Hereditary spastic paraparesis type 46 (SPG46): new GBA2 variants in a large Italian case series and review of the literature.

Hereditary spastic paraparesis Literature review Non-lysosomal glucosylceramidase

Journal

Neurogenetics
ISSN: 1364-6753
Titre abrégé: Neurogenetics
Pays: United States
ID NLM: 9709714

Informations de publication

Date de publication:
09 Feb 2024
Historique:
received: 25 11 2023
accepted: 01 02 2024
medline: 9 2 2024
pubmed: 9 2 2024
entrez: 9 2 2024
Statut: aheadofprint

Résumé

Hereditary spastic paraparesis (HSP) is a group of central nervous system diseases primarily affecting the spinal upper motor neurons, with different inheritance patterns and phenotypes. SPG46 is a rare, early-onset and autosomal recessive HSP, linked to biallelic GBA2 mutations. About thirty families have been described worldwide, with different phenotypes like complicated HSP, recessive cerebellar ataxia or Marinesco-Sjögren Syndrome. Herein, we report five SPG46 patients harbouring five novel GBA2 mutations, the largest series described in Italy so far. Probands were enrolled in five different centres and underwent neurological examination, clinical cognitive assessment, column imaging for scoliosis assessment, ophthalmologic examination, brain imaging, GBA2 activity in peripheral blood cells and genetic testing. Their phenotype was consistent with HSP, with notable features like upper gaze palsy and movement disorders. We review demographic, genetic, biochemical and clinical information from all documented cases in the existing literature, focusing on the global distribution of cases, the features of the syndrome, its variable presentation, new potential identifying features and the significance of measuring GBA2 enzyme activity.

Identifiants

pubmed: 38334933
doi: 10.1007/s10048-024-00749-9
pii: 10.1007/s10048-024-00749-9
doi:

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2024. The Author(s).

Références

Salinas S, Proukakis C, Crosby A, Warner TT (2008) Hereditary spastic paraplegia: clinical features and pathogenetic mechanisms. Lancet Neurol 7:1127–1138. https://doi.org/10.1016/S1474-4422(08)70258-8
doi: 10.1016/S1474-4422(08)70258-8 pubmed: 19007737
Behan WMH, Maia M (1974) Strumpell’s familial spastic paraplegia: genetics and neuropathology. J Neurol Neurosurg Psychiatry 37:8–20. https://doi.org/10.1136/jnnp.37.1.8
doi: 10.1136/jnnp.37.1.8 pubmed: 4813430 pmcid: 494557
DeLuca GC, Ebers GC, Esiri MM (2004) The extent of axonal loss in the long tracts in hereditary spastic paraplegia: axonal loss in hereditary spastic paraplegia. Neuropathol Appl Neurobiol 30:576–584. https://doi.org/10.1111/j.1365-2990.2004.00587.x
doi: 10.1111/j.1365-2990.2004.00587.x pubmed: 15540998
Parodi L, Fenu S, Stevanin G, Durr A (2017) Hereditary spastic paraplegia: more than an upper motor neuron disease. Rev Neurol 173:352–360. https://doi.org/10.1016/j.neurol.2017.03.034
doi: 10.1016/j.neurol.2017.03.034 pubmed: 28449883
Lallemant-Dudek P, Durr A (2021) Clinical and genetic update of hereditary spastic paraparesis. Rev Neurol 177:550–556. https://doi.org/10.1016/j.neurol.2020.07.001
doi: 10.1016/j.neurol.2020.07.001 pubmed: 32807405
Ruano L, Melo C, Silva MC, Coutinho P (2014) The global epidemiology of hereditary ataxia and spastic paraplegia: a systematic review of prevalence studies. Neuroepidemiology 42:174–183. https://doi.org/10.1159/000358801
doi: 10.1159/000358801 pubmed: 24603320
Finsterer J, Löscher W, Quasthoff S et al (2012) Hereditary spastic paraplegias with autosomal dominant, recessive, X-linked, or maternal trait of inheritance. J Neurol Sci 318:1–18. https://doi.org/10.1016/j.jns.2012.03.025
doi: 10.1016/j.jns.2012.03.025 pubmed: 22554690
de Souza PVS, de Rezende Pinto WBV, de RezendeBatistella GN et al (2017) Hereditary spastic paraplegia: clinical and genetic hallmarks. Cerebellum 16:525–551. https://doi.org/10.1007/s12311-016-0803-z
doi: 10.1007/s12311-016-0803-z pubmed: 27271711
Lo Giudice T, Lombardi F, Santorelli FM et al (2014) Hereditary spastic paraplegia: clinical-genetic characteristics and evolving molecular mechanisms. Exp Neurol 261:518–539. https://doi.org/10.1016/j.expneurol.2014.06.011
doi: 10.1016/j.expneurol.2014.06.011 pubmed: 24954637
Harding AE (1981) Hereditary “pure” spastic paraplegia: a clinical and genetic study of 22 families. J Neurol Neurosurg Psychiatry 44:871–883. https://doi.org/10.1136/jnnp.44.10.871
doi: 10.1136/jnnp.44.10.871 pubmed: 7310405 pmcid: 491171
Hedera P. Hereditary Spastic Paraplegia Overview. 2000 Aug 15 [Updated 2021 Feb 11]. In: Adam MP, Feldman J, Mirzaa GM et al (eds) GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2024. Available from: https://www.ncbi.nlm.nih.gov/books/NBK1509/
Agosta F, Scarlato M, Spinelli EG et al (2015) Hereditary spastic paraplegia: beyond clinical phenotypes toward a unified pattern of central nervous system damage. Radiology 276:207–218. https://doi.org/10.1148/radiol.14141715
doi: 10.1148/radiol.14141715 pubmed: 25611737
Hourani R, El-Hajj T, Barada WH et al (2009) MR imaging findings in autosomal recessive hereditary spastic paraplegia. AJNR Am J Neuroradiol 30:936–940. https://doi.org/10.3174/ajnr.A1483
doi: 10.3174/ajnr.A1483 pubmed: 19193756 pmcid: 7051668
da Graça FF, de Rezende TJR, Vasconcellos LFR et al (2018) Neuroimaging in hereditary spastic paraplegias: current use and future perspectives. Front Neurol 9:1117. https://doi.org/10.3389/fneur.2018.01117
doi: 10.3389/fneur.2018.01117 pubmed: 30713518
Klebe S, Stevanin G, Depienne C (2015) Clinical and genetic heterogeneity in hereditary spastic paraplegias: from SPG1 to SPG72 and still counting. Rev Neurol 171:505–530. https://doi.org/10.1016/j.neurol.2015.02.017
doi: 10.1016/j.neurol.2015.02.017 pubmed: 26008818
Boukhris A, Feki I, Elleuch N et al (2010) A new locus (SPG46) maps to 9p21.2-q21.12 in a Tunisian family with a complicated autosomal recessive hereditary spastic paraplegia with mental impairment and thin corpus callosum. Neurogenetics 11:441–448. https://doi.org/10.1007/s10048-010-0249-2
doi: 10.1007/s10048-010-0249-2 pubmed: 20593214
Citterio A, Arnoldi A, Panzeri E et al (2014) Mutations in CYP2U1, DDHD2 and GBA2 genes are rare causes of complicated forms of hereditary spastic paraparesis. J Neurol 261:373–381. https://doi.org/10.1007/s00415-013-7206-6
doi: 10.1007/s00415-013-7206-6 pubmed: 24337409
Votsi C, Zamba-Papanicolaou E, Middleton LT et al (2014) A novel GBA2 gene missense mutation in spastic ataxia. Ann Hum Genet 78:13–22. https://doi.org/10.1111/ahg.12045
doi: 10.1111/ahg.12045 pubmed: 24252062
Hammer MB, Eleuch-Fayache G, Schottlaender LV et al (2013) Mutations in GBA2 cause autosomal-recessive cerebellar ataxia with spasticity. Am J Hum Genet 92:245–251. https://doi.org/10.1016/j.ajhg.2012.12.012
doi: 10.1016/j.ajhg.2012.12.012 pubmed: 23332917 pmcid: 3567281
Martin E, Schüle R, Smets K et al (2013) Loss of function of glucocerebrosidase GBA2 is responsible for motor neuron defects in hereditary spastic paraplegia. Am J Hum Genet 92:238–244. https://doi.org/10.1016/j.ajhg.2012.11.021
doi: 10.1016/j.ajhg.2012.11.021 pubmed: 23332916 pmcid: 3567271
Yang Y-J, Zhou Z-F, Liao X-X et al (2016) SPG46 and SPG56 are rare causes of hereditary spastic paraplegia in China. J Neurol 263:2136–2138. https://doi.org/10.1007/s00415-016-8256-3
doi: 10.1007/s00415-016-8256-3 pubmed: 27553021
Boukhris A, Stevanin G, Feki I et al (2008) Hereditary spastic paraplegia with mental impairment and thin corpus callosum in Tunisia: SPG11, SPG15, and further genetic heterogeneity. Arch Neurol 65:393–402. https://doi.org/10.1001/archneur.65.3.393
doi: 10.1001/archneur.65.3.393 pubmed: 18332254
Harzer K, Yildiz Y, Beck-Wödl S (2019) Assay of β-glucosidase 2 (GBA2) activity using lithocholic acid β-3-O-glucoside substrate for cultured fibroblasts and glucosylceramide for brain tissue. Biol Chem 400:745–752. https://doi.org/10.1515/hsz-2018-0438
doi: 10.1515/hsz-2018-0438 pubmed: 30864417
Woeste MA, Wachten D (2017) The enigmatic role of GBA2 in controlling locomotor function. Front Mol Neurosci 10:386. https://doi.org/10.3389/fnmol.2017.00386
doi: 10.3389/fnmol.2017.00386 pubmed: 29234271 pmcid: 5712312
Riboldi GM, Di Fonzo AB (2019) GBA, Gaucher disease, and Parkinson’s disease: from genetic to clinic to new therapeutic approaches. Cells 8:364. https://doi.org/10.3390/cells8040364
doi: 10.3390/cells8040364 pubmed: 31010158 pmcid: 6523296
Malekkou A, Samarani M, Drousiotou A et al (2018) Biochemical characterization of the GBA2 c.1780G>C missense mutation in lymphoblastoid cells from patients with spastic ataxia. Int J Mol Sci 19:3099. https://doi.org/10.3390/ijms19103099
doi: 10.3390/ijms19103099 pubmed: 30308956 pmcid: 6213336
Haugarvoll K, Johansson S, Rodriguez CE et al (2017) GBA2 mutations cause a Marinesco-Sjögren-like syndrome: genetic and biochemical studies. PLoS One 12:e0169309. https://doi.org/10.1371/journal.pone.0169309
doi: 10.1371/journal.pone.0169309 pubmed: 28052128 pmcid: 5215700
Sultana S, Reichbauer J, Schüle R et al (2015) Lack of enzyme activity in GBA2 mutants associated with hereditary spastic paraplegia/cerebellar ataxia (SPG46). Biochem Biophys Res Commun 465:35–40. https://doi.org/10.1016/j.bbrc.2015.07.112
doi: 10.1016/j.bbrc.2015.07.112 pubmed: 26220345
Gatti M, Magri S, Di Bella D et al (2021) Spastic paraplegia type 46: novel and recurrent GBA2 gene variants in a compound heterozygous Italian patient with spastic ataxia phenotype. Neurol Sci 42:4741–4745. https://doi.org/10.1007/s10072-021-05463-0
doi: 10.1007/s10072-021-05463-0 pubmed: 34251556
D’Amore A, Tessa A, Casali C et al (2018) Next generation molecular diagnosis of hereditary spastic paraplegias: an Italian cross-sectional study. Front Neurol 9:981. https://doi.org/10.3389/fneur.2018.00981
doi: 10.3389/fneur.2018.00981 pubmed: 30564185 pmcid: 6289125
Folstein MF, Folstein SE, McHugh PR (1975) “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12:189–198. https://doi.org/10.1016/0022-3956(75)90026-6
doi: 10.1016/0022-3956(75)90026-6 pubmed: 1202204
Svennerholm L, Håkansson G, Månsson JE, Vanier MT (1979) The assay of sphingolipid hydrolases in white blood cells with labelled natural substrates. Clin Chim Acta 92:53–64. https://doi.org/10.1016/0009-8981(79)90396-6
doi: 10.1016/0009-8981(79)90396-6 pubmed: 421348
Vespasiani-Gentilucci U, D’Amico J, De Vincentis A et al (2017) Platelet count may impact on lysosomal acid lipase activity determination in dried blood spot. Clin Biochem 50:726–728. https://doi.org/10.1016/j.clinbiochem.2017.02.013
doi: 10.1016/j.clinbiochem.2017.02.013 pubmed: 28238812
Richards S, Aziz N, Bale S et al (2015) Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 17:405–424. https://doi.org/10.1038/gim.2015.30
doi: 10.1038/gim.2015.30 pubmed: 25741868 pmcid: 4544753
Gill S, Gill S, Williamson M, Avila JD (2023) A rare case of hereditary spastic paraplegia 46 with novel compound heterozygous GBA2 gene variants (P3–8.013). In: Sunday, April 23. Lippincott Williams & Wilkins, pp 3171
Spagnoli C, Schiavoni S, Rizzi S et al (2020) New biallelic GBA2 variant in a patient with SPG46. Clin Neurol Neurosurg 191:105676. https://doi.org/10.1016/j.clineuro.2020.105676
doi: 10.1016/j.clineuro.2020.105676 pubmed: 31955126
Ridley CM, Thur KE, Shanahan J et al (2013) β-Glucosidase 2 (GBA2) activity and imino sugar pharmacology. J Biol Chem 288:26052–26066. https://doi.org/10.1074/jbc.M113.463562
doi: 10.1074/jbc.M113.463562 pubmed: 23880767 pmcid: 3764809
Kancheva D, Atkinson D, De Rijk P et al (2016) Novel mutations in genes causing hereditary spastic paraplegia and Charcot-Marie-Tooth neuropathy identified by an optimized protocol for homozygosity mapping based on whole-exome sequencing. Genet Med 18:600–607. https://doi.org/10.1038/gim.2015.139
doi: 10.1038/gim.2015.139 pubmed: 26492578
van de Warrenburg BP, Schouten MI, de Bot ST et al (2016) Clinical exome sequencing for cerebellar ataxia and spastic paraplegia uncovers novel gene-disease associations and unanticipated rare disorders. Eur J Hum Genet 24:1460–1466. https://doi.org/10.1038/ejhg.2016.42
doi: 10.1038/ejhg.2016.42 pubmed: 27165006 pmcid: 5027687
Morais S, Raymond L, Mairey M et al (2017) Massive sequencing of 70 genes reveals a myriad of missing genes or mechanisms to be uncovered in hereditary spastic paraplegias. Eur J Hum Genet 25:1217–1228. https://doi.org/10.1038/ejhg.2017.124
doi: 10.1038/ejhg.2017.124 pubmed: 28832565 pmcid: 5643959
Coutelier M, Hammer MB, Stevanin G et al (2018) Efficacy of exome-targeted capture sequencing to detect mutations in known cerebellar ataxia genes. JAMA Neurol 75:591–599. https://doi.org/10.1001/jamaneurol.2017.5121
doi: 10.1001/jamaneurol.2017.5121 pubmed: 29482223 pmcid: 5885259
Coarelli G, Romano S, Travaglini L et al (2018) Novel homozygous GBA2 mutation in a patient with complicated spastic paraplegia. Clin Neurol Neurosurg 168:60–63. https://doi.org/10.1016/j.clineuro.2018.02.042
doi: 10.1016/j.clineuro.2018.02.042 pubmed: 29524657
Wei Q, Dong H-L, Pan L-Y et al (2019) Clinical features and genetic spectrum in Chinese patients with recessive hereditary spastic paraplegia. Transl Neurodegener 8:19. https://doi.org/10.1186/s40035-019-0157-9
doi: 10.1186/s40035-019-0157-9 pubmed: 31289639 pmcid: 6593507
Algahtani H, Shirah B, Ullah I et al (2021) Autosomal recessive cerebellar ataxia with spasticity due to a rare mutation in GBA2 gene in a large consanguineous Saudi family. Genes Dis 8:110–114. https://doi.org/10.1016/j.gendis.2019.07.009
doi: 10.1016/j.gendis.2019.07.009 pubmed: 33569519
Guan R-Y, Wu J-J, Ding Z-T et al (2020) Clinical and genetic findings in a cohort of Chinese patients with autosomal recessive spinocerebellar ataxia. Clin Genet 97:532–535. https://doi.org/10.1111/cge.13669
doi: 10.1111/cge.13669 pubmed: 31743419
Nakamura-Shindo K, Ono K, Koh K et al (2020) A novel mutation in the GBA2 gene in a Japanese patient with SPG46: a case report. eNeurologicalSci 19:100238. https://doi.org/10.1016/j.ensci.2020.100238
doi: 10.1016/j.ensci.2020.100238 pubmed: 32280793 pmcid: 7139103
Kloth K, Cozma C, Bester M et al (2020) Dystonia as initial presentation of compound heterozygous GBA2 mutations: expanding the phenotypic spectrum of SPG46. Eur J Med Genet 63:103992. https://doi.org/10.1016/j.ejmg.2020.103992
doi: 10.1016/j.ejmg.2020.103992 pubmed: 32590105
Holla VV, Surisetti BK, Prasad S et al (2021) SPG46 due to truncating mutations in GBA2: two cases from India. Parkinsonism Relat Disord 82:13–15. https://doi.org/10.1016/j.parkreldis.2020.11.007
doi: 10.1016/j.parkreldis.2020.11.007 pubmed: 33227682
Lan M-Y, Lu C-S, Wu S-L et al (2022) Clinical and genetic characterization of a Taiwanese cohort with spastic paraparesis combined with cerebellar involvement. Front Neurol 13:1005670. https://doi.org/10.3389/fneur.2022.1005670
doi: 10.3389/fneur.2022.1005670 pubmed: 36247768 pmcid: 9563621
Cores Bartolomé C, Rubio Nazábal E, Sobrido MJ, Pérez Sousa C (2023) SPG46 spastic paraplegia due to GBA2 mutation: description of the first case in Spain. Neurologia (Engl Ed) 38:372–374. https://doi.org/10.1016/j.nrleng.2022.06.009
doi: 10.1016/j.nrleng.2022.06.009 pubmed: 37031796
Scarpelli M, Zappini F, Filosto M et al (2012) Mitochondrial sensorineural hearing loss: a retrospective study and a description of cochlear implantation in a MELAS patient. Genet Res Int 2012:287432. https://doi.org/10.1155/2012/287432
doi: 10.1155/2012/287432 pubmed: 22567382 pmcid: 3335728
Fancello V, Fancello G, Palma S et al (2023) The role of primary mitochondrial disorders in hearing impairment: an overview. Medicina (Kaunas) 59:608. https://doi.org/10.3390/medicina59030608
doi: 10.3390/medicina59030608 pubmed: 36984609
Sultana S, Stewart J, van der Spoel AC (2020) Truncated mutants of beta-glucosidase 2 (GBA2) are localized in the mitochondrial matrix and cause mitochondrial fragmentation. PLoS One 15:e0233856. https://doi.org/10.1371/journal.pone.0233856
doi: 10.1371/journal.pone.0233856 pubmed: 32492073 pmcid: 7269613
Roshan Lal T, Sidransky E (2017) The spectrum of neurological manifestations associated with Gaucher disease. Diseases 5:10. https://doi.org/10.3390/diseases5010010
doi: 10.3390/diseases5010010 pubmed: 28933363 pmcid: 5456331
Bremova-Ertl T, Schiffmann R, Patterson MC et al (2017) Oculomotor and vestibular findings in Gaucher disease type 3 and their correlation with neurological findings. Front Neurol 8:711. https://doi.org/10.3389/fneur.2017.00711
doi: 10.3389/fneur.2017.00711 pubmed: 29379464
Vitner EB, Futerman AH (2013) Neuronal forms of Gaucher disease. Handb Exp Pharmacol 405–419. https://doi.org/10.1007/978-3-7091-1511-4_20
Boer DEC, van Smeden J, Bouwstra JA, Aerts JMFG (2020) Glucocerebrosidase: functions in and beyond the lysosome. J Clin Med 9:736. https://doi.org/10.3390/jcm9030736
doi: 10.3390/jcm9030736 pubmed: 32182893 pmcid: 7141376
Körschen HG, Yildiz Y, Raju DN et al (2013) The non-lysosomal β-glucosidase GBA2 is a non-integral membrane-associated protein at the endoplasmic reticulum (ER) and Golgi. J Biol Chem 288:3381–3393. https://doi.org/10.1074/jbc.M112.414714
doi: 10.1074/jbc.M112.414714 pubmed: 23250757
Sabbagh A, Pasmant E, Laurendeau I et al (2009) Unravelling the genetic basis of variable clinical expression in neurofibromatosis 1. Hum Mol Genet 18:2768–2778. https://doi.org/10.1093/hmg/ddp212
doi: 10.1093/hmg/ddp212 pubmed: 19417008 pmcid: 2722187
Jobling R, Ferrier RA, McLeod R et al (2011) Monozygotic twins with variable expression of Van der Woude syndrome. Am J Med Genet A 155A:2008–2010. https://doi.org/10.1002/ajmg.a.34022
doi: 10.1002/ajmg.a.34022 pubmed: 21739575
Collins AL, Lunt PW, Garrett C, Dennis NR (1993) Holoprosencephaly: a family showing dominant inheritance and variable expression. J Med Genet 30:36–40. https://doi.org/10.1136/jmg.30.1.36
doi: 10.1136/jmg.30.1.36 pubmed: 8423605 pmcid: 1016231
Kingdom R, Wright CF (2022) Incomplete penetrance and variable expressivity: from clinical studies to population cohorts. Front Genet 13:920390. https://doi.org/10.3389/fgene.2022.920390
doi: 10.3389/fgene.2022.920390 pubmed: 35983412 pmcid: 9380816
Cavalli G, Heard E (2019) Advances in epigenetics link genetics to the environment and disease. Nature 571:489–499. https://doi.org/10.1038/s41586-019-1411-0
doi: 10.1038/s41586-019-1411-0 pubmed: 31341302
Skre H, Berg K (1977) Linkage studies on Marinesco-Sjøgren syndrome and hypergonadotropic hypogonadism. Clin Genet 11:57–66. https://doi.org/10.1111/j.1399-0004.1977.tb01279.x
doi: 10.1111/j.1399-0004.1977.tb01279.x pubmed: 830450
Anttonen A-K, Mahjneh I, Hämäläinen RH et al (2005) The gene disrupted in Marinesco-Sjögren syndrome encodes SIL1, an HSPA5 cochaperone. Nat Genet 37:1309–1311. https://doi.org/10.1038/ng1677
doi: 10.1038/ng1677 pubmed: 16282978
Senderek J, Krieger M, Stendel C et al (2005) Mutations in SIL1 cause Marinesco-Sjögren syndrome, a cerebellar ataxia with cataract and myopathy. Nat Genet 37:1312–1314. https://doi.org/10.1038/ng1678
doi: 10.1038/ng1678 pubmed: 16282977
Krieger M, Roos A, Stendel C et al (2013) SIL1 mutations and clinical spectrum in patients with Marinesco-Sjogren syndrome. Brain 136:3634–3644. https://doi.org/10.1093/brain/awt283
doi: 10.1093/brain/awt283 pubmed: 24176978
Anttonen AK. Marinesco-Sjögren Syndrome. 2006 Nov 29 [Updated 2019 Jan 10]. In: Adam MP, Feldman J, Mirzaa GM, et al (eds) GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2024. Available from: https://www.ncbi.nlm.nih.gov/books/NBK1192/
Aureli M, Gritti A, Bassi R et al (2012) Plasma membrane-associated glycohydrolases along differentiation of murine neural stem cells. Neurochem Res 37:1344–1354. https://doi.org/10.1007/s11064-012-0719-z
doi: 10.1007/s11064-012-0719-z pubmed: 22350518
Boot RG, Verhoek M, Donker-Koopman W et al (2007) Identification of the non-lysosomal glucosylceramidase as beta-glucosidase 2. J Biol Chem 282:1305–1312. https://doi.org/10.1074/jbc.M610544200
doi: 10.1074/jbc.M610544200 pubmed: 17105727
Woeste MA, Stern S, Raju DN et al (2019) Species-specific differences in nonlysosomal glucosylceramidase GBA2 function underlie locomotor dysfunction arising from loss-of-function mutations. J Biol Chem 294:3853–3871. https://doi.org/10.1074/jbc.RA118.006311
doi: 10.1074/jbc.RA118.006311 pubmed: 30662006 pmcid: 6422076
Amory JK, Muller CH, Page ST et al (2007) Miglustat has no apparent effect on spermatogenesis in normal men. Hum Reprod 22:702–707. https://doi.org/10.1093/humrep/del414
doi: 10.1093/humrep/del414 pubmed: 17067996
van der Spoel AC, Mott R, Platt FM (2008) Differential sensitivity of mouse strains to an N-alkylated imino sugar: glycosphingolipid metabolism and acrosome formation. Pharmacogenomics 9:717–731. https://doi.org/10.2217/14622416.9.6.717
doi: 10.2217/14622416.9.6.717 pubmed: 18518850
Marshall J, Sun Y, Bangari DS et al (2016) CNS-accessible inhibitor of glucosylceramide synthase for substrate reduction therapy of neuronopathic Gaucher disease. Mol Ther 24:1019–1029. https://doi.org/10.1038/mt.2016.53
doi: 10.1038/mt.2016.53 pubmed: 26948439 pmcid: 4923322
Sardi SP, Viel C, Clarke J, et al (2017) Glucosylceramide synthase inhibition alleviates aberrations in synucleinopathy models. Proc Natl Acad Sci U S A 114:2699–2704. https://doi.org/10.1073/pnas.1616152114

Auteurs

Ettore Cioffi (E)

Department of Medico-Surgical Sciences and Biotechnologies, University of Rome Sapienza, Latina, Italy. ettore.cioffi@uniroma1.it.

Gianluca Coppola (G)

Department of Medico-Surgical Sciences and Biotechnologies, University of Rome Sapienza, Latina, Italy.

Olimpia Musumeci (O)

Department of Experimental and Clinical Medicine, University of Messina, Messina, Italy.

Salvatore Gallone (S)

Department of Neuroscience and Mental Health, Neurologia 1, A.O.U. Città Della Salute E Della Scienza, 10126, Turin, Italy.

Gabriella Silvestri (G)

Dipartimento Di Neuroscienze, Sez. Neurologia, Facoltà Di Medicina E Chirurgia, Università Cattolica del Sacro Cuore, Rome, Italy.
Dipartimento Di Neuroscienze, Organi Di Senso E Torace, UOC Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.

Salvatore Rossi (S)

Dipartimento Di Neuroscienze, Sez. Neurologia, Facoltà Di Medicina E Chirurgia, Università Cattolica del Sacro Cuore, Rome, Italy.

Fiorella Piemonte (F)

Unit of Muscular and Neurodegenerative Diseases, Children's Hospital Bambino Gesù, IRCCS, Rome, Italy.

Jessica D'Amico (J)

Unit of Muscular and Neurodegenerative Diseases, Children's Hospital Bambino Gesù, IRCCS, Rome, Italy.

Alessandra Tessa (A)

IRCCS Stella Maris Foundation, Calambrone, Via Dei Giacinti 2, 56128, Pisa, Italy.

Filippo Maria Santorelli (FM)

IRCCS Stella Maris Foundation, Calambrone, Via Dei Giacinti 2, 56128, Pisa, Italy.

Carlo Casali (C)

Department of Medico-Surgical Sciences and Biotechnologies, University of Rome Sapienza, Latina, Italy.

Classifications MeSH