 33414454 doi: 10.1038/s41572-020-00234-1
Keener, J. D. et al. Patterns of tear progression for asymptomatic degenerative rotator cuff tears. J. Shoulder Elbow Surg. 24, 1845–1851 (2015).
pubmed: 26589385 pmcid: 5491331 doi: 10.1016/j.jse.2015.08.038
Keener, J. D. et al. A prospective evaluation of survivorship of asymptomatic degenerative rotator cuff tears. J. Bone Joint Surg. Am. 97, 89–98 (2015).
pubmed: 25609434 pmcid: 4296477 doi: 10.2106/JBJS.N.00099
Nie, D., Zhou, Y., Wang, W., Zhang, J. & Wang, J. H. Mechanical overloading induced-activation of mTOR signaling in tendon stem/progenitor cells contributes to tendinopathy development. Front. Cell Dev. Biol. 9, 687856 (2021).
pubmed: 34322484 pmcid: 8311934 doi: 10.3389/fcell.2021.687856
Gladstone, J. N., Bishop, J. Y., Lo, I. K. & Flatow, E. L. Fatty infiltration and atrophy of the rotator cuff do not improve after rotator cuff repair and correlate with poor functional outcome. Am. J. Sports Med. 35, 719–728 (2007).
pubmed: 17337727 doi: 10.1177/0363546506297539
Davies, M. R. et al. Rotator cuff tear size regulates fibroadipogenic progenitor number and gene expression profile in the supraspinatus independent of patient age. Am. J. Sports Med. 50, 208–215 (2022).
pubmed: 34779676 doi: 10.1177/03635465211054512
Feeley, B. T. et al. Human rotator cuff tears have an endogenous, inducible stem cell source capable of improving muscle quality and function after rotator cuff repair. Am. J. Sports Med. 48, 2660–2668 (2020).
pubmed: 32730704 pmcid: 9262007 doi: 10.1177/0363546520935855
Yanik, E. L., Chamberlain, A. M. & Keener, J. D. Trends in rotator cuff repair rates and comorbidity burden among commercially insured patients younger than the age of 65 years, United States 2007-2016. JSES Rev. Rep. Tech. 1, 309–316 (2021).
pubmed: 35812174 pmcid: 9267869
Keener, J. D., Steger-May, K., Stobbs, G. & Yamaguchi, K. Asymptomatic rotator cuff tears: patient demographics and baseline shoulder function. J. Shoulder Elbow Surg. 19, 1191–1198 (2010).
pubmed: 21030274 pmcid: 3725777 doi: 10.1016/j.jse.2010.07.017
Hinsley, H., Ganderton, C., Arden, N. K. & Carr, A. J. Prevalence of rotator cuff tendon tears and symptoms in a Chingford general population cohort, and the resultant impact on UK health services: a cross-sectional observational study. BMJ Open 12, e059175 (2022).
pubmed: 36100305 pmcid: 9472112 doi: 10.1136/bmjopen-2021-059175
Yamamoto, A. et al. Prevalence and risk factors of a rotator cuff tear in the general population. J. Shoulder Elbow Surg. 19, 116–120 (2010).
pubmed: 19540777 doi: 10.1016/j.jse.2009.04.006
Minagawa, H. et al. Prevalence of symptomatic and asymptomatic rotator cuff tears in the general population: from mass-screening in one village. J. Orthop. 10, 8–12 (2013).
pubmed: 24403741 pmcid: 3768248 doi: 10.1016/j.jor.2013.01.008
Keener, J. D., Patterson, B. M., Orvets, N. & Chamberlain, A. M. Degenerative rotator cuff tears: refining surgical indications based on natural history data. J. Am. Acad. Orthop. Surg. 27, 156–165 (2019).
pubmed: 30335631 pmcid: 6389433 doi: 10.5435/JAAOS-D-17-00480
Kim, H. M. et al. Relationship of tear size and location to fatty degeneration of the rotator cuff. J. Bone Joint Surg. Am. 92, 829 (2010).
pubmed: 20360505 pmcid: 2842942 doi: 10.2106/JBJS.H.01746
Yamaguchi, K. et al. The demographic and morphological features of rotator cuff disease. A comparison of asymptomatic and symptomatic shoulders. J. Bone Joint Surg. Am. 88, 1699–1704 (2006).
pubmed: 16882890 doi: 10.2106/JBJS.E.00835
Mall, N. A. et al. Symptomatic progression of asymptomatic rotator cuff tears: a prospective study of clinical and sonographic variables. J. Bone Joint Surg. Am. 92, 2623–2633 (2010).
pubmed: 21084574 pmcid: 2970889 doi: 10.2106/JBJS.I.00506
Yamaguchi, K. et al. Natural history of asymptomatic rotator cuff tears: a longitudinal analysis of asymptomatic tears detected sonographically. J. Shoulder Elbow Surg. 10, 199–203 (2001).
pubmed: 11408898 doi: 10.1067/mse.2001.113086
Teunis, T., Lubberts, B., Reilly, B. T. & Ring, D. A systematic review and pooled analysis of the prevalence of rotator cuff disease with increasing age. J. Shoulder Elbow Surg. 23, 1913–1921 (2014).
pubmed: 25441568 doi: 10.1016/j.jse.2014.08.001
Harvie, P. et al. Genetic influences in the aetiology of tears of the rotator cuff. Sibling risk of a full-thickness tear. J. Bone Joint Surg. Br. 86, 696–700 (2004).
pubmed: 15274266 doi: 10.1302/0301-620X.86B5.14747
Gwilym, S. E. et al. Genetic influences in the progression of tears of the rotator cuff. J. Bone Joint Surg. Br. 91, 915–917 (2009).
pubmed: 19567856 doi: 10.1302/0301-620X.91B7.22353
Zhao, J. et al. Risk factors for supraspinatus tears: a meta-analysis of observational studies. Orthop. J. Sports Med. 9, 23259671211042826 (2021).
pubmed: 34660827 pmcid: 8516389 doi: 10.1177/23259671211042826
Tashjian, R. Z., Granger, E. K., Farnham, J. M., Cannon-Albright, L. A. & Teerlink, C. C. Genome-wide association study for rotator cuff tears identifies two significant single-nucleotide polymorphisms. J. Shoulder Elbow Surg. 25, 174–179 (2016).
pubmed: 26350878 doi: 10.1016/j.jse.2015.07.005
Tashjian, R. Z., Kim, S. K., Roche, M. D., Jones, K. B. & Teerlink, C. C. Genetic variants associated with rotator cuff tearing utilizing multiple population-based genetic resources. J. Shoulder Elbow Surg. 30, 520–531 (2021).
pubmed: 32663566 doi: 10.1016/j.jse.2020.06.036
Yanik, E. L. et al. Identification of a novel genetic marker for risk of degenerative rotator cuff disease surgery in the UK biobank. J. Bone Joint Surg. Am. 103, 1259–1267 (2021).
pubmed: 33979311 doi: 10.2106/JBJS.20.01474
Kim, S. K., Nguyen, C., Jones, K. B. & Tashjian, R. Z. A genome-wide association study for shoulder impingement and rotator cuff disease. J. Shoulder Elbow Surg. 30, 2134–2145 (2021).
pubmed: 33482370 doi: 10.1016/j.jse.2020.11.025
Yoshida, K. et al. Association of superoxide-induced oxidative stress with rotator cuff tears in human patients. J. Orthop. Res. 38, 212–218 (2020).
pubmed: 31520427 doi: 10.1002/jor.24472
Zhao, J. et al. What factors are associated with symptomatic rotator cuff tears: a meta-analysis. Clin. Orthop. Relat. Res. 480, 96–105 (2022).
pubmed: 34424222 doi: 10.1097/CORR.0000000000001949
Huang, S. W. et al. Autoimmune connective tissue diseases and the risk of rotator cuff repair surgery: a population-based retrospective cohort study. BMJ Open 9, e023848 (2019).
pubmed: 30808669 pmcid: 6398915 doi: 10.1136/bmjopen-2018-023848
Huang, S. W. et al. Diabetes mellitus increases the risk of rotator cuff tear repair surgery: a population-based cohort study. J. Diabetes Complications 30, 1473–1477 (2016).
pubmed: 27600100 doi: 10.1016/j.jdiacomp.2016.07.015
Huang, S. W., Wu, C. W., Lin, L. F., Liou, T. H. & Lin, H. W. Gout can increase the risk of receiving rotator cuff tear repair surgery. Am. J. Sports Med. 45, 2355–2363 (2017).
pubmed: 28486089 doi: 10.1177/0363546517704843
Mandalia, K. et al. Social determinants of health influence clinical outcomes of patients undergoing rotator cuff repair: a systematic review. J. Shoulder Elbow Surg. 32, 419–434 (2023).
pubmed: 36252786 doi: 10.1016/j.jse.2022.09.007
Chung, S. W. et al. Altered gene and protein expressions in torn rotator cuff tendon tissues in diabetic patients. Arthroscopy 33, 518–526 e1 (2017).
pubmed: 27789071 doi: 10.1016/j.arthro.2016.08.017
Yeom, J. W. et al. Postoperative HbA1c level as a predictor of rotator cuff integrity after arthroscopic rotator cuff repair in patients with type 2 diabetes. Orthop. J. Sports Med. 11, 23259671221145987 (2023).
pubmed: 36814763 pmcid: 9940196 doi: 10.1177/23259671221145987
Kim, M. S., Rhee, S. M. & Cho, N. S. Increased HbA1c levels in diabetics during the postoperative 3-6 months after rotator cuff repair correlated with increased retear rates. Arthroscopy 39, 176–182 (2023).
pubmed: 36049586 doi: 10.1016/j.arthro.2022.08.021
Wilde, B. et al. Abnormal laboratory values for metabolic and hormonal syndromes are prevalent among patients undergoing rotator cuff repair. Arthrosc. Sports Med. Rehabil. 5, e695–e701 (2023).
pubmed: 37388879 pmcid: 10300579 doi: 10.1016/j.asmr.2023.03.011
Smith, K. M. et al. The effect of sex hormone deficiency on the incidence of rotator cuff repair: analysis of a large insurance database. J. Bone Joint Surg. Am. 104, 774–779 (2022).
pubmed: 35506951 doi: 10.2106/JBJS.21.00103
Soslowsky, L. J. et al. Neer Award 1999. Overuse activity injures the supraspinatus tendon in an animal model: a histologic and biomechanical study. J. Shoulder Elbow Surg. 9, 79–84 (2000).
pubmed: 10810684 doi: 10.1067/mse.2000.101962
Carpenter, J. E., Flanagan, C. L., Thomopoulos, S., Yian, E. H. & Soslowsky, L. J. The effects of overuse combined with intrinsic or extrinsic alterations in an animal model of rotator cuff tendinosis. Am. J. Sports Med. 26, 801–807 (1998).
pubmed: 9850782 doi: 10.1177/03635465980260061101
Keener, J. D. et al. Shoulder activity level and progression of degenerative cuff disease. J. Shoulder Elbow Surg. 26, 1500–1507 (2017).
pubmed: 28734718 doi: 10.1016/j.jse.2017.05.023
Teerlink, C. C., Cannon-Albright, L. A. & Tashjian, R. Z. Significant association of full-thickness rotator cuff tears and estrogen-related receptor-β (ESRRB). J. Shoulder Elbow Surg. 24, e31–e35 (2015).
pubmed: 25219474 doi: 10.1016/j.jse.2014.06.052
Torchia, M. T. et al. Evaluation of survivorship of asymptomatic degenerative rotator cuff tears in patients 65 years and younger: a prospective analysis with long-term follow-up. J. Shoulder Elbow Surg. 32, 1432–1444 (2023).
pubmed: 37024038 doi: 10.1016/j.jse.2023.03.008
Miranda, H., Viikari-Juntura, E., Heistaro, S., Heliovaara, M. & Riihimaki, H. A population study on differences in the determinants of a specific shoulder disorder versus nonspecific shoulder pain without clinical findings. Am. J. Epidemiol. 161, 847–855 (2005).
pubmed: 15840617 doi: 10.1093/aje/kwi112
Svendsen, S. W. et al. Work above shoulder level and degenerative alterations of the rotator cuff tendons: a magnetic resonance imaging study. Arthritis Rheum. 50, 3314–3322 (2004).
pubmed: 15476229 doi: 10.1002/art.20495
Dalboge, A., Frost, P., Andersen, J. H. & Svendsen, S. W. Cumulative occupational shoulder exposures and surgery for subacromial impingement syndrome: a nationwide Danish cohort study. Occup. Environ. Med. 71, 750–756 (2014).
pubmed: 25085767 doi: 10.1136/oemed-2014-102161
Dalboge, A., Frost, P., Andersen, J. H. & Svendsen, S. W. Surgery for subacromial impingement syndrome in relation to occupational exposures, lifestyle factors and diabetes mellitus: a nationwide nested case-control study. Occup. Environ Med. 74, 728–736 (2017).
pubmed: 28490661 doi: 10.1136/oemed-2016-104272
Meyers, A. R. et al. Work-related risk factors for rotator cuff syndrome in a prospective study of manufacturing and healthcare workers. Hum. Factors 65, 419–434 (2023).
pubmed: 34148475 doi: 10.1177/00187208211022122
Yanik, E. L. et al. Occupational demands associated with rotator cuff disease surgery in the UK Biobank. Scand. J. Work. Environ Health 49, 53–63 (2023).
pubmed: 36228192 doi: 10.5271/sjweh.4062
Maman, E. et al. Outcome of nonoperative treatment of symptomatic rotator cuff tears monitored by magnetic resonance imaging. J. Bone Joint Surg. Am. 91, 1898–1906 (2009).
pubmed: 19651947 doi: 10.2106/JBJS.G.01335
Chalmers, P. N. et al. Does the critical shoulder angle correlate with rotator cuff tear progression? Clin. Orthop. Relat. Res. 475, 1608–1617 (2017).
pubmed: 28120293 pmcid: 5406338 doi: 10.1007/s11999-017-5249-1
Rojas Lievano, J., Bautista, M., Woodcock, S., Fierro, G. & Gonzalez, J. C. Controversy on the association of the critical shoulder angle and the development of degenerative rotator cuff tears: is there a true association? A meta-analytical approach. Am. J. Sports Med. 50, 2552–2560 (2022).
pubmed: 34432551 doi: 10.1177/03635465211027305
Jeong, J. Y. et al. Location of rotator cuff tear initiation: a magnetic resonance imaging study of 191 shoulders. Am. J. Sports Med. 46, 649–655 (2018).
pubmed: 29314867 doi: 10.1177/0363546517748925
Lohr, J. F. & Uhthoff, H. K. The microvascular pattern of the supraspinatus tendon. Clin. Orthop. Relat. Res. 254, 35–38 (1990).
doi: 10.1097/00003086-199005000-00005
Burkhart, S. S., Esch, J. C. & Jolson, R. S. The rotator crescent and rotator cable: an anatomic description of the shoulder’s “suspension bridge”. Arthroscopy 9, 611–616 (1993).
pubmed: 8305096 doi: 10.1016/S0749-8063(05)80496-7
Mesiha, M. M., Derwin, K. A., Sibole, S. C., Erdemir, A. & McCarron, J. A. The biomechanical relevance of anterior rotator cuff cable tears in a cadaveric shoulder model. J. Bone Joint Surg. Am. 95, 1817–1824 (2013).
pubmed: 24132354 doi: 10.2106/JBJS.L.00784
Kim, H. M. et al. Location and initiation of degenerative rotator cuff tears: an analysis of three hundred and sixty shoulders. J. Bone Joint Surg. Am. 92, 1088–1096 (2010).
pubmed: 20439653 pmcid: 2945926 doi: 10.2106/JBJS.I.00686
Namdari, S. et al. Characteristics of small to medium-sized rotator cuff tears with and without disruption of the anterior supraspinatus tendon. J. Shoulder Elbow Surg. 23, 20–27 (2014).
pubmed: 23937927 doi: 10.1016/j.jse.2013.05.015
Moosmayer, S., Tariq, R., Stiris, M. & Smith, H. J. The natural history of asymptomatic rotator cuff tears: a three-year follow-up of fifty cases. J. Bone Joint Surg. Am. 95, 1249–1255 (2013).
pubmed: 23864172 doi: 10.2106/JBJS.L.00185
Safran, O., Schroeder, J., Bloom, R., Weil, Y. & Milgrom, C. Natural history of nonoperatively treated symptomatic rotator cuff tears in patients 60 years old or younger. Am. J. Sports Med. 39, 710–714 (2011).
pubmed: 21310940 doi: 10.1177/0363546510393944
Hebert-Davies, J. et al. Progression of fatty muscle degeneration in atraumatic rotator cuff tears. J. Bone Joint Surg. Am. 99, 832–839 (2017).
pubmed: 28509823 pmcid: 5426399 doi: 10.2106/JBJS.16.00030
Neer, C. S.2nd Anterior acromioplasty for the chronic impingement syndrome in the shoulder: a preliminary report. J. Bone Joint Surg. Am. 54, 41–50 (1972).
pubmed: 5054450 doi: 10.2106/00004623-197254010-00003
Overbeek, C. L. et al. Altered cocontraction patterns of humeral head depressors in patients with subacromial pain syndrome: a cross-sectional electromyography analysis. Clin. Orthop. Relat. Res. 477, 1862–1868 (2019).
pubmed: 31107319 pmcid: 7000021 doi: 10.1097/CORR.0000000000000745
Overbeek, C. L. et al. Increased co-contraction of arm adductors is associated with a favorable course in subacromial pain syndrome. J. Shoulder Elbow Surg. 27, 1925–1931 (2018).
pubmed: 30243903 doi: 10.1016/j.jse.2018.06.015
Levy, B. J. et al. Subacromial bursal tissue and surrounding matrix of patients undergoing rotator cuff repair contains progenitor cells. Arthroscopy 38, 1115–1123 (2022).
pubmed: 34767955 doi: 10.1016/j.arthro.2021.10.029
Kriscenski, D. E. et al. Characterization of murine subacromial bursal-derived cells. Connect. Tissue Res. 63, 287–297 (2022).
pubmed: 34042553 doi: 10.1080/03008207.2021.1917556
Morikawa, D. et al. Analysis of patient factors affecting in vitro characteristics of subacromial bursal connective tissue progenitor cells during rotator cuff repair. J. Clin. Med. 10, 4006 (2021).
pubmed: 34501453 pmcid: 8432549 doi: 10.3390/jcm10174006
Marshall, B. P. et al. The subacromial bursa is a key regulator of the rotator cuff and a new therapeutic target for improving repair. Preprint at bioRxiv https://doi.org/10.1101/2023.07.01.547347 (2023).
McFarland, E. G. et al. Impingement is not impingement: the case for calling it “rotator cuff disease”. Muscles Ligaments Tendons J. 3, 196–200 (2013).
pubmed: 24367779 pmcid: 3838328 doi: 10.32098/mltj.03.2013.11
Maffulli, N., Khan, K. M. & Puddu, G. Overuse tendon conditions: time to change a confusing terminology. Arthroscopy 14, 840–843 (1998).
pubmed: 9848596 doi: 10.1016/S0749-8063(98)70021-0
Sharma, P. & Maffulli, N. Tendon injury and tendinopathy: healing and repair. J. Bone Joint Surg. Am. 87, 187–202 (2005).
pubmed: 15634833
D’Addona, A., Maffulli, N., Formisano, S. & Rosa, D. Inflammation in tendinopathy. Surgeon 15, 297–302 (2017).
pubmed: 28596062 doi: 10.1016/j.surge.2017.04.004
Dakin, S. G. et al. Inflammation activation and resolution in human tendon disease. Sci. Transl. Med. 7, 311ra173 (2015).
pubmed: 26511510 pmcid: 4883654 doi: 10.1126/scitranslmed.aac4269
Akbar, M. et al. Single cell and spatial transcriptomics in human tendon disease indicate dysregulated immune homeostasis. Ann. Rheum. Dis. 80, 1494–1497 (2021).
pubmed: 34001518 doi: 10.1136/annrheumdis-2021-220256
Millar, N. L. et al. IL-17A mediates inflammatory and tissue remodelling events in early human tendinopathy. Sci. Rep. 6, 27149 (2016).
pubmed: 27263531 pmcid: 4893609 doi: 10.1038/srep27149
Franklin, S. L. et al. Up-regulation of glutamate in painful human supraspinatus tendon tears. Am. J. Sports Med. 42, 1955–1962 (2014).
pubmed: 24872365 doi: 10.1177/0363546514532754
Dean, B. J., Snelling, S. J., Dakin, S. G., Javaid, M. K. & Carr, A. J. In vitro effects of glutamate and N-methyl-D-aspartate receptor (NMDAR) antagonism on human tendon derived cells. J. Orthop. Res. 33, 1515–1522 (2015).
pubmed: 26041147 doi: 10.1002/jor.22923
Abate, M. et al. Oxidative stress and abnormal tendon sonographic features in elite soccer players (a pilot study). Rev. Bras. Ortop. 56, 432–437 (2021).
Zapp, C. et al. Mechanoradicals in tensed tendon collagen as a source of oxidative stress. Nat. Commun. 11, 2315 (2020).
pubmed: 32385229 pmcid: 7210969 doi: 10.1038/s41467-020-15567-4
Liang, Y. et al. Quercetin reduces tendon adhesion in rat through suppression of oxidative stress. BMC Musculoskelet. Disord. 21, 608 (2020).
pubmed: 32917186 pmcid: 7488677 doi: 10.1186/s12891-020-03618-2
Yuan, T. et al. Proteomic analysis reveals rotator cuff injury caused by oxidative stress. Ther. Adv. Chronic Dis. 12, 2040622320987057 (2021).
pubmed: 33796243 pmcid: 7975570 doi: 10.1177/2040622320987057
Lui, P. P. Y., Zhang, X., Yao, S., Sun, H. & Huang, C. Roles of oxidative stress in acute tendon injury and degenerative tendinopathy – a target for intervention. Int. J. Mol. Sci. 23, 3571 (2022).
pubmed: 35408931 pmcid: 8998577 doi: 10.3390/ijms23073571
Wunderli, S. L. et al. Tendon response to matrix unloading is determined by the patho-physiological niche. Matrix Biol. 89, 11–26 (2020).
pubmed: 31917255 doi: 10.1016/j.matbio.2019.12.003
Joshi, S. K. et al. mTOR regulates fatty infiltration through SREBP-1 and PPARγ after a combined massive rotator cuff tear and suprascapular nerve injury in rats. J. Orthop. Res. 31, 724–730 (2013).
pubmed: 23239524 doi: 10.1002/jor.22254
Lui, P. P. Y. Tendinopathy in diabetes mellitus patients – epidemiology, pathogenesis, and management. Scand. J. Med. Sci. Sports 27, 776–787 (2017).
pubmed: 28106286 doi: 10.1111/sms.12824
Pouzaud, F. et al. In vitro discrimination of fluoroquinolones toxicity on tendon cells: involvement of oxidative stress. J. Pharmacol. Exp. Ther. 308, 394–402 (2004).
pubmed: 14569066 doi: 10.1124/jpet.103.057984
Lehner, C. et al. Bupivacaine induces short-term alterations and impairment in rat tendons. Am. J. Sports Med. 41, 1411–1418 (2013).
pubmed: 23661215 doi: 10.1177/0363546513485406
Sajithlal, G. B., Chithra, P. & Chandrakasan, G. Effect of curcumin on the advanced glycation and cross-linking of collagen in diabetic rats. Biochem. Pharmacol. 56, 1607–1614 (1998).
pubmed: 9973181 doi: 10.1016/S0006-2952(98)00237-8
Lansdown, D. A. et al. Preoperative IDEAL (Iterative Decomposition of Echoes of Asymmetrical Length) magnetic resonance imaging rotator cuff muscle fat fractions are associated with rotator cuff repair outcomes. J. Shoulder Elbow Surg. 28, 1936–1941 (2019).
pubmed: 31371160 doi: 10.1016/j.jse.2019.05.018
Meyer, G. A., Thomopoulos, S., Abu-Amer, Y. & Shen, K. C. Tenotomy-induced muscle atrophy is sex-specific and independent of NFκB. Elife 11, e82016 (2022).
pubmed: 36508247 pmcid: 9873255 doi: 10.7554/eLife.82016
Liu, X. et al. Evaluation of Akt/mTOR activity in muscle atrophy after rotator cuff tears in a rat model. J. Orthop. Res. 30, 1440–1446 (2012).
pubmed: 22378614 doi: 10.1002/jor.22096
Davies, M. R. et al. Rat rotator cuff muscle responds differently from hindlimb muscle to a combined tendon-nerve injury. J. Orthop. Res. 33, 1046–1053 (2015).
pubmed: 25974842 doi: 10.1002/jor.22864
Zheng, R. et al. Leucine attenuates muscle atrophy and autophagosome formation by activating PI3K/AKT/mTOR signaling pathway in rotator cuff tears. Cell Tissue Res. 378, 113–125 (2019).
pubmed: 31020406 doi: 10.1007/s00441-019-03021-x
Valencia, A. P., Iyer, S. R., Spangenburg, E. E., Gilotra, M. N. & Lovering, R. M. Impaired contractile function of the supraspinatus in the acute period following a rotator cuff tear. BMC Musculoskelet. Disord. 18, 436 (2017).
pubmed: 29121906 pmcid: 5679320 doi: 10.1186/s12891-017-1789-5
Jackman, R. W., Cornwell, E. W., Wu, C. L. & Kandarian, S. C. Nuclear factor-κB signalling and transcriptional regulation in skeletal muscle atrophy. Exp. Physiol. 98, 19–24 (2013).
pubmed: 22848079 doi: 10.1113/expphysiol.2011.063321
Davies, M. R. et al. Muscle stem cell activation in a mouse model of rotator cuff injury. J. Orthop. Res. 36, 1370–1376 (2018).
pubmed: 28786534 pmcid: 5803476 doi: 10.1002/jor.23679
Brack, A. S. & Munoz-Canoves, P. The ins and outs of muscle stem cell aging. Skelet. Muscle 6, 1 (2016).
pubmed: 26783424 pmcid: 4716636 doi: 10.1186/s13395-016-0072-z
Barruet, E. et al. Functionally heterogeneous human satellite cells identified by single cell RNA sequencing. Elife 9, e51576 (2020).
pubmed: 32234209 pmcid: 7164960 doi: 10.7554/eLife.51576
Hwang, A. B. & Brack, A. S. Muscle stem cells and aging. Curr. Top. Dev. Biol. 126, 299–322 (2018).
pubmed: 29305003 doi: 10.1016/bs.ctdb.2017.08.008
Brack, A. S. et al. Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis. Science 317, 807–810 (2007).
pubmed: 17690295 doi: 10.1126/science.1144090
Brack, A. S. & Rando, T. A. Intrinsic changes and extrinsic influences of myogenic stem cell function during aging. Stem Cell Rev. 3, 226–237 (2007).
pubmed: 17917136 doi: 10.1007/s12015-007-9000-2
Gerber, C., Meyer, D. C., Schneeberger, A. G., Hoppeler, H. & von Rechenberg, B. Effect of tendon release and delayed repair on the structure of the muscles of the rotator cuff: an experimental study in sheep. J. Bone Joint Surg. Am. 86, 1973–1982 (2004).
pubmed: 15342760 doi: 10.2106/00004623-200409000-00016
Chung, S. W. et al. Effect of hypercholesterolemia on fatty infiltration and quality of tendon-to-bone healing in a rabbit model of a chronic rotator cuff tear: electrophysiological, biomechanical, and histological analyses. Am. J. Sports Med. 44, 1153–1164 (2016).
pubmed: 26912283 doi: 10.1177/0363546515627816
Joe, A. W. et al. Muscle injury activates resident fibro/adipogenic progenitors that facilitate myogenesis. Nat. Cell Biol. 12, 153–163 (2010).
pubmed: 20081841 pmcid: 4580288 doi: 10.1038/ncb2015
Uezumi, A. et al. Fibrosis and adipogenesis originate from a common mesenchymal progenitor in skeletal muscle. J. Cell Sci. 124, 3654–3664 (2011).
pubmed: 22045730 doi: 10.1242/jcs.086629
Uezumi, A., Fukada, S., Yamamoto, N., Takeda, S. & Tsuchida, K. Mesenchymal progenitors distinct from satellite cells contribute to ectopic fat cell formation in skeletal muscle. Nat. Cell Biol. 12, 143–152 (2010).
pubmed: 20081842 doi: 10.1038/ncb2014
Wosczyna, M. N. et al. Targeting microRNA-mediated gene repression limits adipogenic conversion of skeletal muscle mesenchymal stromal cells. Cell Stem Cell 28, 1323–1334.e8 (2021).
pubmed: 33945794 pmcid: 8254802 doi: 10.1016/j.stem.2021.04.008
Wang, X. et al. Diverse effector and regulatory functions of fibro/adipogenic progenitors during skeletal muscle fibrosis in muscular dystrophy. iScience 26, 105775 (2023).
pubmed: 36594034 doi: 10.1016/j.isci.2022.105775
Consalvi, S. et al. Determinants of epigenetic resistance to HDAC inhibitors in dystrophic fibro-adipogenic progenitors. EMBO Rep. 23, e54721 (2022).
pubmed: 35383427 pmcid: 9171680 doi: 10.15252/embr.202254721
Theret, M., Rossi, F. M. V. & Contreras, O. Evolving roles of muscle-resident fibro-adipogenic progenitors in health, regeneration, neuromuscular disorders, and aging. Front. Physiol. 12, 673404 (2021).
pubmed: 33959042 pmcid: 8093402 doi: 10.3389/fphys.2021.673404
Moratal, C., Arrighi, N., Dechesne, C. A. & Dani, C. Control of muscle fibro-adipogenic progenitors by myogenic lineage is altered in aging and Duchenne muscular dystrophy. Cell Physiol. Biochem. 53, 1029–1045 (2019).
pubmed: 31865646 doi: 10.33594/000000196
Lee, C. et al. Rotator cuff fibro-adipogenic progenitors demonstrate highest concentration, proliferative capacity, and adipogenic potential across muscle groups. J. Orthop. Res. 38, 1113–1121 (2020).
pubmed: 31799698 doi: 10.1002/jor.24550
Davies, M. R. et al. TGF-β small molecule inhibitor SB431542 reduces rotator cuff muscle fibrosis and fatty infiltration by promoting fibro/adipogenic progenitor apoptosis. PLoS ONE 11, e0155486 (2016).
pubmed: 27186977 pmcid: 4871364 doi: 10.1371/journal.pone.0155486
Shirasawa, H. et al. Retinoic acid receptor agonists suppress muscle fatty infiltration in mice. Am. J. Sports Med. 49, 332–339 (2021).
pubmed: 33428447 doi: 10.1177/0363546520984122
Itoigawa, Y., Kishimoto, K. N., Sano, H., Kaneko, K. & Itoi, E. Molecular mechanism of fatty degeneration in rotator cuff muscle with tendon rupture. J. Orthop. Res. 29, 861–866 (2011).
pubmed: 21246616 doi: 10.1002/jor.21317
Davis, M. E. et al. Simvastatin reduces fibrosis and protects against muscle weakness after massive rotator cuff tear. J. Shoulder Elbow Surg. 24, 280–287 (2015).
pubmed: 25213828 doi: 10.1016/j.jse.2014.06.048
Contreras, O., Rossi, F. M. V. & Theret, M. Origins, potency, and heterogeneity of skeletal muscle fibro-adipogenic progenitors – time for new definitions. Skelet. Muscle 11, 16 (2021).
pubmed: 34210364 pmcid: 8247239 doi: 10.1186/s13395-021-00265-6
Biferali, B., Proietti, D., Mozzetta, C. & Madaro, L. Fibro-adipogenic progenitors cross-talk in skeletal muscle: the social network. Front. Physiol. 10, 1074 (2019).
pubmed: 31496956 pmcid: 6713247 doi: 10.3389/fphys.2019.01074
Malecova, B. et al. Dynamics of cellular states of fibro-adipogenic progenitors during myogenesis and muscular dystrophy. Nat. Commun. 9, 3670 (2018).
pubmed: 30202063 pmcid: 6131350 doi: 10.1038/s41467-018-06068-6
Garcia, S. M. et al. Distinct human stem cell subpopulations drive adipogenesis and fibrosis in musculoskeletal injury. Preprint at bioRxiv https://doi.org/10.1101/2023.07.28.551038 (2023).
Davies, M. R. et al. Muscle-derived beige adipose precursors secrete promyogenic exosomes that treat rotator cuff muscle degeneration in mice and are identified in humans by single-cell RNA sequencing. Am. J. Sports Med. 50, 2247–2257 (2022).
pubmed: 35604307 doi: 10.1177/03635465221095568
Wang, Z. et al. β
pubmed: 32599287 doi: 10.1016/j.jse.2020.06.006
Wang, Z. et al. Intramuscular brown fat activation decreases muscle atrophy and fatty infiltration and improves gait after delayed rotator cuff repair in mice. Am. J. Sports Med. 48, 1590–1600 (2020).
pubmed: 32282238 doi: 10.1177/0363546520910421
Lee, C. et al. Beige FAPs transplantation improves muscle quality and shoulder function after massive rotator cuff tears. J. Orthop. Res. 38, 1159–1166 (2020).
pubmed: 31808573 doi: 10.1002/jor.24558
Bunker, D. L., Ilie, V., Ilie, V. & Nicklin, S. Tendon to bone healing and its implications for surgery. Muscles Ligaments Tendons J. 4, 343–350 (2014).
pubmed: 25489553 pmcid: 4241426 doi: 10.32098/mltj.03.2014.13
Tresoldi, I. et al. Tendon’s ultrastructure. Muscles Ligaments Tendons J. 3, 2–6 (2013).
pubmed: 23885339 pmcid: 3676160 doi: 10.32098/mltj.01.2013.02
Moser, H. L. et al. Cell lineage tracing and functional assessment of supraspinatus tendon healing in an acute repair murine model. J. Orthop. Res. 39, 1789–1799 (2021).
pubmed: 32497311 doi: 10.1002/jor.24769
Rodeo, S. A., Arnoczky, S. P., Torzilli, P. A., Hidaka, C. & Warren, R. F. Tendon-healing in a bone tunnel. A biomechanical and histological study in the dog. J. Bone Joint Surg. Am. 75, 1795–1803 (1993).
pubmed: 8258550 doi: 10.2106/00004623-199312000-00009
Rodeo, S. A., Suzuki, K., Deng, X. H., Wozney, J. & Warren, R. F. Use of recombinant human bone morphogenetic protein-2 to enhance tendon healing in a bone tunnel. Am. J. Sports Med. 27, 476–488 (1999).
pubmed: 10424218 doi: 10.1177/03635465990270041201
Hashimoto, Y., Yoshida, G., Toyoda, H. & Takaoka, K. Generation of tendon-to-bone interface “enthesis” with use of recombinant BMP-2 in a rabbit model. J. Orthop. Res. 25, 1415–1424 (2007).
pubmed: 17557323 doi: 10.1002/jor.20447
Bedi, A. et al. The effect of matrix metalloproteinase inhibition on tendon-to-bone healing in a rotator cuff repair model. J. Shoulder Elbow Surg. 19, 384–391 (2010).
pubmed: 19800260 doi: 10.1016/j.jse.2009.07.010
Kovacevic, D. & Rodeo, S. A. Biological augmentation of rotator cuff tendon repair. Clin. Orthop. Relat. Res. 466, 622–633 (2008).
pubmed: 18264850 pmcid: 2505220 doi: 10.1007/s11999-007-0112-4
Lim, J. K. et al. Enhancement of tendon graft osteointegration using mesenchymal stem cells in a rabbit model of anterior cruciate ligament reconstruction. Arthroscopy 20, 899–910 (2004).
pubmed: 15525922 doi: 10.1016/S0749-8063(04)00653-X
Pill, S. G., Phillips, J., Kissenberth, M. J. & Hawkins, R. J. Decision making in massive rotator cuff tears. Instr. Course Lect. 61, 97–111 (2012).
pubmed: 22301225
Carter, A. N. & Erickson, S. M. Proximal biceps tendon rupture: primarily an injury of middle age. Phys. Sportsmed. 27, 95–101 (1999).
pubmed: 20086727 doi: 10.3810/psm.1999.06.888
Millar, N. L. et al. Frozen shoulder. Nat. Rev. Dis. Primers 8, 59 (2022).
pubmed: 36075904 doi: 10.1038/s41572-022-00386-2
Hegedus, E. J. et al. Which physical examination tests provide clinicians with the most value when examining the shoulder? Update of a systematic review with meta-analysis of individual tests. Br. J. Sports Med. 46, 964–978 (2012).
pubmed: 22773322 doi: 10.1136/bjsports-2012-091066
Hermans, J. et al. Does this patient with shoulder pain have rotator cuff disease? The rational clinical examination systematic review. JAMA 310, 837–847 (2013).
pubmed: 23982370 doi: 10.1001/jama.2013.276187
Alqunaee, M., Galvin, R. & Fahey, T. Diagnostic accuracy of clinical tests for subacromial impingement syndrome: a systematic review and meta-analysis. Arch. Phys. Med. Rehabil. 93, 229–236 (2012).
pubmed: 22289231 doi: 10.1016/j.apmr.2011.08.035
Micheroli, R. et al. Correlation of findings in clinical and high resolution ultrasonography examinations of the painful shoulder. J. Ultrason. 15, 29–44 (2015).
pubmed: 26674725 pmcid: 4579705 doi: 10.15557/JoU.2015.0003
Silva, L. et al. Accuracy of physical examination in subacromial impingement syndrome. Rheumatology 47, 679–683 (2008).
pubmed: 18375403 doi: 10.1093/rheumatology/ken101
Jain, N. B. et al. The diagnostic accuracy of special tests for rotator cuff tear: the ROW cohort study. Am. J. Phys. Med. Rehabil. 96, 176–183 (2017).
pubmed: 27386812 pmcid: 5218987 doi: 10.1097/PHM.0000000000000566
Schiefer, M. et al. Clinical diagnosis of subscapularis tendon tear using the bear hug semiological maneuver. Rev. Bras. Ortop. 47, 588–592 (2012).
pubmed: 27047870 doi: 10.1590/S0102-36162012000500008
Ernstbrunner, L. et al. Chronic pseudoparalysis needs to be distinguished from pseudoparesis: a structural and biomechanical analysis. Am. J. Sports Med. 49, 291–297 (2021).
pubmed: 33253014 doi: 10.1177/0363546520969858
Hamada, K., Yamanaka, K., Uchiyama, Y., Mikasa, T. & Mikasa, M. A radiographic classification of massive rotator cuff tear arthritis. Clin. Orthop. Relat. Res. 469, 2452 (2011).
pubmed: 21503787 pmcid: 3148384 doi: 10.1007/s11999-011-1896-9
van der Reijden, J. J. et al. The value of radiographic markers in the diagnostic work-up of rotator cuff tears, an arthroscopic correlated study. Skelet. Radiol. 49, 55–64 (2020).
doi: 10.1007/s00256-019-03251-8
Pearsall, A. W. et al. Radiographic findings associated with symptomatic rotator cuff tears. J. Shoulder Elbow Surg. 12, 122–127 (2003).
pubmed: 12700562 doi: 10.1067/mse.2003.19
Samilson, R. L. & Prieto, V. Dislocation arthropathy of the shoulder. J. Bone. Joint Surg. Am. 65, 456–460 (1983).
pubmed: 6833319 doi: 10.2106/00004623-198365040-00005
Brox, J., Lereim, P., Merckoll, E. & Finnanger, A. M. Radiographic classification of glenohumeral arthrosis. Acta Orthop. Scand. 74, 186–189 (2003).
pubmed: 12807327 doi: 10.1080/00016470310013932
Goutallier, D. et al. Acromio humeral distance less than six millimeter: its meaning in full-thickness rotator cuff tear. Orthop. Traumatol. Surg. Res. 97, 246–251 (2011).
pubmed: 21459063 doi: 10.1016/j.otsr.2011.01.010
Bahrs, C., Lingenfelter, E., Fischer, F., Walters, E. M. & Schnabel, M. Mechanism of injury and morphology of the greater tuberosity fracture. J. Shoulder Elbow Surg. 15, 140–147 (2006).
pubmed: 16517355 doi: 10.1016/j.jse.2005.07.004
Speed, C. A. & Hazleman, B. L. Calcific tendinitis of the shoulder. N. Engl. J. Med. 340, 1582–1584 (1999).
pubmed: 10332023 doi: 10.1056/NEJM199905203402011
Elsharkawi, M., Cakir, B., Reichel, H. & Kappe, T. Reliability of radiologic glenohumeral osteoarthritis classifications. J. Shoulder Elbow Surg. 22, 1063–1067 (2013).
pubmed: 23375877 doi: 10.1016/j.jse.2012.11.007
Smith, T. O., Daniell, H., Geere, J.-A., Toms, A. P. & Hing, C. B. The diagnostic accuracy of MRI for the detection of partial- and full-thickness rotator cuff tears in adults. Magn. Reson. Imaging 30, 336–346 (2012).
pubmed: 22260933 doi: 10.1016/j.mri.2011.12.008
Roy, J.-S. et al. Diagnostic accuracy of ultrasonography, MRI and MR arthrography in the characterisation of rotator cuff disorders: a systematic review and meta-analysis. Br. J. Sports Med. 49, 1316–1328 (2015).
pubmed: 25677796 doi: 10.1136/bjsports-2014-094148
Cofield, R. H. et al. Surgical repair of chronic rotator cuff tears. A prospective long-term study. J. Bone Joint Surg. Am. 83, 71–77 (2001).
pubmed: 11205861 doi: 10.2106/00004623-200101000-00010
Meyer, D. C., Wieser, K., Farshad, M. & Gerber, C. Retraction of supraspinatus muscle and tendon as predictors of success of rotator cuff repair. Am. J. Sports Med. 40, 2242–2247 (2012).
pubmed: 22926748 doi: 10.1177/0363546512457587
Jungmann, P. M. et al. Reliable semiquantitative whole‐joint MRI score for the shoulder joint: the Shoulder Osteoarthritis Severity (SOAS) score. J. Magn. Reson. Imaging 49, e152–e163 (2019).
pubmed: 30079543 doi: 10.1002/jmri.26251
Fuchs, B., Weishaupt, D., Zanetti, M., Hodler, J. & Gerber, C. Fatty degeneration of the muscles of the rotator cuff: assessment by computed tomography versus magnetic resonance imaging. J. Shoulder Elbow Surg. 8, 599–605 (1999).
pubmed: 10633896 doi: 10.1016/S1058-2746(99)90097-6
Burkhart, S. S., Barth, J. R., Richards, D. P., Zlatkin, M. B. & Larsen, M. Arthroscopic repair of massive rotator cuff tears with stage 3 and 4 fatty degeneration. Arthroscopy 23, 347–354 (2007).
pubmed: 17418325 doi: 10.1016/j.arthro.2006.12.012
Goutallier, D., Postel, J.-M., Bernageau, J., Lavau, L. & Voisin, M.-C. Fatty muscle degeneration in cuff ruptures: pre- and postoperative evaluation by CT scan. Clin. Orthop. Relat. Res. 304, 78–83 (1994).
doi: 10.1097/00003086-199407000-00014
Goutallier, D., Postel, J.-M., Gleyze, P., Leguilloux, P. & Van Driessche, S. Influence of cuff muscle fatty degeneration on anatomic and functional outcomes after simple suture of full-thickness tears. J. Shoulder Elbow Surg. 12, 550–554 (2003).
pubmed: 14671517 doi: 10.1016/S1058-2746(03)00211-8
Lippe, J. et al. Inter-rater agreement of the Goutallier, Patte, and Warner classification scores using preoperative magnetic resonance imaging in patients with rotator cuff tears. Arthroscopy 28, 154–159 (2012).
pubmed: 22019235 doi: 10.1016/j.arthro.2011.07.016
Schiefer, M. et al. Intraobserver and interobserver agreement of Goutallier classification applied to magnetic resonance images. J. Shoulder Elbow Surg. 24, 1314–1321 (2015).
pubmed: 25940380 doi: 10.1016/j.jse.2015.02.011
Slabaugh, M. A. et al. Interobserver and intraobserver reliability of the Goutallier classification using magnetic resonance imaging: proposal of a simplified classification system to increase reliability. Am. J. Sports Med. 40, 1728–1734 (2012).
pubmed: 22753846 doi: 10.1177/0363546512452714
Agten, C. A., Rosskopf, A. B., Gerber, C. & Pfirrmann, C. W. Quantification of early fatty infiltration of the rotator cuff muscles: comparison of multi-echo Dixon with single-voxel MR spectroscopy. Eur. Radiol. 26, 3719–3727 (2016).
pubmed: 26679183 doi: 10.1007/s00330-015-4144-y
Lansdown, D. A. et al. A prospective, quantitative evaluation of fatty infiltration before and after rotator cuff repair. Orthop. J. Sports Med. 5, 2325967117718537 (2017).
pubmed: 28781978 pmcid: 5521346 doi: 10.1177/2325967117718537
Lee, S. et al. Magnetic resonance rotator cuff fat fraction and its relationship with tendon tear severity and subject characteristics. J. Shoulder Elbow Surg. 24, 1442–1451 (2015).
pubmed: 25819731 doi: 10.1016/j.jse.2015.01.013
Nardo, L. et al. Quantitative assessment of fat infiltration in the rotator cuff muscles using water–fat MRI. J. Magn. Reson. Imaging 39, 1178–1185 (2014).
pubmed: 24115490 doi: 10.1002/jmri.24278
Kwon, J., Kim, S. H., Lee, Y. H., Kim, T. I. & Oh, J. H. The rotator cuff healing index: a new scoring system to predict rotator cuff healing after surgical repair. Am. J. Sports Med. 47, 173–180 (2019).
pubmed: 30485753 doi: 10.1177/0363546518810763
Lenza, M. et al. Magnetic resonance imaging, magnetic resonance arthrography and ultrasonography for assessing rotator cuff tears in people with shoulder pain for whom surgery is being considered. Cochrane Database Syst. Rev. 2013, CD009020 (2013).
pubmed: 24065456 pmcid: 6464715
Lecouvet, F. E. et al. Multidetector spiral CT arthrography of the shoulder: clinical applications and limits, with MR arthrography and arthroscopic correlations. Eur. J. Radiol. 68, 120–136 (2008).
pubmed: 18400443 doi: 10.1016/j.ejrad.2008.02.025
Nazarian, L. N. et al. Imaging algorithms for evaluating suspected rotator cuff disease: Society of Radiologists in Ultrasound consensus conference statement. Radiology 267, 589–595 (2013).
pubmed: 23401583 pmcid: 3632808 doi: 10.1148/radiol.13121947
Middleton, W. D. et al. Sonography and MRI of the shoulder: comparison of patient satisfaction. AJR Am. J. Roentgenol. 183, 1449–1452 (2004).
pubmed: 15505319 doi: 10.2214/ajr.183.5.1831449
Parker, L. et al. Musculoskeletal imaging: Medicare use, costs, and potential for cost substitution. J. Am. Coll. Radiol. 5, 182–188 (2008).
pubmed: 18312965 doi: 10.1016/j.jacr.2007.07.016
Iannotti, J. P. et al. Accuracy of office-based ultrasonography of the shoulder for the diagnosis of rotator cuff tears. J. Bone Joint Surg. Am. 87, 1305–1311 (2005).
pubmed: 15930541
Farooqi, A. S. et al. Diagnostic accuracy of ultrasonography for rotator cuff tears: a systematic review and meta-analysis. Orthop. J. Sports Med. 9, 23259671211035106 (2021).
pubmed: 34660823 pmcid: 8511934 doi: 10.1177/23259671211035106
Khoury, V., Cardinal, É. & Brassard, P. Atrophy and fatty infiltration of the supraspinatus muscle: sonography versus MRI. AJR Am. J. Roentgenol. 190, 1105–1111 (2008).
pubmed: 18356462 doi: 10.2214/AJR.07.2835
Aranha, L., Eapen, C., Patel, V. D., Prabhakar, A. J. & Hariharan, K. Muscle fatigue response of rotator cuff muscles in different postures. Arch. Orthop. Trauma. Surg. 143, 3191–3199 (2023).
pubmed: 36305967 doi: 10.1007/s00402-022-04650-8
Griffith, K. M. et al. Review of human supraspinatus tendon mechanics. Part I: fatigue damage accumulation and failure. J. Shoulder Elbow Surg. 31, 2671–2677 (2022).
pubmed: 35931330 doi: 10.1016/j.jse.2022.06.017
Ranger, T. A., Wong, A. M., Cook, J. L. & Gaida, J. E. Is there an association between tendinopathy and diabetes mellitus? A systematic review with meta-analysis. Br. J. Sports Med. 50, 982–989 (2016).
pubmed: 26598716 doi: 10.1136/bjsports-2015-094735
Lewis, J. S. & Sandford, F. M. Rotator cuff tendinopathy: is there a role for polyunsaturated fatty acids and antioxidants? J. Hand Ther. 22, 49–55 (2009).
pubmed: 18950988 doi: 10.1197/j.jht.2008.06.007
Angeline, M. E. et al. Effect of diet-induced vitamin D deficiency on rotator cuff healing in a rat model. Am. J. Sports Med. 42, 27–34 (2014).
pubmed: 24131579 doi: 10.1177/0363546513505421
Kuo, L. T. et al. Depression increases the risk of rotator cuff tear and rotator cuff repair surgery: a nationwide population-based study. PLoS ONE 14, e0225778 (2019).
pubmed: 31765424 pmcid: 6876882 doi: 10.1371/journal.pone.0225778
Song, A. et al. Comparative time to improvement in nonoperative and operative treatment of rotator cuff tears. J. Bone Joint Surg. Am. 102, 1142–1150 (2020).
pubmed: 32618921 doi: 10.2106/JBJS.19.01112
Kuhn, J. E. et al. Effectiveness of physical therapy in treating atraumatic full-thickness rotator cuff tears: a multicenter prospective cohort study. J. Shoulder Elbow Surg. 22, 1371–1379 (2013).
pubmed: 23540577 pmcid: 3748251 doi: 10.1016/j.jse.2013.01.026
Dunn, W. R. et al. 2013 Neer Award: predictors of failure of nonoperative treatment of chronic, symptomatic, full-thickness rotator cuff tears. J. Shoulder Elbow Surg. 25, 1303–1311 (2016).
pubmed: 27422460 doi: 10.1016/j.jse.2016.04.030
Moosmayer, S. et al. Tendon repair compared with physiotherapy in the treatment of rotator cuff tears: a randomized controlled study in 103 cases with a five-year follow-up. J. Bone Joint Surg. Am. 96, 1504–1514 (2014).
pubmed: 25232074 doi: 10.2106/JBJS.M.01393
Kukkonen, J. et al. Treatment of nontraumatic rotator cuff tears: a randomized controlled trial with two years of clinical and imaging follow-up. J. Bone Joint Surg. Am. 97, 1729–1737 (2015).
pubmed: 26537160 doi: 10.2106/JBJS.N.01051
Moosmayer, S. et al. At a 10-year follow-up, tendon repair is superior to physiotherapy in the treatment of small and medium-sized rotator cuff tears. J. Bone Joint Surg. Am. 101, 1050–1060 (2019).
pubmed: 31220021 doi: 10.2106/JBJS.18.01373
Levy, O., Mullett, H., Roberts, S. & Copeland, S. The role of anterior deltoid reeducation in patients with massive irreparable degenerative rotator cuff tears. J. Shoulder Elbow Surg. 17, 863–870 (2008).
pubmed: 18718765 doi: 10.1016/j.jse.2008.04.005
Bennell, K. et al. Efficacy of standardised manual therapy and home exercise programme for chronic rotator cuff disease: randomised placebo controlled trial. BMJ 340, c2756 (2010).
pubmed: 20530557 pmcid: 2882554 doi: 10.1136/bmj.c2756
Bernhardsson, S., Klintberg, I. H. & Wendt, G. K. Evaluation of an exercise concept focusing on eccentric strength training of the rotator cuff for patients with subacromial impingement syndrome. Clin. Rehabil. 25, 69–78 (2011).
pubmed: 20713438 doi: 10.1177/0269215510376005
Ludewig, P. M. & Reynolds, J. F. The association of scapular kinematics and glenohumeral joint pathologies. J. Orthop. Sports Phys. Ther. 39, 90–104 (2009).
pubmed: 19194022 pmcid: 2730194 doi: 10.2519/jospt.2009.2808
Cools, A. M. et al. Rehabilitation of scapular muscle balance: which exercises to prescribe? Am. J. Sports Med. 35, 1744–1751 (2007).
pubmed: 17606671 doi: 10.1177/0363546507303560
Boudreault, J. et al. The efficacy of oral non-steroidal anti-inflammatory drugs for rotator cuff tendinopathy: a systematic review and meta-analysis. J. Rehabil. Med. 46, 294–306 (2014).
pubmed: 24626286 doi: 10.2340/16501977-1800
Mazières, B., Rouanet, S., Guillon, Y., Scarsi, C. & Reiner, V. Topical ketoprofen patch in the treatment of tendinitis: a randomized, double blind, placebo controlled study. J. Rheumatol. 32, 1563–1570 (2005).
pubmed: 16078335
Tangtiphaiboontana, J. et al. The effects of nonsteroidal anti-inflammatory medications after rotator cuff surgery: a randomized, double-blind, placebo-controlled trial. J. Shoulder Elbow Surg. 30, 1990–1997 (2021).
pubmed: 34174448 doi: 10.1016/j.jse.2021.05.018
Desai, V. S. et al. Increasing numbers of shoulder corticosteroid injections within a year preoperatively may be associated with a higher rate of subsequent revision rotator cuff surgery. Arthroscopy 35, 45–50 (2019).
pubmed: 30473453 doi: 10.1016/j.arthro.2018.07.043
Werner, B. C. et al. The timing of elective shoulder surgery after shoulder injection affects postoperative infection risk in Medicare patients. J. Shoulder Elbow Surg. 25, 390–397 (2016).
pubmed: 26651428 doi: 10.1016/j.jse.2015.08.039
Bhattacharjee, S., Lee, W., Lee, M. J. & Shi, L. L. Preoperative corticosteroid joint injections within 2 weeks of shoulder arthroscopies increase postoperative infection risk. J. Shoulder Elbow Surg. 28, 2098–2102 (2019).
pubmed: 31262638 doi: 10.1016/j.jse.2019.03.037
Xiang, X. N. et al. Conservative treatment of partial-thickness rotator cuff tears and tendinopathy with platelet-rich plasma: a systematic review and meta-analysis. Clin. Rehabil. 35, 1661–1673 (2021).
pubmed: 33896214 doi: 10.1177/02692155211011944
Pang, L. et al. Platelet-rich plasma injection can be a viable alternative to corticosteroid injection for conservative treatment of rotator cuff disease: a meta-analysis of randomized controlled trials. Arthroscopy 39, 402–421.e1 (2023).
pubmed: 35810976 doi: 10.1016/j.arthro.2022.06.022
Jo, C. H. et al. Intratendinous injection of autologous adipose tissue-derived mesenchymal stem cells for the treatment of rotator cuff disease: a first-in-human trial. Stem Cell 36, 1441–1450 (2018).
doi: 10.1002/stem.2855
Paloneva, J. et al. Declining incidence of acromioplasty in Finland. Acta Orthop. 86, 220–224 (2015).
pubmed: 25340548 pmcid: 4404774 doi: 10.3109/17453674.2014.977703
Oh, J. H., Kim, J. Y., Lee, H. K. & Choi, J. A. Classification and clinical significance of acromial spur in rotator cuff tear: heel-type spur and rotator cuff tear. Clin. Orthop. Relat. Res. 468, 1542–1550 (2010).
pubmed: 19760471 doi: 10.1007/s11999-009-1058-5
Farfaras, S., Sernert, N., Rostgard Christensen, L., Hallstrom, E. K. & Kartus, J. T. Subacromial decompression yields a better clinical outcome than therapy alone: a prospective randomized study of patients with a minimum 10-year follow-up. Am. J. Sports Med. 46, 1397–1407 (2018).
pubmed: 29543510 doi: 10.1177/0363546518755759
Farfaras, S., Sernert, N., Hallstrom, E. & Kartus, J. Comparison of open acromioplasty, arthroscopic acromioplasty and physiotherapy in patients with subacromial impingement syndrome: a prospective randomised study. Knee Surg. Sports Traumatol. Arthrosc. 24, 2181–2191 (2016).
pubmed: 25385527 doi: 10.1007/s00167-014-3416-4
Waterman, B. R. et al. Randomized trial of arthroscopic rotator cuff with or without acromioplasty: no difference in patient-reported outcomes at long-term follow-up. Arthroscopy 37, 3072–3078 (2021).
pubmed: 33940126 doi: 10.1016/j.arthro.2021.04.041
Paavola, M. et al. Subacromial decompression versus diagnostic arthroscopy for shoulder impingement: a 5-year follow-up of a randomised, placebo surgery controlled clinical trial. Br. J. Sports Med. 55, 99–107 (2021).
pubmed: 33020137 doi: 10.1136/bjsports-2020-102216
Kolk, A. et al. Does acromioplasty result in favorable clinical and radiologic outcomes in the management of chronic subacromial pain syndrome? A double-blinded randomized clinical trial with 9 to 14 years’ follow-up. J. Shoulder Elbow Surg. 26, 1407–1415 (2017).
pubmed: 28495574 doi: 10.1016/j.jse.2017.03.021
Ketola, S., Lehtinen, J. T. & Arnala, I. Arthroscopic decompression not recommended in the treatment of rotator cuff tendinopathy: a final review of a randomised controlled trial at a minimum follow-up of ten years. Bone Joint J. 99-B, 799–805 (2017).
pubmed: 28566400 doi: 10.1302/0301-620X.99B6.BJJ-2016-0569.R1
Woodmass, J. M. et al. Arthroscopic rotator cuff repair with and without acromioplasty in the treatment of full-thickness rotator cuff tears: long-term outcomes of a multicenter, randomized controlled trial. J. Bone Joint Surg. Am. 104, 2101–2107 (2022).
pubmed: 36476738 doi: 10.2106/JBJS.22.00135
Jensen, A. R. et al. Evaluation of the trends, concomitant procedures, and complications with open and arthroscopic rotator cuff repairs in the Medicare population. Orthop. J. Sports Med. 5, 2325967117731310 (2017).
pubmed: 29051905 pmcid: 5639972 doi: 10.1177/2325967117731310
Buyukdogan, K. et al. Long-term outcomes after arthroscopic transosseous-equivalent repair: clinical and magnetic resonance imaging results of rotator cuff tears at a minimum follow-up of 10 years. J. Shoulder Elbow Surg. 30, 2767–2777 (2021).
pubmed: 33991652 doi: 10.1016/j.jse.2021.04.034
Randelli, P. S. et al. Long-term results of arthroscopic rotator cuff repair: initial tear size matters: a prospective study on clinical and radiological results at a minimum follow-up of 10 years. Am. J. Sports Med. 47, 2659–2669 (2019).
pubmed: 31411899 doi: 10.1177/0363546519865529
Jeong, H. J., Nam, K. P., Yeo, J. H., Rhee, S. M. & Oh, J. H. Retear after arthroscopic rotator cuff repair results in functional outcome deterioration over time. Arthroscopy 38, 2399–2412 (2022).
pubmed: 35219797 doi: 10.1016/j.arthro.2022.02.016
Le, B. T., Wu, X. L., Lam, P. H. & Murrell, G. A. Factors predicting rotator cuff retears: an analysis of 1000 consecutive rotator cuff repairs. Am. J. Sports Med. 42, 1134–1142 (2014).
pubmed: 24748610 doi: 10.1177/0363546514525336
Guo, A. A., Stitz, D. J., Lam, P. & Murrell, G. A. C. Tear size and stiffness are important predictors of retear: an assessment of factors associated with repair integrity at 6 months in 1,526 rotator cuff repairs. JB JS Open Access 7, e22.00006 (2022).
pubmed: 36168327 pmcid: 9509124
Maher, A. et al. Do age, demographics, and tear characteristics affect outcomes after rotator cuff repair? results of over 2000 rotator cuff repairs at 5-year follow-up. Orthop. J. Sports Med. 10, 23259671221119222 (2022).
pubmed: 36051977 pmcid: 9424895 doi: 10.1177/23259671221119222
Gerber, C. et al. Neer Award 2007: reversion of structural muscle changes caused by chronic rotator cuff tears using continuous musculotendinous traction. An experimental study in sheep. J. Shoulder Elbow Surg. 18, 163–171 (2009).
pubmed: 19095462 doi: 10.1016/j.jse.2008.09.003
Zhao, J. et al. Risk factors affecting rotator cuff retear after arthroscopic repair: a meta-analysis and systematic review. J. Shoulder Elbow Surg. 30, 2660–2670 (2021).
pubmed: 34089878 doi: 10.1016/j.jse.2021.05.010
Gatto, A. P., Hu, D. A., Feeley, B. T. & Lansdown, D. Dyslipidemia is associated with risk for rotator cuff repair failure: a systematic review and meta-analysis. JSES Rev. Rep. Tech. 2, 302–309 (2022).
pubmed: 37588872 pmcid: 10426695
Yang, Z. et al. Association of obesity with high retears and complication rates, and low functional scores after rotator cuff repair: a systematic review and meta-analysis. J. Shoulder Elbow Surg. 32, 2400–2411 (2023).
pubmed: 37419440 doi: 10.1016/j.jse.2023.05.030
Fan, N. et al. The effects of smoking on clinical and structural outcomes after rotator cuff repair: a systematic review and meta-analysis. J. Shoulder Elbow Surg. 31, 656–667 (2022).
pubmed: 34813890 doi: 10.1016/j.jse.2021.10.026
Sheean, A. J., Hartzler, R. U. & Burkhart, S. S. Arthroscopic rotator cuff repair in 2019: linked, double row repair for achieving higher healing rates and optimal clinical outcomes. Arthroscopy 35, 2749–2755 (2019).
pubmed: 31500765 doi: 10.1016/j.arthro.2019.02.048
Bedeir, Y. H., Schumaier, A. P., Abu-Sheasha, G. & Grawe, B. M. Type 2 retear after arthroscopic single-row, double-row and suture bridge rotator cuff repair: a systematic review. Eur. J. Orthop. Surg. Traumatol. 29, 373–382 (2019).
pubmed: 30229445 doi: 10.1007/s00590-018-2306-8
Malavolta, E. A. et al. Prognostic factors for clinical outcomes after arthroscopic rotator cuff repair. Orthop. J. Sports Med. 11, 23259671231160738 (2023).
pubmed: 37065182 pmcid: 10102950 doi: 10.1177/23259671231160738
Bishop, M. E. et al. Biomechanical and clinical comparison of suture techniques in arthroscopic rotator cuff repair. JBJS Rev. 5, e3 (2017).
pubmed: 29189441 doi: 10.2106/JBJS.RVW.17.00019
Hohmann, E. et al. Single- versus double-row repair for full-thickness rotator cuff tears using suture anchors. A systematic review and meta-analysis of basic biomechanical studies. Eur. J. Orthop. Surg. Traumatol. 28, 859–868 (2018).
pubmed: 29270867 doi: 10.1007/s00590-017-2114-6
Millett, P. J., Warth, R. J., Dornan, G. J., Lee, J. T. & Spiegl, U. J. Clinical and structural outcomes after arthroscopic single-row versus double-row rotator cuff repair: a systematic review and meta-analysis of level I randomized clinical trials. J. Shoulder Elbow Surg. 23, 586–597 (2014).
pubmed: 24411671 doi: 10.1016/j.jse.2013.10.006
Sobhy, M. H., Khater, A. H., Hassan, M. R. & El Shazly, O. Do functional outcomes and cuff integrity correlate after single- versus double-row rotator cuff repair? A systematic review and meta-analysis study. Eur. J. Orthop. Surg. Traumatol. 28, 593–605 (2018).
pubmed: 29442181 doi: 10.1007/s00590-018-2145-7
Hernigou, P. et al. Biologic augmentation of rotator cuff repair with mesenchymal stem cells during arthroscopy improves healing and prevents further tears: a case-controlled study. Int. Orthop. 38, 1811–1818 (2014).
pubmed: 24913770 doi: 10.1007/s00264-014-2391-1
Cole, B. J. et al. Prospective randomized trial of biologic augmentation with bone marrow aspirate concentrate in patients undergoing arthroscopic rotator cuff repair. Am. J. Sports Med. 51, 1234–1242 (2023).
pubmed: 36811557 doi: 10.1177/03635465231154601
Feltri, P. et al. Platelet-rich plasma does not improve clinical results in patients with rotator cuff disorders but reduces the retear rate. A systematic review and meta-analysis. Knee Surg. Sports Traumatol. Arthrosc. 31, 1940–1952 (2023).
pubmed: 36496450 doi: 10.1007/s00167-022-07223-9
Lavoie-Gagne, O. et al. Double-row repair with platelet-rich plasma optimizes retear rates after small to medium full-thickness rotator cuff repair: a systematic review and network meta-analysis of randomized controlled trials. Arthroscopy 38, 2714–2729 (2022).
pubmed: 35337958 doi: 10.1016/j.arthro.2022.03.014
Zhang, C., Cai, Y. Z. & Wang, Y. Injection of leukocyte-poor platelet-rich plasma for moderate-to-large rotator cuff tears does not improve clinical outcomes but reduces retear rates and fatty infiltration: a prospective, single-blinded randomized study. Arthroscopy 38, 2381–2388.e1 (2022).
pubmed: 35247512 doi: 10.1016/j.arthro.2022.02.007
Liu, B., Jeong, H. J., Yeo, J. H. & Oh, J. H. Efficacy of intraoperative platelet-rich plasma augmentation and postoperative platelet-rich plasma booster injection for rotator cuff healing: a randomized controlled clinical trial. Orthop. J. Sports Med. 9, 23259671211006100 (2021).
pubmed: 34159208 pmcid: 8182201 doi: 10.1177/23259671211006100
Hurley, E. T., Lim Fat, D., Moran, C. J. & Mullett, H. The efficacy of platelet-rich plasma and platelet-rich fibrin in arthroscopic rotator cuff repair: a meta-analysis of randomized controlled trials. Am. J. Sports Med. 47, 753–761 (2019).
pubmed: 29466688 doi: 10.1177/0363546517751397
Castricini, R. et al. Platelet-rich plasma augmentation for arthroscopic rotator cuff repair: a randomized controlled trial. Am. J. Sports Med. 39, 258–265 (2011).
pubmed: 21160018 doi: 10.1177/0363546510390780
Randelli, P. S., Stoppani, C. A., Santarsiero, G., Nocerino, E. & Menon, A. Platelet-rich plasma in arthroscopic rotator cuff repair: clinical and radiological results of a prospective randomized controlled trial study at 10-year follow-up. Arthroscopy 38, 51–61 (2022).
pubmed: 34052372 doi: 10.1016/j.arthro.2021.05.017
Oudelaar, B. W., Peerbooms, J. C., Huis In, ‘T., Veld, R. & Vochteloo, A. J. H. Concentrations of blood components in commercial platelet-rich plasma separation systems: a review of the literature. Am. J. Sports Med. 47, 479–487 (2019).
pubmed: 29337592 doi: 10.1177/0363546517746112
Oh, J. H., Park, M. S. & Rhee, S. M. Treatment strategy for irreparable rotator cuff tears. Clin. Orthop. Surg. 10, 119–134 (2018).
pubmed: 29854334 pmcid: 5964259 doi: 10.4055/cios.2018.10.2.119
de Marinis, R. et al. Lower trapezius transfer improves clinical outcomes with a rate of complications and reoperations comparable to other surgical alternatives in patients with functionally irreparable rotator cuff tears: a systematic review. Arthroscopy https://doi.org/10.1016/j.arthro.2023.06.029 (2023).
Mirzayan, R. et al. Emerging treatment options for massive rotator cuff tears: biologic tuberoplasty, balloon arthroplasty, anterior cable reconstruction, lower trapezius transfer. Instr. Course Lect. 72, 223–238 (2023).
pubmed: 36534859
Saccomanno, M. F. et al. Combined arthroscopic-assisted lower trapezius tendon transfer and superior capsule reconstruction for massive irreparable posterior-superior rotator cuff tears: surgical technique. Arthrosc. Tech. 12, e823–e830 (2023).
pubmed: 37424661 pmcid: 10323695 doi: 10.1016/j.eats.2023.02.014
Galvin, J. W. et al. Outcomes and complications of primary reverse shoulder arthroplasty with minimum of 2 years’ follow-up: a systematic review and meta-analysis. J. Shoulder Elbow Surg. 31, e534–e544 (2022).
pubmed: 35870805 doi: 10.1016/j.jse.2022.06.005
Burden, E. G., Batten, T. J., Smith, C. D. & Evans, J. P. Reverse total shoulder arthroplasty. Bone Joint J. 103-B, 813–821 (2021).
pubmed: 33616421 doi: 10.1302/0301-620X.103B.BJJ-2020-2101
Bacle, G., Nove-Josserand, L., Garaud, P. & Walch, G. Long-term outcomes of reverse total shoulder arthroplasty: a follow-up of a previous study. J. Bone Joint Surg. Am. 99, 454–461 (2017).
pubmed: 28291177 doi: 10.2106/JBJS.16.00223
Bulhoff, M. et al. Medium- to long-term outcomes after reverse total shoulder arthroplasty with a standard long stem. J. Clin. Med 11, 2274 (2022).
pubmed: 35566400 pmcid: 9103013 doi: 10.3390/jcm11092274
Favard, L. et al. Reverse prostheses in arthropathies with cuff tear: are survivorship and function maintained over time? Clin. Orthop. Relat. Res. 469, 2469–2475 (2011).
pubmed: 21384212 pmcid: 3148361 doi: 10.1007/s11999-011-1833-y
Zumstein, M., Pinedo, M., Old, J. & Pascal, B. Problems, complications, reoperations, and revisions in reverse total shoulder arthroplasty: a systematic review. J. Shoulder Elbow Surg. 20, 146–157 (2011).
pubmed: 21134666 doi: 10.1016/j.jse.2010.08.001
Su, F. et al. Incidence, risk factors, and complications of acromial stress fractures after reverse total shoulder arthroplasty. J. Shoulder Elbow Surg. 33, 65–72 (2023).
pubmed: 37454923 doi: 10.1016/j.jse.2023.06.008
Jeong, H. J. et al. Subacromial notching after reverse total shoulder arthroplasty. J. Shoulder Elbow Surg. 32, 1876–1885 (2023).
pubmed: 37024040 doi: 10.1016/j.jse.2023.03.009
Cheung, E. V. et al. Instability after reverse total shoulder arthroplasty. J. Shoulder Elbow Surg. 27, 1946–1952 (2018).
pubmed: 29934280 doi: 10.1016/j.jse.2018.04.015
Schell, L. E. et al. Aseptic glenoid baseplate loosening after reverse total shoulder arthroplasty with a single prosthesis. J. Shoulder Elbow Surg. 32, 1584–1593 (2023).
pubmed: 36736657 doi: 10.1016/j.jse.2023.01.010
Baksh, N. et al. Does preoperative corticosteroid injection increase the risk of periprosthetic joint infection after reverse shoulder arthroplasty? J. Shoulder Elbow Surg. 32, 1459–1464 (2023).
pubmed: 36737032 doi: 10.1016/j.jse.2023.01.008
Reddy, R. P., Solomon, D. A., Hughes, J. D., Lesniak, B. P. & Lin, A. Clinical outcomes of rotator cuff repair in patients with concomitant glenohumeral osteoarthritis. J. Shoulder Elbow Surg. 31, S25–S33 (2022).
pubmed: 34968696 doi: 10.1016/j.jse.2021.11.010
Manop, P., Apivatgaroon, A., Puntu, W. & Chernchujit, B. Risk factors for rotator cuff repair failure and reliability of the rotator cuff healing index (RoHI) in Thai patients: comparison of the RoHI with a modified scoring system. Orthop. J. Sports Med. 11, 23259671231179449 (2023).
pubmed: 37441508 pmcid: 10334006 doi: 10.1177/23259671231179449
Jeon, Y. D. et al. Significance of the acromiohumeral distance on stress radiography for predicting healing and function after arthroscopic repair of massive rotator cuff tears. J. Shoulder Elbow Surg. 30, e471–e481 (2021).
pubmed: 33271320 doi: 10.1016/j.jse.2020.10.029
Davey, M. S. et al. Arthroscopic rotator cuff repair results in improved clinical outcomes and low revision rates at 10-year follow-up: a systematic review. Arthroscopy 39, 452–458 (2023).
pubmed: 36604006 doi: 10.1016/j.arthro.2022.11.002
Sanchez-Sotelo, J. & Athwal, G. S. How to optimize reverse shoulder arthroplasty for irreparable cuff tears. Curr. Rev. Musculoskelet. Med. 13, 553–560 (2020).
pubmed: 32488624 pmcid: 7474717 doi: 10.1007/s12178-020-09655-7
Tempelhof, S., Rupp, S. & Seil, R. Age-related prevalence of rotator cuff tears in asymptomatic shoulders. J. Shoulder Elbow Surg. 8, 296–299 (1999).
pubmed: 10471998 doi: 10.1016/S1058-2746(99)90148-9
Longo, U. G. et al. Anxiety and depressive symptoms correlated to patient-reported outcome measures after rotator cuff repair: a prospective study in the perioperative period. J. Clin. Med. 12, 2999 (2023).
pubmed: 37109336 pmcid: 10146391 doi: 10.3390/jcm12082999
Panattoni, N. et al. The influence of psychosocial factors on patient-reported outcome measures in rotator cuff tears pre- and post-surgery: a systematic review. Qual. Life Res. 31, 91–116 (2022).
pubmed: 34216351 doi: 10.1007/s11136-021-02921-2
Longo, U. G. et al. Arthroscopic rotator cuff repair improves sleep disturbance and quality of life: a prospective study. Int. J. Environ. Res. Public Health 18, 3797 (2021).
pubmed: 33917277 pmcid: 8038746 doi: 10.3390/ijerph18073797
Kunze, K. N. et al. Systematic review of sleep quality before and after arthroscopic rotator cuff repair: are improvements experienced and maintained? Orthop. J. Sports Med. 8, 2325967120969224 (2020).
pubmed: 33447619 pmcid: 7780319 doi: 10.1177/2325967120969224
Serbest, S., Tiftikçi, U., Askın, A., Yaman, F. & Alpua, M. Preoperative and post-operative sleep quality evaluation in rotator cuff tear patients. Knee Surg. Sports Traumatol. Arthrosc. 25, 2109–2113 (2017).
pubmed: 27401007 doi: 10.1007/s00167-016-4228-5
Zheng, E. T., Lowenstein, N. A., Collins, J. E. & Matzkin, E. G. Resolution of sleep disturbance and improved functional outcomes after rotator cuff repair. Am. J. Sports Med. 51, 1852–1858 (2023).
pubmed: 37167606 doi: 10.1177/03635465231169254
Boorman, R. S. et al. What happens to patients when we do not repair their cuff tears? Five-year rotator cuff quality-of-life index outcomes following nonoperative treatment of patients with full-thickness rotator cuff tears. J. Shoulder Elbow Surg. 27, 444–448 (2018).
pubmed: 29433644 doi: 10.1016/j.jse.2017.10.009
Fucentese, S. F., von Roll, A. L., Pfirrmann, C. W., Gerber, C. & Jost, B. Evolution of nonoperatively treated symptomatic isolated full-thickness supraspinatus tears. J. Bone Joint Surg. Am. 94, 801–808 (2012).
pubmed: 22552669 doi: 10.2106/JBJS.I.01286
Jain, N. B. et al. Comparative effectiveness of operative versus nonoperative treatment for rotator cuff tears: a propensity score analysis from the ROW cohort. Am. J. Sports Med. 47, 3065–3072 (2019).
pubmed: 31518155 pmcid: 7325686 doi: 10.1177/0363546519873840
van Deurzen, D. et al. Long-term results of arthroscopic and mini-open repair of small- to medium-size full-thickness rotator cuff tears. Shoulder Elbow 11, 68–76 (2019).
pubmed: 31019565 doi: 10.1177/1758573218773529
Yoo, J. H., Cho, N. S. & Rhee, Y. G. Effect of postoperative repair integrity on health-related quality of life after rotator cuff repair: healed versus retear group. Am. J. Sports Med. 41, 2637–2644 (2013).
pubmed: 23942286 doi: 10.1177/0363546513499152
Galatz, L. M., Griggs, S., Cameron, B. D. & Iannotti, J. P. Prospective longitudinal analysis of postoperative shoulder function : a ten-year follow-up study of full-thickness rotator cuff tears. J. Bone Joint Surg. Am. 83, 1052–1056 (2001).
pubmed: 11451975 doi: 10.2106/00004623-200107000-00011
Nicholson, A. D. et al. Minimum 15-year follow-up for clinical outcomes of arthroscopic rotator cuff repair. J. Shoulder Elbow Surg. 31, 1696–1703 (2022).
pubmed: 35158066 doi: 10.1016/j.jse.2022.01.116
Green, A. et al. Long-term functional and structural outcome of rotator cuff repair in patients 60 years old or less. JSES Int. 7, 58–66 (2023).
pubmed: 36820436 doi: 10.1016/j.jseint.2022.10.002
Gerber, C., Canonica, S., Catanzaro, S. & Ernstbrunner, L. Longitudinal observational study of reverse total shoulder arthroplasty for irreparable rotator cuff dysfunction: results after 15 years. J. Shoulder Elbow Surg. 27, 831–838 (2018).
pubmed: 29305102 doi: 10.1016/j.jse.2017.10.037
Mulieri, P., Dunning, P., Klein, S., Pupello, D. & Frankle, M. Reverse shoulder arthroplasty for the treatment of irreparable rotator cuff tear without glenohumeral arthritis. J. Bone Joint Surg. Am. 92, 2544–2556 (2010).
pubmed: 21048173 doi: 10.2106/JBJS.I.00912
Hartzler, R. U. et al. Reverse shoulder arthroplasty for massive rotator cuff tear: risk factors for poor functional improvement. J. Shoulder Elbow Surg. 24, 1698–1706 (2015).
pubmed: 26175311 doi: 10.1016/j.jse.2015.04.015
Fealy, S. et al. Patterns of vascular and anatomical response after rotator cuff repair. Am. J. Sports Med. 34, 120–127 (2006).
pubmed: 16260468 doi: 10.1177/0363546505280212
Randelli, P. et al. History of rotator cuff surgery. Knee Surg. Sports Traumatol. Arthrosc. 23, 344–362 (2015).
pubmed: 25448135 doi: 10.1007/s00167-014-3445-z
Minkwitz, S. et al. Histological and molecular features of the subacromial bursa of rotator cuff tears compared to non-tendon defects: a pilot study. BMC Musculoskelet. Disord. 22, 877 (2021).
pubmed: 34649550 pmcid: 8518155 doi: 10.1186/s12891-021-04752-1
Corrado, B. et al. Ultrasound-guided collagen injections in the treatment of supraspinatus tendinopathy: a case series pilot study. J. Biol. Regul. Homeost. Agents 34 (3 Suppl. 2), 33–39 (2020).
pubmed: 32856437
Corrado, B., Bonini, I., Alessio Chirico, V., Rosano, N. & Gisonni, P. Use of injectable collagen in partial-thickness tears of the supraspinatus tendon: a case report. Oxf. Med. Case Rep. 2020, omaa103 (2020).
doi: 10.1093/omcr/omaa103
Randelli, F. et al. Effect of a collagen-based compound on morpho-functional properties of cultured human tenocytes. Cells 7, 246 (2018).
pubmed: 30563214 pmcid: 6316559 doi: 10.3390/cells7120246
Martinello, T. et al. Successful recellularization of human tendon scaffolds using adipose-derived mesenchymal stem cells and collagen gel. J. Tissue Eng. Regen. Med. 8, 612–619 (2014).
pubmed: 22711488 doi: 10.1002/term.1557
Jo, Y., Kim, W. J. & Lee, H. Healing of partial tear of the supraspinatus tendon after atelocollagen injection confirmed by MRI: a case report. Medicine 99, e23498 (2020).
pubmed: 33285757 pmcid: 7717826 doi: 10.1097/MD.0000000000023498
Suh, D. S. et al. Atelocollagen enhances the healing of rotator cuff tendon in rabbit model. Am. J. Sports Med. 45, 2019–2027 (2017).
pubmed: 28586622 doi: 10.1177/0363546517703336
Canty, E. G. & Kadler, K. E. Procollagen trafficking, processing and fibrillogenesis. J. Cell Sci. 118, 1341–1353 (2005).
pubmed: 15788652 doi: 10.1242/jcs.01731
Hynes, R. O. Integrins: bidirectional, allosteric signaling machines. Cell 110, 673–687 (2002).
pubmed: 12297042 doi: 10.1016/S0092-8674(02)00971-6
Massoud, E. I. Healing of subcutaneous tendons: influence of the mechanical environment at the suture line on the healing process. World J. Orthop. 4, 229–240 (2013).
pubmed: 24147258 pmcid: 3801242 doi: 10.5312/wjo.v4.i4.229
Aguado, G., Obando, D. V., Herrera, G. A., Ramirez, A. & Llinas, P. J. Retears of the rotator cuff: an ultrasonographic assessment during the first postoperative year. Orthop. J. Sports Med. 7, 2325967119889049 (2019).
pubmed: 31903401 pmcid: 6927200 doi: 10.1177/2325967119889049
Hein, J., Reilly, J. M., Chae, J., Maerz, T. & Anderson, K. Retear rates after arthroscopic single-row, double-row, and suture bridge rotator cuff repair at a minimum of 1 year of imaging follow-up: a systematic review. Arthroscopy 31, 2274–2281 (2015).
pubmed: 26188783 doi: 10.1016/j.arthro.2015.06.004
Mihata, T., McGarry, M. H., Pirolo, J. M., Kinoshita, M. & Lee, T. Q. Superior capsule reconstruction to restore superior stability in irreparable rotator cuff tears: a biomechanical cadaveric study. Am. J. Sports Med. 40, 2248–2255 (2012).
pubmed: 22886689 doi: 10.1177/0363546512456195
Ishihara, Y. et al. Role of the superior shoulder capsule in passive stability of the glenohumeral joint. J. Shoulder Elbow Surg. 23, 642–648 (2014).
pubmed: 24388150 doi: 10.1016/j.jse.2013.09.025
Mihata, T. et al. A biomechanical cadaveric study comparing superior capsule reconstruction using fascia lata allograft with human dermal allograft for irreparable rotator cuff tear. J. Shoulder Elbow Surg. 26, 2158–2166 (2017).
pubmed: 29146012 doi: 10.1016/j.jse.2017.07.019
Ji, J. H. et al. Transtendon arthroscopic repair of high grade partial-thickness articular surface tears of the rotator cuff with biceps tendon augmentation: technical note and preliminary results. Arch. Orthop. Trauma. Surg. 132, 335–342 (2012).
pubmed: 21842283 doi: 10.1007/s00402-011-1373-7
Park, M. C. et al. Anterior cable reconstruction using the proximal biceps tendon for large rotator cuff defects limits superior migration and subacromial contact without inhibiting range of motion: a biomechanical analysis. Arthroscopy 34, 2590–2600 (2018).
pubmed: 30078687 doi: 10.1016/j.arthro.2018.05.012
Schmalzl, J. et al. Tendon-derived stem cells from the long head of the biceps tendon: inflammation does not affect the regenerative potential. Bone Joint Res. 8, 414–424 (2019).
pubmed: 31588358 pmcid: 6775540 doi: 10.1302/2046-3758.89.BJR-2018-0214.R2
Potty, A. G. et al. Approaching artificial intelligence in orthopaedics: predictive analytics and machine learning to prognosticate arthroscopic rotator cuff surgical outcomes. J. Clin. Med. 12, 2369 (2023).
pubmed: 36983368 pmcid: 10056706 doi: 10.3390/jcm12062369
Akhtar, A., Richards, J. & Monga, P. The biomechanics of the rotator cuff in health and disease – a narrative review. J. Clin. Orthop. Trauma. 18, 150–156 (2021).
pubmed: 34012769 pmcid: 8111677 doi: 10.1016/j.jcot.2021.04.019

Auteurs

Asheesh Bedi (A)

Department of Orthopedic Surgery, University of Chicago, Chicago, IL, USA.
NorthShore Health System, Chicago, IL, USA.

Julie Bishop (J)

Department of Orthopedic Surgery, The Ohio State Wexner Medical Center, Columbus, OH, USA.

Jay Keener (J)

Department of Orthopedic Surgery, Washington University, St. Louis, MO, USA.

Drew A Lansdown (DA)

Department of Orthopedic Surgery, University of California San Francisco, San Francisco, CA, USA.

Ofer Levy (O)

Reading Shoulder Unit, Berkshire Independent Hospital, Reading, UK.

Peter MacDonald (P)

Department of Surgery, Max Rady College of Medicine, Winnipeg, Manitoba, Canada.

Nicola Maffulli (N)

Department of Trauma and Orthopaedic Surgery, Faculty of Medicine and Psychology, University of Rome Sapienza, Rome, Italy.

Joo Han Oh (JH)

Department of Orthopedic Surgery, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seoul, Korea.

Vani J Sabesan (VJ)

HCA Florida JFK Orthopaedic Surgery Residency Program, Atlantis Orthopedics, Atlantis, FL, USA.

Joaquin Sanchez-Sotelo (J)

Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA.

Riley J Williams (RJ)

Department of Orthopedic Surgery, Hospital for Special Surgery, New York, NY, USA.

Brian T Feeley (BT)

Department of Orthopedic Surgery, University of California San Francisco, San Francisco, CA, USA. Brian.feeley@ucsf.edu.

Classifications MeSH