Rotator cuff tears.
Journal
Nature reviews. Disease primers
ISSN: 2056-676X
Titre abrégé: Nat Rev Dis Primers
Pays: England
ID NLM: 101672103
Informations de publication
Date de publication:
08 Feb 2024
08 Feb 2024
Historique:
accepted:
08
01
2024
medline:
9
2
2024
pubmed:
9
2
2024
entrez:
8
2
2024
Statut:
epublish
Résumé
Rotator cuff tears are the most common upper extremity condition seen by primary care and orthopaedic surgeons, with a spectrum ranging from tendinopathy to full-thickness tears with arthritic change. Some tears are traumatic, but most rotator cuff problems are degenerative. Not all tears are symptomatic and not all progress, and many patients in whom tears become more extensive do not experience symptom worsening. Hence, a standard algorithm for managing patients is challenging. The pathophysiology of rotator cuff tears is complex and encompasses an interplay between the tendon, bone and muscle. Rotator cuff tears begin as degenerative changes within the tendon, with matrix disorganization and inflammatory changes. Subsequently, tears progress to partial-thickness and then full-thickness tears. Muscle quality, as evidenced by the overall size of the muscle and intramuscular fatty infiltration, also influences symptoms, tear progression and the outcomes of surgery. Treatment depends primarily on symptoms, with non-operative management sufficient for most patients with rotator cuff problems. Modern arthroscopic repair techniques have improved recovery, but outcomes are still limited by a lack of understanding of how to improve tendon to bone healing in many patients.
Identifiants
pubmed: 38332156
doi: 10.1038/s41572-024-00492-3
pii: 10.1038/s41572-024-00492-3
doi:
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
8Informations de copyright
© 2024. Springer Nature Limited.
Références
Gray, M., Wallace, A. & Aldridge, S. Assessment of shoulder pain for non-specialists. BMJ 355, i5783 (2016).
pubmed: 27927638
doi: 10.1136/bmj.i5783
Rugg, C. M., Gallo, R. A., Craig, E. V. & Feeley, B. T. The pathogenesis and management of cuff tear arthropathy. J. Shoulder Elbow Surg. 27, 2271–2283 (2018).
pubmed: 30268586
doi: 10.1016/j.jse.2018.07.020
Millar, N. L. et al. Tendinopathy. Nat. Rev. Dis. Primers 7, 1 (2021).
pubmed: 33414454
doi: 10.1038/s41572-020-00234-1
Keener, J. D. et al. Patterns of tear progression for asymptomatic degenerative rotator cuff tears. J. Shoulder Elbow Surg. 24, 1845–1851 (2015).
pubmed: 26589385
pmcid: 5491331
doi: 10.1016/j.jse.2015.08.038
Keener, J. D. et al. A prospective evaluation of survivorship of asymptomatic degenerative rotator cuff tears. J. Bone Joint Surg. Am. 97, 89–98 (2015).
pubmed: 25609434
pmcid: 4296477
doi: 10.2106/JBJS.N.00099
Nie, D., Zhou, Y., Wang, W., Zhang, J. & Wang, J. H. Mechanical overloading induced-activation of mTOR signaling in tendon stem/progenitor cells contributes to tendinopathy development. Front. Cell Dev. Biol. 9, 687856 (2021).
pubmed: 34322484
pmcid: 8311934
doi: 10.3389/fcell.2021.687856
Gladstone, J. N., Bishop, J. Y., Lo, I. K. & Flatow, E. L. Fatty infiltration and atrophy of the rotator cuff do not improve after rotator cuff repair and correlate with poor functional outcome. Am. J. Sports Med. 35, 719–728 (2007).
pubmed: 17337727
doi: 10.1177/0363546506297539
Davies, M. R. et al. Rotator cuff tear size regulates fibroadipogenic progenitor number and gene expression profile in the supraspinatus independent of patient age. Am. J. Sports Med. 50, 208–215 (2022).
pubmed: 34779676
doi: 10.1177/03635465211054512
Feeley, B. T. et al. Human rotator cuff tears have an endogenous, inducible stem cell source capable of improving muscle quality and function after rotator cuff repair. Am. J. Sports Med. 48, 2660–2668 (2020).
pubmed: 32730704
pmcid: 9262007
doi: 10.1177/0363546520935855
Yanik, E. L., Chamberlain, A. M. & Keener, J. D. Trends in rotator cuff repair rates and comorbidity burden among commercially insured patients younger than the age of 65 years, United States 2007-2016. JSES Rev. Rep. Tech. 1, 309–316 (2021).
pubmed: 35812174
pmcid: 9267869
Keener, J. D., Steger-May, K., Stobbs, G. & Yamaguchi, K. Asymptomatic rotator cuff tears: patient demographics and baseline shoulder function. J. Shoulder Elbow Surg. 19, 1191–1198 (2010).
pubmed: 21030274
pmcid: 3725777
doi: 10.1016/j.jse.2010.07.017
Hinsley, H., Ganderton, C., Arden, N. K. & Carr, A. J. Prevalence of rotator cuff tendon tears and symptoms in a Chingford general population cohort, and the resultant impact on UK health services: a cross-sectional observational study. BMJ Open 12, e059175 (2022).
pubmed: 36100305
pmcid: 9472112
doi: 10.1136/bmjopen-2021-059175
Yamamoto, A. et al. Prevalence and risk factors of a rotator cuff tear in the general population. J. Shoulder Elbow Surg. 19, 116–120 (2010).
pubmed: 19540777
doi: 10.1016/j.jse.2009.04.006
Minagawa, H. et al. Prevalence of symptomatic and asymptomatic rotator cuff tears in the general population: from mass-screening in one village. J. Orthop. 10, 8–12 (2013).
pubmed: 24403741
pmcid: 3768248
doi: 10.1016/j.jor.2013.01.008
Keener, J. D., Patterson, B. M., Orvets, N. & Chamberlain, A. M. Degenerative rotator cuff tears: refining surgical indications based on natural history data. J. Am. Acad. Orthop. Surg. 27, 156–165 (2019).
pubmed: 30335631
pmcid: 6389433
doi: 10.5435/JAAOS-D-17-00480
Kim, H. M. et al. Relationship of tear size and location to fatty degeneration of the rotator cuff. J. Bone Joint Surg. Am. 92, 829 (2010).
pubmed: 20360505
pmcid: 2842942
doi: 10.2106/JBJS.H.01746
Yamaguchi, K. et al. The demographic and morphological features of rotator cuff disease. A comparison of asymptomatic and symptomatic shoulders. J. Bone Joint Surg. Am. 88, 1699–1704 (2006).
pubmed: 16882890
doi: 10.2106/JBJS.E.00835
Mall, N. A. et al. Symptomatic progression of asymptomatic rotator cuff tears: a prospective study of clinical and sonographic variables. J. Bone Joint Surg. Am. 92, 2623–2633 (2010).
pubmed: 21084574
pmcid: 2970889
doi: 10.2106/JBJS.I.00506
Yamaguchi, K. et al. Natural history of asymptomatic rotator cuff tears: a longitudinal analysis of asymptomatic tears detected sonographically. J. Shoulder Elbow Surg. 10, 199–203 (2001).
pubmed: 11408898
doi: 10.1067/mse.2001.113086
Teunis, T., Lubberts, B., Reilly, B. T. & Ring, D. A systematic review and pooled analysis of the prevalence of rotator cuff disease with increasing age. J. Shoulder Elbow Surg. 23, 1913–1921 (2014).
pubmed: 25441568
doi: 10.1016/j.jse.2014.08.001
Harvie, P. et al. Genetic influences in the aetiology of tears of the rotator cuff. Sibling risk of a full-thickness tear. J. Bone Joint Surg. Br. 86, 696–700 (2004).
pubmed: 15274266
doi: 10.1302/0301-620X.86B5.14747
Gwilym, S. E. et al. Genetic influences in the progression of tears of the rotator cuff. J. Bone Joint Surg. Br. 91, 915–917 (2009).
pubmed: 19567856
doi: 10.1302/0301-620X.91B7.22353
Zhao, J. et al. Risk factors for supraspinatus tears: a meta-analysis of observational studies. Orthop. J. Sports Med. 9, 23259671211042826 (2021).
pubmed: 34660827
pmcid: 8516389
doi: 10.1177/23259671211042826
Tashjian, R. Z., Granger, E. K., Farnham, J. M., Cannon-Albright, L. A. & Teerlink, C. C. Genome-wide association study for rotator cuff tears identifies two significant single-nucleotide polymorphisms. J. Shoulder Elbow Surg. 25, 174–179 (2016).
pubmed: 26350878
doi: 10.1016/j.jse.2015.07.005
Tashjian, R. Z., Kim, S. K., Roche, M. D., Jones, K. B. & Teerlink, C. C. Genetic variants associated with rotator cuff tearing utilizing multiple population-based genetic resources. J. Shoulder Elbow Surg. 30, 520–531 (2021).
pubmed: 32663566
doi: 10.1016/j.jse.2020.06.036
Yanik, E. L. et al. Identification of a novel genetic marker for risk of degenerative rotator cuff disease surgery in the UK biobank. J. Bone Joint Surg. Am. 103, 1259–1267 (2021).
pubmed: 33979311
doi: 10.2106/JBJS.20.01474
Kim, S. K., Nguyen, C., Jones, K. B. & Tashjian, R. Z. A genome-wide association study for shoulder impingement and rotator cuff disease. J. Shoulder Elbow Surg. 30, 2134–2145 (2021).
pubmed: 33482370
doi: 10.1016/j.jse.2020.11.025
Yoshida, K. et al. Association of superoxide-induced oxidative stress with rotator cuff tears in human patients. J. Orthop. Res. 38, 212–218 (2020).
pubmed: 31520427
doi: 10.1002/jor.24472
Zhao, J. et al. What factors are associated with symptomatic rotator cuff tears: a meta-analysis. Clin. Orthop. Relat. Res. 480, 96–105 (2022).
pubmed: 34424222
doi: 10.1097/CORR.0000000000001949
Huang, S. W. et al. Autoimmune connective tissue diseases and the risk of rotator cuff repair surgery: a population-based retrospective cohort study. BMJ Open 9, e023848 (2019).
pubmed: 30808669
pmcid: 6398915
doi: 10.1136/bmjopen-2018-023848
Huang, S. W. et al. Diabetes mellitus increases the risk of rotator cuff tear repair surgery: a population-based cohort study. J. Diabetes Complications 30, 1473–1477 (2016).
pubmed: 27600100
doi: 10.1016/j.jdiacomp.2016.07.015
Huang, S. W., Wu, C. W., Lin, L. F., Liou, T. H. & Lin, H. W. Gout can increase the risk of receiving rotator cuff tear repair surgery. Am. J. Sports Med. 45, 2355–2363 (2017).
pubmed: 28486089
doi: 10.1177/0363546517704843
Mandalia, K. et al. Social determinants of health influence clinical outcomes of patients undergoing rotator cuff repair: a systematic review. J. Shoulder Elbow Surg. 32, 419–434 (2023).
pubmed: 36252786
doi: 10.1016/j.jse.2022.09.007
Chung, S. W. et al. Altered gene and protein expressions in torn rotator cuff tendon tissues in diabetic patients. Arthroscopy 33, 518–526 e1 (2017).
pubmed: 27789071
doi: 10.1016/j.arthro.2016.08.017
Yeom, J. W. et al. Postoperative HbA1c level as a predictor of rotator cuff integrity after arthroscopic rotator cuff repair in patients with type 2 diabetes. Orthop. J. Sports Med. 11, 23259671221145987 (2023).
pubmed: 36814763
pmcid: 9940196
doi: 10.1177/23259671221145987
Kim, M. S., Rhee, S. M. & Cho, N. S. Increased HbA1c levels in diabetics during the postoperative 3-6 months after rotator cuff repair correlated with increased retear rates. Arthroscopy 39, 176–182 (2023).
pubmed: 36049586
doi: 10.1016/j.arthro.2022.08.021
Wilde, B. et al. Abnormal laboratory values for metabolic and hormonal syndromes are prevalent among patients undergoing rotator cuff repair. Arthrosc. Sports Med. Rehabil. 5, e695–e701 (2023).
pubmed: 37388879
pmcid: 10300579
doi: 10.1016/j.asmr.2023.03.011
Smith, K. M. et al. The effect of sex hormone deficiency on the incidence of rotator cuff repair: analysis of a large insurance database. J. Bone Joint Surg. Am. 104, 774–779 (2022).
pubmed: 35506951
doi: 10.2106/JBJS.21.00103
Soslowsky, L. J. et al. Neer Award 1999. Overuse activity injures the supraspinatus tendon in an animal model: a histologic and biomechanical study. J. Shoulder Elbow Surg. 9, 79–84 (2000).
pubmed: 10810684
doi: 10.1067/mse.2000.101962
Carpenter, J. E., Flanagan, C. L., Thomopoulos, S., Yian, E. H. & Soslowsky, L. J. The effects of overuse combined with intrinsic or extrinsic alterations in an animal model of rotator cuff tendinosis. Am. J. Sports Med. 26, 801–807 (1998).
pubmed: 9850782
doi: 10.1177/03635465980260061101
Keener, J. D. et al. Shoulder activity level and progression of degenerative cuff disease. J. Shoulder Elbow Surg. 26, 1500–1507 (2017).
pubmed: 28734718
doi: 10.1016/j.jse.2017.05.023
Teerlink, C. C., Cannon-Albright, L. A. & Tashjian, R. Z. Significant association of full-thickness rotator cuff tears and estrogen-related receptor-β (ESRRB). J. Shoulder Elbow Surg. 24, e31–e35 (2015).
pubmed: 25219474
doi: 10.1016/j.jse.2014.06.052
Torchia, M. T. et al. Evaluation of survivorship of asymptomatic degenerative rotator cuff tears in patients 65 years and younger: a prospective analysis with long-term follow-up. J. Shoulder Elbow Surg. 32, 1432–1444 (2023).
pubmed: 37024038
doi: 10.1016/j.jse.2023.03.008
Miranda, H., Viikari-Juntura, E., Heistaro, S., Heliovaara, M. & Riihimaki, H. A population study on differences in the determinants of a specific shoulder disorder versus nonspecific shoulder pain without clinical findings. Am. J. Epidemiol. 161, 847–855 (2005).
pubmed: 15840617
doi: 10.1093/aje/kwi112
Svendsen, S. W. et al. Work above shoulder level and degenerative alterations of the rotator cuff tendons: a magnetic resonance imaging study. Arthritis Rheum. 50, 3314–3322 (2004).
pubmed: 15476229
doi: 10.1002/art.20495
Dalboge, A., Frost, P., Andersen, J. H. & Svendsen, S. W. Cumulative occupational shoulder exposures and surgery for subacromial impingement syndrome: a nationwide Danish cohort study. Occup. Environ. Med. 71, 750–756 (2014).
pubmed: 25085767
doi: 10.1136/oemed-2014-102161
Dalboge, A., Frost, P., Andersen, J. H. & Svendsen, S. W. Surgery for subacromial impingement syndrome in relation to occupational exposures, lifestyle factors and diabetes mellitus: a nationwide nested case-control study. Occup. Environ Med. 74, 728–736 (2017).
pubmed: 28490661
doi: 10.1136/oemed-2016-104272
Meyers, A. R. et al. Work-related risk factors for rotator cuff syndrome in a prospective study of manufacturing and healthcare workers. Hum. Factors 65, 419–434 (2023).
pubmed: 34148475
doi: 10.1177/00187208211022122
Yanik, E. L. et al. Occupational demands associated with rotator cuff disease surgery in the UK Biobank. Scand. J. Work. Environ Health 49, 53–63 (2023).
pubmed: 36228192
doi: 10.5271/sjweh.4062
Maman, E. et al. Outcome of nonoperative treatment of symptomatic rotator cuff tears monitored by magnetic resonance imaging. J. Bone Joint Surg. Am. 91, 1898–1906 (2009).
pubmed: 19651947
doi: 10.2106/JBJS.G.01335
Chalmers, P. N. et al. Does the critical shoulder angle correlate with rotator cuff tear progression? Clin. Orthop. Relat. Res. 475, 1608–1617 (2017).
pubmed: 28120293
pmcid: 5406338
doi: 10.1007/s11999-017-5249-1
Rojas Lievano, J., Bautista, M., Woodcock, S., Fierro, G. & Gonzalez, J. C. Controversy on the association of the critical shoulder angle and the development of degenerative rotator cuff tears: is there a true association? A meta-analytical approach. Am. J. Sports Med. 50, 2552–2560 (2022).
pubmed: 34432551
doi: 10.1177/03635465211027305
Jeong, J. Y. et al. Location of rotator cuff tear initiation: a magnetic resonance imaging study of 191 shoulders. Am. J. Sports Med. 46, 649–655 (2018).
pubmed: 29314867
doi: 10.1177/0363546517748925
Lohr, J. F. & Uhthoff, H. K. The microvascular pattern of the supraspinatus tendon. Clin. Orthop. Relat. Res. 254, 35–38 (1990).
doi: 10.1097/00003086-199005000-00005
Burkhart, S. S., Esch, J. C. & Jolson, R. S. The rotator crescent and rotator cable: an anatomic description of the shoulder’s “suspension bridge”. Arthroscopy 9, 611–616 (1993).
pubmed: 8305096
doi: 10.1016/S0749-8063(05)80496-7
Mesiha, M. M., Derwin, K. A., Sibole, S. C., Erdemir, A. & McCarron, J. A. The biomechanical relevance of anterior rotator cuff cable tears in a cadaveric shoulder model. J. Bone Joint Surg. Am. 95, 1817–1824 (2013).
pubmed: 24132354
doi: 10.2106/JBJS.L.00784
Kim, H. M. et al. Location and initiation of degenerative rotator cuff tears: an analysis of three hundred and sixty shoulders. J. Bone Joint Surg. Am. 92, 1088–1096 (2010).
pubmed: 20439653
pmcid: 2945926
doi: 10.2106/JBJS.I.00686
Namdari, S. et al. Characteristics of small to medium-sized rotator cuff tears with and without disruption of the anterior supraspinatus tendon. J. Shoulder Elbow Surg. 23, 20–27 (2014).
pubmed: 23937927
doi: 10.1016/j.jse.2013.05.015
Moosmayer, S., Tariq, R., Stiris, M. & Smith, H. J. The natural history of asymptomatic rotator cuff tears: a three-year follow-up of fifty cases. J. Bone Joint Surg. Am. 95, 1249–1255 (2013).
pubmed: 23864172
doi: 10.2106/JBJS.L.00185
Safran, O., Schroeder, J., Bloom, R., Weil, Y. & Milgrom, C. Natural history of nonoperatively treated symptomatic rotator cuff tears in patients 60 years old or younger. Am. J. Sports Med. 39, 710–714 (2011).
pubmed: 21310940
doi: 10.1177/0363546510393944
Hebert-Davies, J. et al. Progression of fatty muscle degeneration in atraumatic rotator cuff tears. J. Bone Joint Surg. Am. 99, 832–839 (2017).
pubmed: 28509823
pmcid: 5426399
doi: 10.2106/JBJS.16.00030
Neer, C. S.2nd Anterior acromioplasty for the chronic impingement syndrome in the shoulder: a preliminary report. J. Bone Joint Surg. Am. 54, 41–50 (1972).
pubmed: 5054450
doi: 10.2106/00004623-197254010-00003
Overbeek, C. L. et al. Altered cocontraction patterns of humeral head depressors in patients with subacromial pain syndrome: a cross-sectional electromyography analysis. Clin. Orthop. Relat. Res. 477, 1862–1868 (2019).
pubmed: 31107319
pmcid: 7000021
doi: 10.1097/CORR.0000000000000745
Overbeek, C. L. et al. Increased co-contraction of arm adductors is associated with a favorable course in subacromial pain syndrome. J. Shoulder Elbow Surg. 27, 1925–1931 (2018).
pubmed: 30243903
doi: 10.1016/j.jse.2018.06.015
Levy, B. J. et al. Subacromial bursal tissue and surrounding matrix of patients undergoing rotator cuff repair contains progenitor cells. Arthroscopy 38, 1115–1123 (2022).
pubmed: 34767955
doi: 10.1016/j.arthro.2021.10.029
Kriscenski, D. E. et al. Characterization of murine subacromial bursal-derived cells. Connect. Tissue Res. 63, 287–297 (2022).
pubmed: 34042553
doi: 10.1080/03008207.2021.1917556
Morikawa, D. et al. Analysis of patient factors affecting in vitro characteristics of subacromial bursal connective tissue progenitor cells during rotator cuff repair. J. Clin. Med. 10, 4006 (2021).
pubmed: 34501453
pmcid: 8432549
doi: 10.3390/jcm10174006
Marshall, B. P. et al. The subacromial bursa is a key regulator of the rotator cuff and a new therapeutic target for improving repair. Preprint at bioRxiv https://doi.org/10.1101/2023.07.01.547347 (2023).
McFarland, E. G. et al. Impingement is not impingement: the case for calling it “rotator cuff disease”. Muscles Ligaments Tendons J. 3, 196–200 (2013).
pubmed: 24367779
pmcid: 3838328
doi: 10.32098/mltj.03.2013.11
Maffulli, N., Khan, K. M. & Puddu, G. Overuse tendon conditions: time to change a confusing terminology. Arthroscopy 14, 840–843 (1998).
pubmed: 9848596
doi: 10.1016/S0749-8063(98)70021-0
Sharma, P. & Maffulli, N. Tendon injury and tendinopathy: healing and repair. J. Bone Joint Surg. Am. 87, 187–202 (2005).
pubmed: 15634833
D’Addona, A., Maffulli, N., Formisano, S. & Rosa, D. Inflammation in tendinopathy. Surgeon 15, 297–302 (2017).
pubmed: 28596062
doi: 10.1016/j.surge.2017.04.004
Dakin, S. G. et al. Inflammation activation and resolution in human tendon disease. Sci. Transl. Med. 7, 311ra173 (2015).
pubmed: 26511510
pmcid: 4883654
doi: 10.1126/scitranslmed.aac4269
Akbar, M. et al. Single cell and spatial transcriptomics in human tendon disease indicate dysregulated immune homeostasis. Ann. Rheum. Dis. 80, 1494–1497 (2021).
pubmed: 34001518
doi: 10.1136/annrheumdis-2021-220256
Millar, N. L. et al. IL-17A mediates inflammatory and tissue remodelling events in early human tendinopathy. Sci. Rep. 6, 27149 (2016).
pubmed: 27263531
pmcid: 4893609
doi: 10.1038/srep27149
Franklin, S. L. et al. Up-regulation of glutamate in painful human supraspinatus tendon tears. Am. J. Sports Med. 42, 1955–1962 (2014).
pubmed: 24872365
doi: 10.1177/0363546514532754
Dean, B. J., Snelling, S. J., Dakin, S. G., Javaid, M. K. & Carr, A. J. In vitro effects of glutamate and N-methyl-D-aspartate receptor (NMDAR) antagonism on human tendon derived cells. J. Orthop. Res. 33, 1515–1522 (2015).
pubmed: 26041147
doi: 10.1002/jor.22923
Abate, M. et al. Oxidative stress and abnormal tendon sonographic features in elite soccer players (a pilot study). Rev. Bras. Ortop. 56, 432–437 (2021).
Zapp, C. et al. Mechanoradicals in tensed tendon collagen as a source of oxidative stress. Nat. Commun. 11, 2315 (2020).
pubmed: 32385229
pmcid: 7210969
doi: 10.1038/s41467-020-15567-4
Liang, Y. et al. Quercetin reduces tendon adhesion in rat through suppression of oxidative stress. BMC Musculoskelet. Disord. 21, 608 (2020).
pubmed: 32917186
pmcid: 7488677
doi: 10.1186/s12891-020-03618-2
Yuan, T. et al. Proteomic analysis reveals rotator cuff injury caused by oxidative stress. Ther. Adv. Chronic Dis. 12, 2040622320987057 (2021).
pubmed: 33796243
pmcid: 7975570
doi: 10.1177/2040622320987057
Lui, P. P. Y., Zhang, X., Yao, S., Sun, H. & Huang, C. Roles of oxidative stress in acute tendon injury and degenerative tendinopathy – a target for intervention. Int. J. Mol. Sci. 23, 3571 (2022).
pubmed: 35408931
pmcid: 8998577
doi: 10.3390/ijms23073571
Wunderli, S. L. et al. Tendon response to matrix unloading is determined by the patho-physiological niche. Matrix Biol. 89, 11–26 (2020).
pubmed: 31917255
doi: 10.1016/j.matbio.2019.12.003
Joshi, S. K. et al. mTOR regulates fatty infiltration through SREBP-1 and PPARγ after a combined massive rotator cuff tear and suprascapular nerve injury in rats. J. Orthop. Res. 31, 724–730 (2013).
pubmed: 23239524
doi: 10.1002/jor.22254
Lui, P. P. Y. Tendinopathy in diabetes mellitus patients – epidemiology, pathogenesis, and management. Scand. J. Med. Sci. Sports 27, 776–787 (2017).
pubmed: 28106286
doi: 10.1111/sms.12824
Pouzaud, F. et al. In vitro discrimination of fluoroquinolones toxicity on tendon cells: involvement of oxidative stress. J. Pharmacol. Exp. Ther. 308, 394–402 (2004).
pubmed: 14569066
doi: 10.1124/jpet.103.057984
Lehner, C. et al. Bupivacaine induces short-term alterations and impairment in rat tendons. Am. J. Sports Med. 41, 1411–1418 (2013).
pubmed: 23661215
doi: 10.1177/0363546513485406
Sajithlal, G. B., Chithra, P. & Chandrakasan, G. Effect of curcumin on the advanced glycation and cross-linking of collagen in diabetic rats. Biochem. Pharmacol. 56, 1607–1614 (1998).
pubmed: 9973181
doi: 10.1016/S0006-2952(98)00237-8
Lansdown, D. A. et al. Preoperative IDEAL (Iterative Decomposition of Echoes of Asymmetrical Length) magnetic resonance imaging rotator cuff muscle fat fractions are associated with rotator cuff repair outcomes. J. Shoulder Elbow Surg. 28, 1936–1941 (2019).
pubmed: 31371160
doi: 10.1016/j.jse.2019.05.018
Meyer, G. A., Thomopoulos, S., Abu-Amer, Y. & Shen, K. C. Tenotomy-induced muscle atrophy is sex-specific and independent of NFκB. Elife 11, e82016 (2022).
pubmed: 36508247
pmcid: 9873255
doi: 10.7554/eLife.82016
Liu, X. et al. Evaluation of Akt/mTOR activity in muscle atrophy after rotator cuff tears in a rat model. J. Orthop. Res. 30, 1440–1446 (2012).
pubmed: 22378614
doi: 10.1002/jor.22096
Davies, M. R. et al. Rat rotator cuff muscle responds differently from hindlimb muscle to a combined tendon-nerve injury. J. Orthop. Res. 33, 1046–1053 (2015).
pubmed: 25974842
doi: 10.1002/jor.22864
Zheng, R. et al. Leucine attenuates muscle atrophy and autophagosome formation by activating PI3K/AKT/mTOR signaling pathway in rotator cuff tears. Cell Tissue Res. 378, 113–125 (2019).
pubmed: 31020406
doi: 10.1007/s00441-019-03021-x
Valencia, A. P., Iyer, S. R., Spangenburg, E. E., Gilotra, M. N. & Lovering, R. M. Impaired contractile function of the supraspinatus in the acute period following a rotator cuff tear. BMC Musculoskelet. Disord. 18, 436 (2017).
pubmed: 29121906
pmcid: 5679320
doi: 10.1186/s12891-017-1789-5
Jackman, R. W., Cornwell, E. W., Wu, C. L. & Kandarian, S. C. Nuclear factor-κB signalling and transcriptional regulation in skeletal muscle atrophy. Exp. Physiol. 98, 19–24 (2013).
pubmed: 22848079
doi: 10.1113/expphysiol.2011.063321
Davies, M. R. et al. Muscle stem cell activation in a mouse model of rotator cuff injury. J. Orthop. Res. 36, 1370–1376 (2018).
pubmed: 28786534
pmcid: 5803476
doi: 10.1002/jor.23679
Brack, A. S. & Munoz-Canoves, P. The ins and outs of muscle stem cell aging. Skelet. Muscle 6, 1 (2016).
pubmed: 26783424
pmcid: 4716636
doi: 10.1186/s13395-016-0072-z
Barruet, E. et al. Functionally heterogeneous human satellite cells identified by single cell RNA sequencing. Elife 9, e51576 (2020).
pubmed: 32234209
pmcid: 7164960
doi: 10.7554/eLife.51576
Hwang, A. B. & Brack, A. S. Muscle stem cells and aging. Curr. Top. Dev. Biol. 126, 299–322 (2018).
pubmed: 29305003
doi: 10.1016/bs.ctdb.2017.08.008
Brack, A. S. et al. Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis. Science 317, 807–810 (2007).
pubmed: 17690295
doi: 10.1126/science.1144090
Brack, A. S. & Rando, T. A. Intrinsic changes and extrinsic influences of myogenic stem cell function during aging. Stem Cell Rev. 3, 226–237 (2007).
pubmed: 17917136
doi: 10.1007/s12015-007-9000-2
Gerber, C., Meyer, D. C., Schneeberger, A. G., Hoppeler, H. & von Rechenberg, B. Effect of tendon release and delayed repair on the structure of the muscles of the rotator cuff: an experimental study in sheep. J. Bone Joint Surg. Am. 86, 1973–1982 (2004).
pubmed: 15342760
doi: 10.2106/00004623-200409000-00016
Chung, S. W. et al. Effect of hypercholesterolemia on fatty infiltration and quality of tendon-to-bone healing in a rabbit model of a chronic rotator cuff tear: electrophysiological, biomechanical, and histological analyses. Am. J. Sports Med. 44, 1153–1164 (2016).
pubmed: 26912283
doi: 10.1177/0363546515627816
Joe, A. W. et al. Muscle injury activates resident fibro/adipogenic progenitors that facilitate myogenesis. Nat. Cell Biol. 12, 153–163 (2010).
pubmed: 20081841
pmcid: 4580288
doi: 10.1038/ncb2015
Uezumi, A. et al. Fibrosis and adipogenesis originate from a common mesenchymal progenitor in skeletal muscle. J. Cell Sci. 124, 3654–3664 (2011).
pubmed: 22045730
doi: 10.1242/jcs.086629
Uezumi, A., Fukada, S., Yamamoto, N., Takeda, S. & Tsuchida, K. Mesenchymal progenitors distinct from satellite cells contribute to ectopic fat cell formation in skeletal muscle. Nat. Cell Biol. 12, 143–152 (2010).
pubmed: 20081842
doi: 10.1038/ncb2014
Wosczyna, M. N. et al. Targeting microRNA-mediated gene repression limits adipogenic conversion of skeletal muscle mesenchymal stromal cells. Cell Stem Cell 28, 1323–1334.e8 (2021).
pubmed: 33945794
pmcid: 8254802
doi: 10.1016/j.stem.2021.04.008
Wang, X. et al. Diverse effector and regulatory functions of fibro/adipogenic progenitors during skeletal muscle fibrosis in muscular dystrophy. iScience 26, 105775 (2023).
pubmed: 36594034
doi: 10.1016/j.isci.2022.105775
Consalvi, S. et al. Determinants of epigenetic resistance to HDAC inhibitors in dystrophic fibro-adipogenic progenitors. EMBO Rep. 23, e54721 (2022).
pubmed: 35383427
pmcid: 9171680
doi: 10.15252/embr.202254721
Theret, M., Rossi, F. M. V. & Contreras, O. Evolving roles of muscle-resident fibro-adipogenic progenitors in health, regeneration, neuromuscular disorders, and aging. Front. Physiol. 12, 673404 (2021).
pubmed: 33959042
pmcid: 8093402
doi: 10.3389/fphys.2021.673404
Moratal, C., Arrighi, N., Dechesne, C. A. & Dani, C. Control of muscle fibro-adipogenic progenitors by myogenic lineage is altered in aging and Duchenne muscular dystrophy. Cell Physiol. Biochem. 53, 1029–1045 (2019).
pubmed: 31865646
doi: 10.33594/000000196
Lee, C. et al. Rotator cuff fibro-adipogenic progenitors demonstrate highest concentration, proliferative capacity, and adipogenic potential across muscle groups. J. Orthop. Res. 38, 1113–1121 (2020).
pubmed: 31799698
doi: 10.1002/jor.24550
Davies, M. R. et al. TGF-β small molecule inhibitor SB431542 reduces rotator cuff muscle fibrosis and fatty infiltration by promoting fibro/adipogenic progenitor apoptosis. PLoS ONE 11, e0155486 (2016).
pubmed: 27186977
pmcid: 4871364
doi: 10.1371/journal.pone.0155486
Shirasawa, H. et al. Retinoic acid receptor agonists suppress muscle fatty infiltration in mice. Am. J. Sports Med. 49, 332–339 (2021).
pubmed: 33428447
doi: 10.1177/0363546520984122
Itoigawa, Y., Kishimoto, K. N., Sano, H., Kaneko, K. & Itoi, E. Molecular mechanism of fatty degeneration in rotator cuff muscle with tendon rupture. J. Orthop. Res. 29, 861–866 (2011).
pubmed: 21246616
doi: 10.1002/jor.21317
Davis, M. E. et al. Simvastatin reduces fibrosis and protects against muscle weakness after massive rotator cuff tear. J. Shoulder Elbow Surg. 24, 280–287 (2015).
pubmed: 25213828
doi: 10.1016/j.jse.2014.06.048
Contreras, O., Rossi, F. M. V. & Theret, M. Origins, potency, and heterogeneity of skeletal muscle fibro-adipogenic progenitors – time for new definitions. Skelet. Muscle 11, 16 (2021).
pubmed: 34210364
pmcid: 8247239
doi: 10.1186/s13395-021-00265-6
Biferali, B., Proietti, D., Mozzetta, C. & Madaro, L. Fibro-adipogenic progenitors cross-talk in skeletal muscle: the social network. Front. Physiol. 10, 1074 (2019).
pubmed: 31496956
pmcid: 6713247
doi: 10.3389/fphys.2019.01074
Malecova, B. et al. Dynamics of cellular states of fibro-adipogenic progenitors during myogenesis and muscular dystrophy. Nat. Commun. 9, 3670 (2018).
pubmed: 30202063
pmcid: 6131350
doi: 10.1038/s41467-018-06068-6
Garcia, S. M. et al. Distinct human stem cell subpopulations drive adipogenesis and fibrosis in musculoskeletal injury. Preprint at bioRxiv https://doi.org/10.1101/2023.07.28.551038 (2023).
Davies, M. R. et al. Muscle-derived beige adipose precursors secrete promyogenic exosomes that treat rotator cuff muscle degeneration in mice and are identified in humans by single-cell RNA sequencing. Am. J. Sports Med. 50, 2247–2257 (2022).
pubmed: 35604307
doi: 10.1177/03635465221095568
Wang, Z. et al. β
pubmed: 32599287
doi: 10.1016/j.jse.2020.06.006
Wang, Z. et al. Intramuscular brown fat activation decreases muscle atrophy and fatty infiltration and improves gait after delayed rotator cuff repair in mice. Am. J. Sports Med. 48, 1590–1600 (2020).
pubmed: 32282238
doi: 10.1177/0363546520910421
Lee, C. et al. Beige FAPs transplantation improves muscle quality and shoulder function after massive rotator cuff tears. J. Orthop. Res. 38, 1159–1166 (2020).
pubmed: 31808573
doi: 10.1002/jor.24558
Bunker, D. L., Ilie, V., Ilie, V. & Nicklin, S. Tendon to bone healing and its implications for surgery. Muscles Ligaments Tendons J. 4, 343–350 (2014).
pubmed: 25489553
pmcid: 4241426
doi: 10.32098/mltj.03.2014.13
Tresoldi, I. et al. Tendon’s ultrastructure. Muscles Ligaments Tendons J. 3, 2–6 (2013).
pubmed: 23885339
pmcid: 3676160
doi: 10.32098/mltj.01.2013.02
Moser, H. L. et al. Cell lineage tracing and functional assessment of supraspinatus tendon healing in an acute repair murine model. J. Orthop. Res. 39, 1789–1799 (2021).
pubmed: 32497311
doi: 10.1002/jor.24769
Rodeo, S. A., Arnoczky, S. P., Torzilli, P. A., Hidaka, C. & Warren, R. F. Tendon-healing in a bone tunnel. A biomechanical and histological study in the dog. J. Bone Joint Surg. Am. 75, 1795–1803 (1993).
pubmed: 8258550
doi: 10.2106/00004623-199312000-00009
Rodeo, S. A., Suzuki, K., Deng, X. H., Wozney, J. & Warren, R. F. Use of recombinant human bone morphogenetic protein-2 to enhance tendon healing in a bone tunnel. Am. J. Sports Med. 27, 476–488 (1999).
pubmed: 10424218
doi: 10.1177/03635465990270041201
Hashimoto, Y., Yoshida, G., Toyoda, H. & Takaoka, K. Generation of tendon-to-bone interface “enthesis” with use of recombinant BMP-2 in a rabbit model. J. Orthop. Res. 25, 1415–1424 (2007).
pubmed: 17557323
doi: 10.1002/jor.20447
Bedi, A. et al. The effect of matrix metalloproteinase inhibition on tendon-to-bone healing in a rotator cuff repair model. J. Shoulder Elbow Surg. 19, 384–391 (2010).
pubmed: 19800260
doi: 10.1016/j.jse.2009.07.010
Kovacevic, D. & Rodeo, S. A. Biological augmentation of rotator cuff tendon repair. Clin. Orthop. Relat. Res. 466, 622–633 (2008).
pubmed: 18264850
pmcid: 2505220
doi: 10.1007/s11999-007-0112-4
Lim, J. K. et al. Enhancement of tendon graft osteointegration using mesenchymal stem cells in a rabbit model of anterior cruciate ligament reconstruction. Arthroscopy 20, 899–910 (2004).
pubmed: 15525922
doi: 10.1016/S0749-8063(04)00653-X
Pill, S. G., Phillips, J., Kissenberth, M. J. & Hawkins, R. J. Decision making in massive rotator cuff tears. Instr. Course Lect. 61, 97–111 (2012).
pubmed: 22301225
Carter, A. N. & Erickson, S. M. Proximal biceps tendon rupture: primarily an injury of middle age. Phys. Sportsmed. 27, 95–101 (1999).
pubmed: 20086727
doi: 10.3810/psm.1999.06.888
Millar, N. L. et al. Frozen shoulder. Nat. Rev. Dis. Primers 8, 59 (2022).
pubmed: 36075904
doi: 10.1038/s41572-022-00386-2
Hegedus, E. J. et al. Which physical examination tests provide clinicians with the most value when examining the shoulder? Update of a systematic review with meta-analysis of individual tests. Br. J. Sports Med. 46, 964–978 (2012).
pubmed: 22773322
doi: 10.1136/bjsports-2012-091066
Hermans, J. et al. Does this patient with shoulder pain have rotator cuff disease? The rational clinical examination systematic review. JAMA 310, 837–847 (2013).
pubmed: 23982370
doi: 10.1001/jama.2013.276187
Alqunaee, M., Galvin, R. & Fahey, T. Diagnostic accuracy of clinical tests for subacromial impingement syndrome: a systematic review and meta-analysis. Arch. Phys. Med. Rehabil. 93, 229–236 (2012).
pubmed: 22289231
doi: 10.1016/j.apmr.2011.08.035
Micheroli, R. et al. Correlation of findings in clinical and high resolution ultrasonography examinations of the painful shoulder. J. Ultrason. 15, 29–44 (2015).
pubmed: 26674725
pmcid: 4579705
doi: 10.15557/JoU.2015.0003
Silva, L. et al. Accuracy of physical examination in subacromial impingement syndrome. Rheumatology 47, 679–683 (2008).
pubmed: 18375403
doi: 10.1093/rheumatology/ken101
Jain, N. B. et al. The diagnostic accuracy of special tests for rotator cuff tear: the ROW cohort study. Am. J. Phys. Med. Rehabil. 96, 176–183 (2017).
pubmed: 27386812
pmcid: 5218987
doi: 10.1097/PHM.0000000000000566
Schiefer, M. et al. Clinical diagnosis of subscapularis tendon tear using the bear hug semiological maneuver. Rev. Bras. Ortop. 47, 588–592 (2012).
pubmed: 27047870
doi: 10.1590/S0102-36162012000500008
Ernstbrunner, L. et al. Chronic pseudoparalysis needs to be distinguished from pseudoparesis: a structural and biomechanical analysis. Am. J. Sports Med. 49, 291–297 (2021).
pubmed: 33253014
doi: 10.1177/0363546520969858
Hamada, K., Yamanaka, K., Uchiyama, Y., Mikasa, T. & Mikasa, M. A radiographic classification of massive rotator cuff tear arthritis. Clin. Orthop. Relat. Res. 469, 2452 (2011).
pubmed: 21503787
pmcid: 3148384
doi: 10.1007/s11999-011-1896-9
van der Reijden, J. J. et al. The value of radiographic markers in the diagnostic work-up of rotator cuff tears, an arthroscopic correlated study. Skelet. Radiol. 49, 55–64 (2020).
doi: 10.1007/s00256-019-03251-8
Pearsall, A. W. et al. Radiographic findings associated with symptomatic rotator cuff tears. J. Shoulder Elbow Surg. 12, 122–127 (2003).
pubmed: 12700562
doi: 10.1067/mse.2003.19
Samilson, R. L. & Prieto, V. Dislocation arthropathy of the shoulder. J. Bone. Joint Surg. Am. 65, 456–460 (1983).
pubmed: 6833319
doi: 10.2106/00004623-198365040-00005
Brox, J., Lereim, P., Merckoll, E. & Finnanger, A. M. Radiographic classification of glenohumeral arthrosis. Acta Orthop. Scand. 74, 186–189 (2003).
pubmed: 12807327
doi: 10.1080/00016470310013932
Goutallier, D. et al. Acromio humeral distance less than six millimeter: its meaning in full-thickness rotator cuff tear. Orthop. Traumatol. Surg. Res. 97, 246–251 (2011).
pubmed: 21459063
doi: 10.1016/j.otsr.2011.01.010
Bahrs, C., Lingenfelter, E., Fischer, F., Walters, E. M. & Schnabel, M. Mechanism of injury and morphology of the greater tuberosity fracture. J. Shoulder Elbow Surg. 15, 140–147 (2006).
pubmed: 16517355
doi: 10.1016/j.jse.2005.07.004
Speed, C. A. & Hazleman, B. L. Calcific tendinitis of the shoulder. N. Engl. J. Med. 340, 1582–1584 (1999).
pubmed: 10332023
doi: 10.1056/NEJM199905203402011
Elsharkawi, M., Cakir, B., Reichel, H. & Kappe, T. Reliability of radiologic glenohumeral osteoarthritis classifications. J. Shoulder Elbow Surg. 22, 1063–1067 (2013).
pubmed: 23375877
doi: 10.1016/j.jse.2012.11.007
Smith, T. O., Daniell, H., Geere, J.-A., Toms, A. P. & Hing, C. B. The diagnostic accuracy of MRI for the detection of partial- and full-thickness rotator cuff tears in adults. Magn. Reson. Imaging 30, 336–346 (2012).
pubmed: 22260933
doi: 10.1016/j.mri.2011.12.008
Roy, J.-S. et al. Diagnostic accuracy of ultrasonography, MRI and MR arthrography in the characterisation of rotator cuff disorders: a systematic review and meta-analysis. Br. J. Sports Med. 49, 1316–1328 (2015).
pubmed: 25677796
doi: 10.1136/bjsports-2014-094148
Cofield, R. H. et al. Surgical repair of chronic rotator cuff tears. A prospective long-term study. J. Bone Joint Surg. Am. 83, 71–77 (2001).
pubmed: 11205861
doi: 10.2106/00004623-200101000-00010
Meyer, D. C., Wieser, K., Farshad, M. & Gerber, C. Retraction of supraspinatus muscle and tendon as predictors of success of rotator cuff repair. Am. J. Sports Med. 40, 2242–2247 (2012).
pubmed: 22926748
doi: 10.1177/0363546512457587
Jungmann, P. M. et al. Reliable semiquantitative whole‐joint MRI score for the shoulder joint: the Shoulder Osteoarthritis Severity (SOAS) score. J. Magn. Reson. Imaging 49, e152–e163 (2019).
pubmed: 30079543
doi: 10.1002/jmri.26251
Fuchs, B., Weishaupt, D., Zanetti, M., Hodler, J. & Gerber, C. Fatty degeneration of the muscles of the rotator cuff: assessment by computed tomography versus magnetic resonance imaging. J. Shoulder Elbow Surg. 8, 599–605 (1999).
pubmed: 10633896
doi: 10.1016/S1058-2746(99)90097-6
Burkhart, S. S., Barth, J. R., Richards, D. P., Zlatkin, M. B. & Larsen, M. Arthroscopic repair of massive rotator cuff tears with stage 3 and 4 fatty degeneration. Arthroscopy 23, 347–354 (2007).
pubmed: 17418325
doi: 10.1016/j.arthro.2006.12.012
Goutallier, D., Postel, J.-M., Bernageau, J., Lavau, L. & Voisin, M.-C. Fatty muscle degeneration in cuff ruptures: pre- and postoperative evaluation by CT scan. Clin. Orthop. Relat. Res. 304, 78–83 (1994).
doi: 10.1097/00003086-199407000-00014
Goutallier, D., Postel, J.-M., Gleyze, P., Leguilloux, P. & Van Driessche, S. Influence of cuff muscle fatty degeneration on anatomic and functional outcomes after simple suture of full-thickness tears. J. Shoulder Elbow Surg. 12, 550–554 (2003).
pubmed: 14671517
doi: 10.1016/S1058-2746(03)00211-8
Lippe, J. et al. Inter-rater agreement of the Goutallier, Patte, and Warner classification scores using preoperative magnetic resonance imaging in patients with rotator cuff tears. Arthroscopy 28, 154–159 (2012).
pubmed: 22019235
doi: 10.1016/j.arthro.2011.07.016
Schiefer, M. et al. Intraobserver and interobserver agreement of Goutallier classification applied to magnetic resonance images. J. Shoulder Elbow Surg. 24, 1314–1321 (2015).
pubmed: 25940380
doi: 10.1016/j.jse.2015.02.011
Slabaugh, M. A. et al. Interobserver and intraobserver reliability of the Goutallier classification using magnetic resonance imaging: proposal of a simplified classification system to increase reliability. Am. J. Sports Med. 40, 1728–1734 (2012).
pubmed: 22753846
doi: 10.1177/0363546512452714
Agten, C. A., Rosskopf, A. B., Gerber, C. & Pfirrmann, C. W. Quantification of early fatty infiltration of the rotator cuff muscles: comparison of multi-echo Dixon with single-voxel MR spectroscopy. Eur. Radiol. 26, 3719–3727 (2016).
pubmed: 26679183
doi: 10.1007/s00330-015-4144-y
Lansdown, D. A. et al. A prospective, quantitative evaluation of fatty infiltration before and after rotator cuff repair. Orthop. J. Sports Med. 5, 2325967117718537 (2017).
pubmed: 28781978
pmcid: 5521346
doi: 10.1177/2325967117718537
Lee, S. et al. Magnetic resonance rotator cuff fat fraction and its relationship with tendon tear severity and subject characteristics. J. Shoulder Elbow Surg. 24, 1442–1451 (2015).
pubmed: 25819731
doi: 10.1016/j.jse.2015.01.013
Nardo, L. et al. Quantitative assessment of fat infiltration in the rotator cuff muscles using water–fat MRI. J. Magn. Reson. Imaging 39, 1178–1185 (2014).
pubmed: 24115490
doi: 10.1002/jmri.24278
Kwon, J., Kim, S. H., Lee, Y. H., Kim, T. I. & Oh, J. H. The rotator cuff healing index: a new scoring system to predict rotator cuff healing after surgical repair. Am. J. Sports Med. 47, 173–180 (2019).
pubmed: 30485753
doi: 10.1177/0363546518810763
Lenza, M. et al. Magnetic resonance imaging, magnetic resonance arthrography and ultrasonography for assessing rotator cuff tears in people with shoulder pain for whom surgery is being considered. Cochrane Database Syst. Rev. 2013, CD009020 (2013).
pubmed: 24065456
pmcid: 6464715
Lecouvet, F. E. et al. Multidetector spiral CT arthrography of the shoulder: clinical applications and limits, with MR arthrography and arthroscopic correlations. Eur. J. Radiol. 68, 120–136 (2008).
pubmed: 18400443
doi: 10.1016/j.ejrad.2008.02.025
Nazarian, L. N. et al. Imaging algorithms for evaluating suspected rotator cuff disease: Society of Radiologists in Ultrasound consensus conference statement. Radiology 267, 589–595 (2013).
pubmed: 23401583
pmcid: 3632808
doi: 10.1148/radiol.13121947
Middleton, W. D. et al. Sonography and MRI of the shoulder: comparison of patient satisfaction. AJR Am. J. Roentgenol. 183, 1449–1452 (2004).
pubmed: 15505319
doi: 10.2214/ajr.183.5.1831449
Parker, L. et al. Musculoskeletal imaging: Medicare use, costs, and potential for cost substitution. J. Am. Coll. Radiol. 5, 182–188 (2008).
pubmed: 18312965
doi: 10.1016/j.jacr.2007.07.016
Iannotti, J. P. et al. Accuracy of office-based ultrasonography of the shoulder for the diagnosis of rotator cuff tears. J. Bone Joint Surg. Am. 87, 1305–1311 (2005).
pubmed: 15930541
Farooqi, A. S. et al. Diagnostic accuracy of ultrasonography for rotator cuff tears: a systematic review and meta-analysis. Orthop. J. Sports Med. 9, 23259671211035106 (2021).
pubmed: 34660823
pmcid: 8511934
doi: 10.1177/23259671211035106
Khoury, V., Cardinal, É. & Brassard, P. Atrophy and fatty infiltration of the supraspinatus muscle: sonography versus MRI. AJR Am. J. Roentgenol. 190, 1105–1111 (2008).
pubmed: 18356462
doi: 10.2214/AJR.07.2835
Aranha, L., Eapen, C., Patel, V. D., Prabhakar, A. J. & Hariharan, K. Muscle fatigue response of rotator cuff muscles in different postures. Arch. Orthop. Trauma. Surg. 143, 3191–3199 (2023).
pubmed: 36305967
doi: 10.1007/s00402-022-04650-8
Griffith, K. M. et al. Review of human supraspinatus tendon mechanics. Part I: fatigue damage accumulation and failure. J. Shoulder Elbow Surg. 31, 2671–2677 (2022).
pubmed: 35931330
doi: 10.1016/j.jse.2022.06.017
Ranger, T. A., Wong, A. M., Cook, J. L. & Gaida, J. E. Is there an association between tendinopathy and diabetes mellitus? A systematic review with meta-analysis. Br. J. Sports Med. 50, 982–989 (2016).
pubmed: 26598716
doi: 10.1136/bjsports-2015-094735
Lewis, J. S. & Sandford, F. M. Rotator cuff tendinopathy: is there a role for polyunsaturated fatty acids and antioxidants? J. Hand Ther. 22, 49–55 (2009).
pubmed: 18950988
doi: 10.1197/j.jht.2008.06.007
Angeline, M. E. et al. Effect of diet-induced vitamin D deficiency on rotator cuff healing in a rat model. Am. J. Sports Med. 42, 27–34 (2014).
pubmed: 24131579
doi: 10.1177/0363546513505421
Kuo, L. T. et al. Depression increases the risk of rotator cuff tear and rotator cuff repair surgery: a nationwide population-based study. PLoS ONE 14, e0225778 (2019).
pubmed: 31765424
pmcid: 6876882
doi: 10.1371/journal.pone.0225778
Song, A. et al. Comparative time to improvement in nonoperative and operative treatment of rotator cuff tears. J. Bone Joint Surg. Am. 102, 1142–1150 (2020).
pubmed: 32618921
doi: 10.2106/JBJS.19.01112
Kuhn, J. E. et al. Effectiveness of physical therapy in treating atraumatic full-thickness rotator cuff tears: a multicenter prospective cohort study. J. Shoulder Elbow Surg. 22, 1371–1379 (2013).
pubmed: 23540577
pmcid: 3748251
doi: 10.1016/j.jse.2013.01.026
Dunn, W. R. et al. 2013 Neer Award: predictors of failure of nonoperative treatment of chronic, symptomatic, full-thickness rotator cuff tears. J. Shoulder Elbow Surg. 25, 1303–1311 (2016).
pubmed: 27422460
doi: 10.1016/j.jse.2016.04.030
Moosmayer, S. et al. Tendon repair compared with physiotherapy in the treatment of rotator cuff tears: a randomized controlled study in 103 cases with a five-year follow-up. J. Bone Joint Surg. Am. 96, 1504–1514 (2014).
pubmed: 25232074
doi: 10.2106/JBJS.M.01393
Kukkonen, J. et al. Treatment of nontraumatic rotator cuff tears: a randomized controlled trial with two years of clinical and imaging follow-up. J. Bone Joint Surg. Am. 97, 1729–1737 (2015).
pubmed: 26537160
doi: 10.2106/JBJS.N.01051
Moosmayer, S. et al. At a 10-year follow-up, tendon repair is superior to physiotherapy in the treatment of small and medium-sized rotator cuff tears. J. Bone Joint Surg. Am. 101, 1050–1060 (2019).
pubmed: 31220021
doi: 10.2106/JBJS.18.01373
Levy, O., Mullett, H., Roberts, S. & Copeland, S. The role of anterior deltoid reeducation in patients with massive irreparable degenerative rotator cuff tears. J. Shoulder Elbow Surg. 17, 863–870 (2008).
pubmed: 18718765
doi: 10.1016/j.jse.2008.04.005
Bennell, K. et al. Efficacy of standardised manual therapy and home exercise programme for chronic rotator cuff disease: randomised placebo controlled trial. BMJ 340, c2756 (2010).
pubmed: 20530557
pmcid: 2882554
doi: 10.1136/bmj.c2756
Bernhardsson, S., Klintberg, I. H. & Wendt, G. K. Evaluation of an exercise concept focusing on eccentric strength training of the rotator cuff for patients with subacromial impingement syndrome. Clin. Rehabil. 25, 69–78 (2011).
pubmed: 20713438
doi: 10.1177/0269215510376005
Ludewig, P. M. & Reynolds, J. F. The association of scapular kinematics and glenohumeral joint pathologies. J. Orthop. Sports Phys. Ther. 39, 90–104 (2009).
pubmed: 19194022
pmcid: 2730194
doi: 10.2519/jospt.2009.2808
Cools, A. M. et al. Rehabilitation of scapular muscle balance: which exercises to prescribe? Am. J. Sports Med. 35, 1744–1751 (2007).
pubmed: 17606671
doi: 10.1177/0363546507303560
Boudreault, J. et al. The efficacy of oral non-steroidal anti-inflammatory drugs for rotator cuff tendinopathy: a systematic review and meta-analysis. J. Rehabil. Med. 46, 294–306 (2014).
pubmed: 24626286
doi: 10.2340/16501977-1800
Mazières, B., Rouanet, S., Guillon, Y., Scarsi, C. & Reiner, V. Topical ketoprofen patch in the treatment of tendinitis: a randomized, double blind, placebo controlled study. J. Rheumatol. 32, 1563–1570 (2005).
pubmed: 16078335
Tangtiphaiboontana, J. et al. The effects of nonsteroidal anti-inflammatory medications after rotator cuff surgery: a randomized, double-blind, placebo-controlled trial. J. Shoulder Elbow Surg. 30, 1990–1997 (2021).
pubmed: 34174448
doi: 10.1016/j.jse.2021.05.018
Desai, V. S. et al. Increasing numbers of shoulder corticosteroid injections within a year preoperatively may be associated with a higher rate of subsequent revision rotator cuff surgery. Arthroscopy 35, 45–50 (2019).
pubmed: 30473453
doi: 10.1016/j.arthro.2018.07.043
Werner, B. C. et al. The timing of elective shoulder surgery after shoulder injection affects postoperative infection risk in Medicare patients. J. Shoulder Elbow Surg. 25, 390–397 (2016).
pubmed: 26651428
doi: 10.1016/j.jse.2015.08.039
Bhattacharjee, S., Lee, W., Lee, M. J. & Shi, L. L. Preoperative corticosteroid joint injections within 2 weeks of shoulder arthroscopies increase postoperative infection risk. J. Shoulder Elbow Surg. 28, 2098–2102 (2019).
pubmed: 31262638
doi: 10.1016/j.jse.2019.03.037
Xiang, X. N. et al. Conservative treatment of partial-thickness rotator cuff tears and tendinopathy with platelet-rich plasma: a systematic review and meta-analysis. Clin. Rehabil. 35, 1661–1673 (2021).
pubmed: 33896214
doi: 10.1177/02692155211011944
Pang, L. et al. Platelet-rich plasma injection can be a viable alternative to corticosteroid injection for conservative treatment of rotator cuff disease: a meta-analysis of randomized controlled trials. Arthroscopy 39, 402–421.e1 (2023).
pubmed: 35810976
doi: 10.1016/j.arthro.2022.06.022
Jo, C. H. et al. Intratendinous injection of autologous adipose tissue-derived mesenchymal stem cells for the treatment of rotator cuff disease: a first-in-human trial. Stem Cell 36, 1441–1450 (2018).
doi: 10.1002/stem.2855
Paloneva, J. et al. Declining incidence of acromioplasty in Finland. Acta Orthop. 86, 220–224 (2015).
pubmed: 25340548
pmcid: 4404774
doi: 10.3109/17453674.2014.977703
Oh, J. H., Kim, J. Y., Lee, H. K. & Choi, J. A. Classification and clinical significance of acromial spur in rotator cuff tear: heel-type spur and rotator cuff tear. Clin. Orthop. Relat. Res. 468, 1542–1550 (2010).
pubmed: 19760471
doi: 10.1007/s11999-009-1058-5
Farfaras, S., Sernert, N., Rostgard Christensen, L., Hallstrom, E. K. & Kartus, J. T. Subacromial decompression yields a better clinical outcome than therapy alone: a prospective randomized study of patients with a minimum 10-year follow-up. Am. J. Sports Med. 46, 1397–1407 (2018).
pubmed: 29543510
doi: 10.1177/0363546518755759
Farfaras, S., Sernert, N., Hallstrom, E. & Kartus, J. Comparison of open acromioplasty, arthroscopic acromioplasty and physiotherapy in patients with subacromial impingement syndrome: a prospective randomised study. Knee Surg. Sports Traumatol. Arthrosc. 24, 2181–2191 (2016).
pubmed: 25385527
doi: 10.1007/s00167-014-3416-4
Waterman, B. R. et al. Randomized trial of arthroscopic rotator cuff with or without acromioplasty: no difference in patient-reported outcomes at long-term follow-up. Arthroscopy 37, 3072–3078 (2021).
pubmed: 33940126
doi: 10.1016/j.arthro.2021.04.041
Paavola, M. et al. Subacromial decompression versus diagnostic arthroscopy for shoulder impingement: a 5-year follow-up of a randomised, placebo surgery controlled clinical trial. Br. J. Sports Med. 55, 99–107 (2021).
pubmed: 33020137
doi: 10.1136/bjsports-2020-102216
Kolk, A. et al. Does acromioplasty result in favorable clinical and radiologic outcomes in the management of chronic subacromial pain syndrome? A double-blinded randomized clinical trial with 9 to 14 years’ follow-up. J. Shoulder Elbow Surg. 26, 1407–1415 (2017).
pubmed: 28495574
doi: 10.1016/j.jse.2017.03.021
Ketola, S., Lehtinen, J. T. & Arnala, I. Arthroscopic decompression not recommended in the treatment of rotator cuff tendinopathy: a final review of a randomised controlled trial at a minimum follow-up of ten years. Bone Joint J. 99-B, 799–805 (2017).
pubmed: 28566400
doi: 10.1302/0301-620X.99B6.BJJ-2016-0569.R1
Woodmass, J. M. et al. Arthroscopic rotator cuff repair with and without acromioplasty in the treatment of full-thickness rotator cuff tears: long-term outcomes of a multicenter, randomized controlled trial. J. Bone Joint Surg. Am. 104, 2101–2107 (2022).
pubmed: 36476738
doi: 10.2106/JBJS.22.00135
Jensen, A. R. et al. Evaluation of the trends, concomitant procedures, and complications with open and arthroscopic rotator cuff repairs in the Medicare population. Orthop. J. Sports Med. 5, 2325967117731310 (2017).
pubmed: 29051905
pmcid: 5639972
doi: 10.1177/2325967117731310
Buyukdogan, K. et al. Long-term outcomes after arthroscopic transosseous-equivalent repair: clinical and magnetic resonance imaging results of rotator cuff tears at a minimum follow-up of 10 years. J. Shoulder Elbow Surg. 30, 2767–2777 (2021).
pubmed: 33991652
doi: 10.1016/j.jse.2021.04.034
Randelli, P. S. et al. Long-term results of arthroscopic rotator cuff repair: initial tear size matters: a prospective study on clinical and radiological results at a minimum follow-up of 10 years. Am. J. Sports Med. 47, 2659–2669 (2019).
pubmed: 31411899
doi: 10.1177/0363546519865529
Jeong, H. J., Nam, K. P., Yeo, J. H., Rhee, S. M. & Oh, J. H. Retear after arthroscopic rotator cuff repair results in functional outcome deterioration over time. Arthroscopy 38, 2399–2412 (2022).
pubmed: 35219797
doi: 10.1016/j.arthro.2022.02.016
Le, B. T., Wu, X. L., Lam, P. H. & Murrell, G. A. Factors predicting rotator cuff retears: an analysis of 1000 consecutive rotator cuff repairs. Am. J. Sports Med. 42, 1134–1142 (2014).
pubmed: 24748610
doi: 10.1177/0363546514525336
Guo, A. A., Stitz, D. J., Lam, P. & Murrell, G. A. C. Tear size and stiffness are important predictors of retear: an assessment of factors associated with repair integrity at 6 months in 1,526 rotator cuff repairs. JB JS Open Access 7, e22.00006 (2022).
pubmed: 36168327
pmcid: 9509124
Maher, A. et al. Do age, demographics, and tear characteristics affect outcomes after rotator cuff repair? results of over 2000 rotator cuff repairs at 5-year follow-up. Orthop. J. Sports Med. 10, 23259671221119222 (2022).
pubmed: 36051977
pmcid: 9424895
doi: 10.1177/23259671221119222
Gerber, C. et al. Neer Award 2007: reversion of structural muscle changes caused by chronic rotator cuff tears using continuous musculotendinous traction. An experimental study in sheep. J. Shoulder Elbow Surg. 18, 163–171 (2009).
pubmed: 19095462
doi: 10.1016/j.jse.2008.09.003
Zhao, J. et al. Risk factors affecting rotator cuff retear after arthroscopic repair: a meta-analysis and systematic review. J. Shoulder Elbow Surg. 30, 2660–2670 (2021).
pubmed: 34089878
doi: 10.1016/j.jse.2021.05.010
Gatto, A. P., Hu, D. A., Feeley, B. T. & Lansdown, D. Dyslipidemia is associated with risk for rotator cuff repair failure: a systematic review and meta-analysis. JSES Rev. Rep. Tech. 2, 302–309 (2022).
pubmed: 37588872
pmcid: 10426695
Yang, Z. et al. Association of obesity with high retears and complication rates, and low functional scores after rotator cuff repair: a systematic review and meta-analysis. J. Shoulder Elbow Surg. 32, 2400–2411 (2023).
pubmed: 37419440
doi: 10.1016/j.jse.2023.05.030
Fan, N. et al. The effects of smoking on clinical and structural outcomes after rotator cuff repair: a systematic review and meta-analysis. J. Shoulder Elbow Surg. 31, 656–667 (2022).
pubmed: 34813890
doi: 10.1016/j.jse.2021.10.026
Sheean, A. J., Hartzler, R. U. & Burkhart, S. S. Arthroscopic rotator cuff repair in 2019: linked, double row repair for achieving higher healing rates and optimal clinical outcomes. Arthroscopy 35, 2749–2755 (2019).
pubmed: 31500765
doi: 10.1016/j.arthro.2019.02.048
Bedeir, Y. H., Schumaier, A. P., Abu-Sheasha, G. & Grawe, B. M. Type 2 retear after arthroscopic single-row, double-row and suture bridge rotator cuff repair: a systematic review. Eur. J. Orthop. Surg. Traumatol. 29, 373–382 (2019).
pubmed: 30229445
doi: 10.1007/s00590-018-2306-8
Malavolta, E. A. et al. Prognostic factors for clinical outcomes after arthroscopic rotator cuff repair. Orthop. J. Sports Med. 11, 23259671231160738 (2023).
pubmed: 37065182
pmcid: 10102950
doi: 10.1177/23259671231160738
Bishop, M. E. et al. Biomechanical and clinical comparison of suture techniques in arthroscopic rotator cuff repair. JBJS Rev. 5, e3 (2017).
pubmed: 29189441
doi: 10.2106/JBJS.RVW.17.00019
Hohmann, E. et al. Single- versus double-row repair for full-thickness rotator cuff tears using suture anchors. A systematic review and meta-analysis of basic biomechanical studies. Eur. J. Orthop. Surg. Traumatol. 28, 859–868 (2018).
pubmed: 29270867
doi: 10.1007/s00590-017-2114-6
Millett, P. J., Warth, R. J., Dornan, G. J., Lee, J. T. & Spiegl, U. J. Clinical and structural outcomes after arthroscopic single-row versus double-row rotator cuff repair: a systematic review and meta-analysis of level I randomized clinical trials. J. Shoulder Elbow Surg. 23, 586–597 (2014).
pubmed: 24411671
doi: 10.1016/j.jse.2013.10.006
Sobhy, M. H., Khater, A. H., Hassan, M. R. & El Shazly, O. Do functional outcomes and cuff integrity correlate after single- versus double-row rotator cuff repair? A systematic review and meta-analysis study. Eur. J. Orthop. Surg. Traumatol. 28, 593–605 (2018).
pubmed: 29442181
doi: 10.1007/s00590-018-2145-7
Hernigou, P. et al. Biologic augmentation of rotator cuff repair with mesenchymal stem cells during arthroscopy improves healing and prevents further tears: a case-controlled study. Int. Orthop. 38, 1811–1818 (2014).
pubmed: 24913770
doi: 10.1007/s00264-014-2391-1
Cole, B. J. et al. Prospective randomized trial of biologic augmentation with bone marrow aspirate concentrate in patients undergoing arthroscopic rotator cuff repair. Am. J. Sports Med. 51, 1234–1242 (2023).
pubmed: 36811557
doi: 10.1177/03635465231154601
Feltri, P. et al. Platelet-rich plasma does not improve clinical results in patients with rotator cuff disorders but reduces the retear rate. A systematic review and meta-analysis. Knee Surg. Sports Traumatol. Arthrosc. 31, 1940–1952 (2023).
pubmed: 36496450
doi: 10.1007/s00167-022-07223-9
Lavoie-Gagne, O. et al. Double-row repair with platelet-rich plasma optimizes retear rates after small to medium full-thickness rotator cuff repair: a systematic review and network meta-analysis of randomized controlled trials. Arthroscopy 38, 2714–2729 (2022).
pubmed: 35337958
doi: 10.1016/j.arthro.2022.03.014
Zhang, C., Cai, Y. Z. & Wang, Y. Injection of leukocyte-poor platelet-rich plasma for moderate-to-large rotator cuff tears does not improve clinical outcomes but reduces retear rates and fatty infiltration: a prospective, single-blinded randomized study. Arthroscopy 38, 2381–2388.e1 (2022).
pubmed: 35247512
doi: 10.1016/j.arthro.2022.02.007
Liu, B., Jeong, H. J., Yeo, J. H. & Oh, J. H. Efficacy of intraoperative platelet-rich plasma augmentation and postoperative platelet-rich plasma booster injection for rotator cuff healing: a randomized controlled clinical trial. Orthop. J. Sports Med. 9, 23259671211006100 (2021).
pubmed: 34159208
pmcid: 8182201
doi: 10.1177/23259671211006100
Hurley, E. T., Lim Fat, D., Moran, C. J. & Mullett, H. The efficacy of platelet-rich plasma and platelet-rich fibrin in arthroscopic rotator cuff repair: a meta-analysis of randomized controlled trials. Am. J. Sports Med. 47, 753–761 (2019).
pubmed: 29466688
doi: 10.1177/0363546517751397
Castricini, R. et al. Platelet-rich plasma augmentation for arthroscopic rotator cuff repair: a randomized controlled trial. Am. J. Sports Med. 39, 258–265 (2011).
pubmed: 21160018
doi: 10.1177/0363546510390780
Randelli, P. S., Stoppani, C. A., Santarsiero, G., Nocerino, E. & Menon, A. Platelet-rich plasma in arthroscopic rotator cuff repair: clinical and radiological results of a prospective randomized controlled trial study at 10-year follow-up. Arthroscopy 38, 51–61 (2022).
pubmed: 34052372
doi: 10.1016/j.arthro.2021.05.017
Oudelaar, B. W., Peerbooms, J. C., Huis In, ‘T., Veld, R. & Vochteloo, A. J. H. Concentrations of blood components in commercial platelet-rich plasma separation systems: a review of the literature. Am. J. Sports Med. 47, 479–487 (2019).
pubmed: 29337592
doi: 10.1177/0363546517746112
Oh, J. H., Park, M. S. & Rhee, S. M. Treatment strategy for irreparable rotator cuff tears. Clin. Orthop. Surg. 10, 119–134 (2018).
pubmed: 29854334
pmcid: 5964259
doi: 10.4055/cios.2018.10.2.119
de Marinis, R. et al. Lower trapezius transfer improves clinical outcomes with a rate of complications and reoperations comparable to other surgical alternatives in patients with functionally irreparable rotator cuff tears: a systematic review. Arthroscopy https://doi.org/10.1016/j.arthro.2023.06.029 (2023).
Mirzayan, R. et al. Emerging treatment options for massive rotator cuff tears: biologic tuberoplasty, balloon arthroplasty, anterior cable reconstruction, lower trapezius transfer. Instr. Course Lect. 72, 223–238 (2023).
pubmed: 36534859
Saccomanno, M. F. et al. Combined arthroscopic-assisted lower trapezius tendon transfer and superior capsule reconstruction for massive irreparable posterior-superior rotator cuff tears: surgical technique. Arthrosc. Tech. 12, e823–e830 (2023).
pubmed: 37424661
pmcid: 10323695
doi: 10.1016/j.eats.2023.02.014
Galvin, J. W. et al. Outcomes and complications of primary reverse shoulder arthroplasty with minimum of 2 years’ follow-up: a systematic review and meta-analysis. J. Shoulder Elbow Surg. 31, e534–e544 (2022).
pubmed: 35870805
doi: 10.1016/j.jse.2022.06.005
Burden, E. G., Batten, T. J., Smith, C. D. & Evans, J. P. Reverse total shoulder arthroplasty. Bone Joint J. 103-B, 813–821 (2021).
pubmed: 33616421
doi: 10.1302/0301-620X.103B.BJJ-2020-2101
Bacle, G., Nove-Josserand, L., Garaud, P. & Walch, G. Long-term outcomes of reverse total shoulder arthroplasty: a follow-up of a previous study. J. Bone Joint Surg. Am. 99, 454–461 (2017).
pubmed: 28291177
doi: 10.2106/JBJS.16.00223
Bulhoff, M. et al. Medium- to long-term outcomes after reverse total shoulder arthroplasty with a standard long stem. J. Clin. Med 11, 2274 (2022).
pubmed: 35566400
pmcid: 9103013
doi: 10.3390/jcm11092274
Favard, L. et al. Reverse prostheses in arthropathies with cuff tear: are survivorship and function maintained over time? Clin. Orthop. Relat. Res. 469, 2469–2475 (2011).
pubmed: 21384212
pmcid: 3148361
doi: 10.1007/s11999-011-1833-y
Zumstein, M., Pinedo, M., Old, J. & Pascal, B. Problems, complications, reoperations, and revisions in reverse total shoulder arthroplasty: a systematic review. J. Shoulder Elbow Surg. 20, 146–157 (2011).
pubmed: 21134666
doi: 10.1016/j.jse.2010.08.001
Su, F. et al. Incidence, risk factors, and complications of acromial stress fractures after reverse total shoulder arthroplasty. J. Shoulder Elbow Surg. 33, 65–72 (2023).
pubmed: 37454923
doi: 10.1016/j.jse.2023.06.008
Jeong, H. J. et al. Subacromial notching after reverse total shoulder arthroplasty. J. Shoulder Elbow Surg. 32, 1876–1885 (2023).
pubmed: 37024040
doi: 10.1016/j.jse.2023.03.009
Cheung, E. V. et al. Instability after reverse total shoulder arthroplasty. J. Shoulder Elbow Surg. 27, 1946–1952 (2018).
pubmed: 29934280
doi: 10.1016/j.jse.2018.04.015
Schell, L. E. et al. Aseptic glenoid baseplate loosening after reverse total shoulder arthroplasty with a single prosthesis. J. Shoulder Elbow Surg. 32, 1584–1593 (2023).
pubmed: 36736657
doi: 10.1016/j.jse.2023.01.010
Baksh, N. et al. Does preoperative corticosteroid injection increase the risk of periprosthetic joint infection after reverse shoulder arthroplasty? J. Shoulder Elbow Surg. 32, 1459–1464 (2023).
pubmed: 36737032
doi: 10.1016/j.jse.2023.01.008
Reddy, R. P., Solomon, D. A., Hughes, J. D., Lesniak, B. P. & Lin, A. Clinical outcomes of rotator cuff repair in patients with concomitant glenohumeral osteoarthritis. J. Shoulder Elbow Surg. 31, S25–S33 (2022).
pubmed: 34968696
doi: 10.1016/j.jse.2021.11.010
Manop, P., Apivatgaroon, A., Puntu, W. & Chernchujit, B. Risk factors for rotator cuff repair failure and reliability of the rotator cuff healing index (RoHI) in Thai patients: comparison of the RoHI with a modified scoring system. Orthop. J. Sports Med. 11, 23259671231179449 (2023).
pubmed: 37441508
pmcid: 10334006
doi: 10.1177/23259671231179449
Jeon, Y. D. et al. Significance of the acromiohumeral distance on stress radiography for predicting healing and function after arthroscopic repair of massive rotator cuff tears. J. Shoulder Elbow Surg. 30, e471–e481 (2021).
pubmed: 33271320
doi: 10.1016/j.jse.2020.10.029
Davey, M. S. et al. Arthroscopic rotator cuff repair results in improved clinical outcomes and low revision rates at 10-year follow-up: a systematic review. Arthroscopy 39, 452–458 (2023).
pubmed: 36604006
doi: 10.1016/j.arthro.2022.11.002
Sanchez-Sotelo, J. & Athwal, G. S. How to optimize reverse shoulder arthroplasty for irreparable cuff tears. Curr. Rev. Musculoskelet. Med. 13, 553–560 (2020).
pubmed: 32488624
pmcid: 7474717
doi: 10.1007/s12178-020-09655-7
Tempelhof, S., Rupp, S. & Seil, R. Age-related prevalence of rotator cuff tears in asymptomatic shoulders. J. Shoulder Elbow Surg. 8, 296–299 (1999).
pubmed: 10471998
doi: 10.1016/S1058-2746(99)90148-9
Longo, U. G. et al. Anxiety and depressive symptoms correlated to patient-reported outcome measures after rotator cuff repair: a prospective study in the perioperative period. J. Clin. Med. 12, 2999 (2023).
pubmed: 37109336
pmcid: 10146391
doi: 10.3390/jcm12082999
Panattoni, N. et al. The influence of psychosocial factors on patient-reported outcome measures in rotator cuff tears pre- and post-surgery: a systematic review. Qual. Life Res. 31, 91–116 (2022).
pubmed: 34216351
doi: 10.1007/s11136-021-02921-2
Longo, U. G. et al. Arthroscopic rotator cuff repair improves sleep disturbance and quality of life: a prospective study. Int. J. Environ. Res. Public Health 18, 3797 (2021).
pubmed: 33917277
pmcid: 8038746
doi: 10.3390/ijerph18073797
Kunze, K. N. et al. Systematic review of sleep quality before and after arthroscopic rotator cuff repair: are improvements experienced and maintained? Orthop. J. Sports Med. 8, 2325967120969224 (2020).
pubmed: 33447619
pmcid: 7780319
doi: 10.1177/2325967120969224
Serbest, S., Tiftikçi, U., Askın, A., Yaman, F. & Alpua, M. Preoperative and post-operative sleep quality evaluation in rotator cuff tear patients. Knee Surg. Sports Traumatol. Arthrosc. 25, 2109–2113 (2017).
pubmed: 27401007
doi: 10.1007/s00167-016-4228-5
Zheng, E. T., Lowenstein, N. A., Collins, J. E. & Matzkin, E. G. Resolution of sleep disturbance and improved functional outcomes after rotator cuff repair. Am. J. Sports Med. 51, 1852–1858 (2023).
pubmed: 37167606
doi: 10.1177/03635465231169254
Boorman, R. S. et al. What happens to patients when we do not repair their cuff tears? Five-year rotator cuff quality-of-life index outcomes following nonoperative treatment of patients with full-thickness rotator cuff tears. J. Shoulder Elbow Surg. 27, 444–448 (2018).
pubmed: 29433644
doi: 10.1016/j.jse.2017.10.009
Fucentese, S. F., von Roll, A. L., Pfirrmann, C. W., Gerber, C. & Jost, B. Evolution of nonoperatively treated symptomatic isolated full-thickness supraspinatus tears. J. Bone Joint Surg. Am. 94, 801–808 (2012).
pubmed: 22552669
doi: 10.2106/JBJS.I.01286
Jain, N. B. et al. Comparative effectiveness of operative versus nonoperative treatment for rotator cuff tears: a propensity score analysis from the ROW cohort. Am. J. Sports Med. 47, 3065–3072 (2019).
pubmed: 31518155
pmcid: 7325686
doi: 10.1177/0363546519873840
van Deurzen, D. et al. Long-term results of arthroscopic and mini-open repair of small- to medium-size full-thickness rotator cuff tears. Shoulder Elbow 11, 68–76 (2019).
pubmed: 31019565
doi: 10.1177/1758573218773529
Yoo, J. H., Cho, N. S. & Rhee, Y. G. Effect of postoperative repair integrity on health-related quality of life after rotator cuff repair: healed versus retear group. Am. J. Sports Med. 41, 2637–2644 (2013).
pubmed: 23942286
doi: 10.1177/0363546513499152
Galatz, L. M., Griggs, S., Cameron, B. D. & Iannotti, J. P. Prospective longitudinal analysis of postoperative shoulder function : a ten-year follow-up study of full-thickness rotator cuff tears. J. Bone Joint Surg. Am. 83, 1052–1056 (2001).
pubmed: 11451975
doi: 10.2106/00004623-200107000-00011
Nicholson, A. D. et al. Minimum 15-year follow-up for clinical outcomes of arthroscopic rotator cuff repair. J. Shoulder Elbow Surg. 31, 1696–1703 (2022).
pubmed: 35158066
doi: 10.1016/j.jse.2022.01.116
Green, A. et al. Long-term functional and structural outcome of rotator cuff repair in patients 60 years old or less. JSES Int. 7, 58–66 (2023).
pubmed: 36820436
doi: 10.1016/j.jseint.2022.10.002
Gerber, C., Canonica, S., Catanzaro, S. & Ernstbrunner, L. Longitudinal observational study of reverse total shoulder arthroplasty for irreparable rotator cuff dysfunction: results after 15 years. J. Shoulder Elbow Surg. 27, 831–838 (2018).
pubmed: 29305102
doi: 10.1016/j.jse.2017.10.037
Mulieri, P., Dunning, P., Klein, S., Pupello, D. & Frankle, M. Reverse shoulder arthroplasty for the treatment of irreparable rotator cuff tear without glenohumeral arthritis. J. Bone Joint Surg. Am. 92, 2544–2556 (2010).
pubmed: 21048173
doi: 10.2106/JBJS.I.00912
Hartzler, R. U. et al. Reverse shoulder arthroplasty for massive rotator cuff tear: risk factors for poor functional improvement. J. Shoulder Elbow Surg. 24, 1698–1706 (2015).
pubmed: 26175311
doi: 10.1016/j.jse.2015.04.015
Fealy, S. et al. Patterns of vascular and anatomical response after rotator cuff repair. Am. J. Sports Med. 34, 120–127 (2006).
pubmed: 16260468
doi: 10.1177/0363546505280212
Randelli, P. et al. History of rotator cuff surgery. Knee Surg. Sports Traumatol. Arthrosc. 23, 344–362 (2015).
pubmed: 25448135
doi: 10.1007/s00167-014-3445-z
Minkwitz, S. et al. Histological and molecular features of the subacromial bursa of rotator cuff tears compared to non-tendon defects: a pilot study. BMC Musculoskelet. Disord. 22, 877 (2021).
pubmed: 34649550
pmcid: 8518155
doi: 10.1186/s12891-021-04752-1
Corrado, B. et al. Ultrasound-guided collagen injections in the treatment of supraspinatus tendinopathy: a case series pilot study. J. Biol. Regul. Homeost. Agents 34 (3 Suppl. 2), 33–39 (2020).
pubmed: 32856437
Corrado, B., Bonini, I., Alessio Chirico, V., Rosano, N. & Gisonni, P. Use of injectable collagen in partial-thickness tears of the supraspinatus tendon: a case report. Oxf. Med. Case Rep. 2020, omaa103 (2020).
doi: 10.1093/omcr/omaa103
Randelli, F. et al. Effect of a collagen-based compound on morpho-functional properties of cultured human tenocytes. Cells 7, 246 (2018).
pubmed: 30563214
pmcid: 6316559
doi: 10.3390/cells7120246
Martinello, T. et al. Successful recellularization of human tendon scaffolds using adipose-derived mesenchymal stem cells and collagen gel. J. Tissue Eng. Regen. Med. 8, 612–619 (2014).
pubmed: 22711488
doi: 10.1002/term.1557
Jo, Y., Kim, W. J. & Lee, H. Healing of partial tear of the supraspinatus tendon after atelocollagen injection confirmed by MRI: a case report. Medicine 99, e23498 (2020).
pubmed: 33285757
pmcid: 7717826
doi: 10.1097/MD.0000000000023498
Suh, D. S. et al. Atelocollagen enhances the healing of rotator cuff tendon in rabbit model. Am. J. Sports Med. 45, 2019–2027 (2017).
pubmed: 28586622
doi: 10.1177/0363546517703336
Canty, E. G. & Kadler, K. E. Procollagen trafficking, processing and fibrillogenesis. J. Cell Sci. 118, 1341–1353 (2005).
pubmed: 15788652
doi: 10.1242/jcs.01731
Hynes, R. O. Integrins: bidirectional, allosteric signaling machines. Cell 110, 673–687 (2002).
pubmed: 12297042
doi: 10.1016/S0092-8674(02)00971-6
Massoud, E. I. Healing of subcutaneous tendons: influence of the mechanical environment at the suture line on the healing process. World J. Orthop. 4, 229–240 (2013).
pubmed: 24147258
pmcid: 3801242
doi: 10.5312/wjo.v4.i4.229
Aguado, G., Obando, D. V., Herrera, G. A., Ramirez, A. & Llinas, P. J. Retears of the rotator cuff: an ultrasonographic assessment during the first postoperative year. Orthop. J. Sports Med. 7, 2325967119889049 (2019).
pubmed: 31903401
pmcid: 6927200
doi: 10.1177/2325967119889049
Hein, J., Reilly, J. M., Chae, J., Maerz, T. & Anderson, K. Retear rates after arthroscopic single-row, double-row, and suture bridge rotator cuff repair at a minimum of 1 year of imaging follow-up: a systematic review. Arthroscopy 31, 2274–2281 (2015).
pubmed: 26188783
doi: 10.1016/j.arthro.2015.06.004
Mihata, T., McGarry, M. H., Pirolo, J. M., Kinoshita, M. & Lee, T. Q. Superior capsule reconstruction to restore superior stability in irreparable rotator cuff tears: a biomechanical cadaveric study. Am. J. Sports Med. 40, 2248–2255 (2012).
pubmed: 22886689
doi: 10.1177/0363546512456195
Ishihara, Y. et al. Role of the superior shoulder capsule in passive stability of the glenohumeral joint. J. Shoulder Elbow Surg. 23, 642–648 (2014).
pubmed: 24388150
doi: 10.1016/j.jse.2013.09.025
Mihata, T. et al. A biomechanical cadaveric study comparing superior capsule reconstruction using fascia lata allograft with human dermal allograft for irreparable rotator cuff tear. J. Shoulder Elbow Surg. 26, 2158–2166 (2017).
pubmed: 29146012
doi: 10.1016/j.jse.2017.07.019
Ji, J. H. et al. Transtendon arthroscopic repair of high grade partial-thickness articular surface tears of the rotator cuff with biceps tendon augmentation: technical note and preliminary results. Arch. Orthop. Trauma. Surg. 132, 335–342 (2012).
pubmed: 21842283
doi: 10.1007/s00402-011-1373-7
Park, M. C. et al. Anterior cable reconstruction using the proximal biceps tendon for large rotator cuff defects limits superior migration and subacromial contact without inhibiting range of motion: a biomechanical analysis. Arthroscopy 34, 2590–2600 (2018).
pubmed: 30078687
doi: 10.1016/j.arthro.2018.05.012
Schmalzl, J. et al. Tendon-derived stem cells from the long head of the biceps tendon: inflammation does not affect the regenerative potential. Bone Joint Res. 8, 414–424 (2019).
pubmed: 31588358
pmcid: 6775540
doi: 10.1302/2046-3758.89.BJR-2018-0214.R2
Potty, A. G. et al. Approaching artificial intelligence in orthopaedics: predictive analytics and machine learning to prognosticate arthroscopic rotator cuff surgical outcomes. J. Clin. Med. 12, 2369 (2023).
pubmed: 36983368
pmcid: 10056706
doi: 10.3390/jcm12062369
Akhtar, A., Richards, J. & Monga, P. The biomechanics of the rotator cuff in health and disease – a narrative review. J. Clin. Orthop. Trauma. 18, 150–156 (2021).
pubmed: 34012769
pmcid: 8111677
doi: 10.1016/j.jcot.2021.04.019