Mucosal vaccine-induced cross-reactive CD8


Journal

Nature immunology
ISSN: 1529-2916
Titre abrégé: Nat Immunol
Pays: United States
ID NLM: 100941354

Informations de publication

Date de publication:
09 Feb 2024
Historique:
received: 13 07 2023
accepted: 08 01 2024
medline: 10 2 2024
pubmed: 10 2 2024
entrez: 10 2 2024
Statut: aheadofprint

Résumé

A nasally delivered chimpanzee adenoviral-vectored severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine (ChAd-SARS-CoV-2-S) is currently used in India (iNCOVACC). Here, we update this vaccine by creating ChAd-SARS-CoV-2-BA.5-S, which encodes a prefusion-stabilized BA.5 spike protein. Whereas serum neutralizing antibody responses induced by monovalent or bivalent adenoviral vaccines were poor against the antigenically distant XBB.1.5 strain and insufficient to protect in passive transfer experiments, mucosal antibody and cross-reactive memory T cell responses were robust, and protection was evident against WA1/2020 D614G and Omicron variants BQ.1.1 and XBB.1.5 in mice and hamsters. However, depletion of memory CD8

Identifiants

pubmed: 38337035
doi: 10.1038/s41590-024-01743-x
pii: 10.1038/s41590-024-01743-x
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : NIAID NIH HHS
ID : R01 AI157155
Pays : United States
Organisme : NIAID NIH HHS
ID : HHSN272201400008C
Pays : United States
Organisme : NIAID NIH HHS
ID : 75N93021C00014
Pays : United States
Organisme : NIAID NIH HHS
ID : R01 AI146779
Pays : United States
Organisme : NCI NIH HHS
ID : R01 CA211096
Pays : United States
Organisme : NIAID NIH HHS
ID : 75N93021C00016
Pays : United States

Informations de copyright

© 2024. The Author(s).

Références

Polack, F. P. et al. Safety and efficacy of the BNT162b2 mRNA COVID-19 vaccine. N. Engl. J. Med. 383, 2603–2615 (2020).
pubmed: 33301246 doi: 10.1056/NEJMoa2034577
Baden, L. R. et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N. Engl. J. Med. 384, 403–416 (2021).
pubmed: 33378609 doi: 10.1056/NEJMoa2035389
Knoll, M. D. & Wonodi, C. Oxford–AstraZeneca COVID-19 vaccine efficacy. Lancet 397, 72–74 (2021).
pubmed: 33306990 doi: 10.1016/S0140-6736(20)32623-4
Regev-Yochay, G. et al. Efficacy of a fourth dose of COVID-19 mRNA vaccine against Omicron. N. Engl. J. Med. 386, 1377–1380 (2022).
pubmed: 35297591 doi: 10.1056/NEJMc2202542
Link-Gelles, R. et al. Early estimates of bivalent mRNA booster dose vaccine effectiveness in preventing symptomatic SARS-CoV-2 infection attributable to Omicron BA.5- and XBB/XBB.1.5-related sublineages among immunocompetent adults—increasing community access to testing program, United States, December 2022–January 2023. MMWR Morb. Mortal. Wkly Rep. 72, 119–124 (2023).
pubmed: 36730051 pmcid: 9927070 doi: 10.15585/mmwr.mm7205e1
Cao, Y. et al. BA.2.12.1, BA.4 and BA.5 escape antibodies elicited by Omicron infection. Nature 608, 593–602 (2022).
pubmed: 35714668 pmcid: 9385493 doi: 10.1038/s41586-022-04980-y
Hachmann, N. P. et al. Neutralization escape by SARS-CoV-2 Omicron subvariants BA.2.12.1, BA.4, and BA.5. N. Engl. J. Med. 387, 86–88 (2022).
pubmed: 35731894 doi: 10.1056/NEJMc2206576
Khan, K. et al. Omicron BA.4/BA.5 escape neutralizing immunity elicited by BA.1 infection. Nat. Commun. 13, 4686 (2022).
pubmed: 35948557 pmcid: 9364294 doi: 10.1038/s41467-022-32396-9
Wang, Q. et al. Antibody response to Omicron BA.4–BA.5 bivalent booster. N. Engl. J. Med. 388, 567–569 (2023).
pubmed: 36630643 doi: 10.1056/NEJMc2213907
Lau, J. J. et al. Real-world COVID-19 vaccine effectiveness against the Omicron BA.2 variant in a SARS-CoV-2 infection-naive population. Nat. Med. 29, 348–357 (2023).
pubmed: 36652990 pmcid: 9941049 doi: 10.1038/s41591-023-02219-5
Kurhade, C. et al. Low neutralization of SARS-CoV-2 Omicron BA.2.75.2, BQ.1.1 and XBB.1 by parental mRNA vaccine or a BA.5 bivalent booster. Nat. Med. 29, 344–347 (2023).
pubmed: 36473500 doi: 10.1038/s41591-022-02162-x
Wang, Q. et al. Alarming antibody evasion properties of rising SARS-CoV-2 BQ and XBB subvariants. Cell 186, 279–286 (2023).
pubmed: 36580913 pmcid: 9747694 doi: 10.1016/j.cell.2022.12.018
Yue, C. et al. ACE2 binding and antibody evasion in enhanced transmissibility of XBB.1.5. Lancet Infect. Dis. 23, 278–280 (2023).
pubmed: 36746173 pmcid: 9897732 doi: 10.1016/S1473-3099(23)00010-5
Waltz, E. How nasal-spray vaccines could change the pandemic. Nature 609, 240–242 (2022).
pubmed: 36068305 doi: 10.1038/d41586-022-02824-3
Hassan, A. O. et al. A single-dose intranasal ChAd vaccine protects upper and lower respiratory tracts against SARS-CoV-2. Cell 183, 169–184 (2020).
pubmed: 32931734 pmcid: 7437481 doi: 10.1016/j.cell.2020.08.026
van Doremalen, N. et al. Intranasal ChAdOx1 nCoV-19/AZD1222 vaccination reduces viral shedding after SARS-CoV-2 D614G challenge in preclinical models. Sci. Transl. Med. 13, eabh0755 (2021).
pubmed: 34315826 pmcid: 9267380 doi: 10.1126/scitranslmed.abh0755
Le Nouen, C. et al. Intranasal pediatric parainfluenza virus-vectored SARS-CoV-2 vaccine is protective in monkeys. Cell 185, 4811–4825 (2022).
pubmed: 36423629 pmcid: 9684001 doi: 10.1016/j.cell.2022.11.006
Mao, T. et al. Unadjuvanted intranasal spike vaccine booster elicits robust protective mucosal immunity against sarbecoviruses. Science 378, eabo2523 (2022).
pubmed: 36302057 pmcid: 9798903 doi: 10.1126/science.abo2523
Hassan, A. O. et al. A single intranasal dose of chimpanzee adenovirus-vectored vaccine protects against SARS-CoV-2 infection in rhesus macaques. Cell Rep. Med. 2, 100230 (2021).
pubmed: 33754147 pmcid: 7969912 doi: 10.1016/j.xcrm.2021.100230
Langel, S. N. et al. Adenovirus type 5 SARS-CoV-2 vaccines delivered orally or intranasally reduced disease severity and transmission in a hamster model. Sci. Transl. Med. 14, eabn6868 (2022).
pubmed: 35511920 doi: 10.1126/scitranslmed.abn6868
King, R. G. et al. Single-dose intranasal administration of AdCOVID elicits systemic and mucosal immunity against SARS-CoV-2 and fully protects mice from lethal challenge. Vaccines 9, 881 (2021).
pubmed: 34452006 pmcid: 8402488 doi: 10.3390/vaccines9080881
Madhavan, M. et al. Tolerability and immunogenicity of an intranasally-administered adenovirus-vectored COVID-19 vaccine: an open-label partially-randomised ascending dose phase I trial. EBioMedicine 85, 104298 (2022).
pubmed: 36229342 pmcid: 9550199 doi: 10.1016/j.ebiom.2022.104298
Jin, L. et al. Antibody persistence and safety after heterologous boosting with orally aerosolised Ad5-nCoV in individuals primed with two-dose CoronaVac previously: 12-month analyses of a randomized controlled trial. Emerg. Microbes Infect. 12, 2155251 (2023).
pubmed: 36503413 doi: 10.1080/22221751.2022.2155251
Rosato, P. C., Beura, L. K. & Masopust, D. Tissue resident memory T cells and viral immunity. Curr. Opin. Virol. 22, 44–50 (2017).
pubmed: 27987416 doi: 10.1016/j.coviro.2016.11.011
McMahan, K. et al. Correlates of protection against SARS-CoV-2 in rhesus macaques. Nature 590, 630–634 (2021).
pubmed: 33276369 doi: 10.1038/s41586-020-03041-6
Liu, J. et al. CD8 T cells contribute to vaccine protection against SARS-CoV-2 in macaques. Sci. Immunol. 7, eabq7647 (2022).
pubmed: 35943359 doi: 10.1126/sciimmunol.abq7647
Kedzierska, K. & Thomas, P. G. Count on us: T cells in SARS-CoV-2 infection and vaccination. Cell Rep. Med. 3, 100562 (2022).
pubmed: 35474748 pmcid: 8872824 doi: 10.1016/j.xcrm.2022.100562
Sette, A. & Crotty, S. Adaptive immunity to SARS-CoV-2 and COVID-19. Cell 184, 861–880 (2021).
pubmed: 33497610 pmcid: 7803150 doi: 10.1016/j.cell.2021.01.007
Weisberg, S. P., Ural, B. B. & Farber, D. L. Tissue-specific immunity for a changing world. Cell 184, 1517–1529 (2021).
pubmed: 33740452 pmcid: 7988978 doi: 10.1016/j.cell.2021.01.042
Wu, T. et al. Lung-resident memory CD8 T cells (T
pubmed: 24006506 pmcid: 3896663 doi: 10.1189/jlb.0313180
Zheng, M. Z. M. & Wakim, L. M. Tissue resident memory T cells in the respiratory tract. Mucosal Immunol. 15, 379–388 (2022).
pubmed: 34671115 doi: 10.1038/s41385-021-00461-z
Li, C. et al. Mechanisms of innate and adaptive immunity to the Pfizer-BioNTech BNT162b2 vaccine. Nat. Immunol. 23, 543–555 (2022).
pubmed: 35288714 pmcid: 8989677 doi: 10.1038/s41590-022-01163-9
Winkler, E. S. et al. SARS-CoV-2 infection of human ACE2-transgenic mice causes severe lung inflammation and impaired function. Nat. Immunol. 21, 1327–1335 (2020).
pubmed: 32839612 pmcid: 7578095 doi: 10.1038/s41590-020-0778-2
Ying, B. et al. Protective activity of mRNA vaccines against ancestral and variant SARS-CoV-2 strains. Sci. Transl. Med. 14, eabm3302 (2022).
pubmed: 34846168 doi: 10.1126/scitranslmed.abm3302
Ying, B. et al. Boosting with variant-matched or historical mRNA vaccines protects against Omicron infection in mice. Cell 185, 1572–1587 (2022).
pubmed: 35452622 pmcid: 8958157 doi: 10.1016/j.cell.2022.03.037
Uraki, R. et al. Characterization of SARS-CoV-2 Omicron BA.4 and BA.5 isolates in rodents. Nature 612, 540–545 (2022).
pubmed: 36323336 doi: 10.1038/s41586-022-05482-7
Uraki, R. et al. Characterization and antiviral susceptibility of SARS-CoV-2 Omicron BA.2. Nature 607, 119–127 (2022).
pubmed: 35576972 pmcid: 10579982 doi: 10.1038/s41586-022-04856-1
Halfmann, P. J. et al. SARS-CoV-2 Omicron virus causes attenuated disease in mice and hamsters. Nature 603, 687–692 (2022).
pubmed: 35062015 pmcid: 8942849 doi: 10.1038/s41586-022-04441-6
Merad, M. & Martin, J. C. Pathological inflammation in patients with COVID-19: a key role for monocytes and macrophages. Nat. Rev. Immunol. 20, 355–362 (2020).
pubmed: 32376901 pmcid: 7201395 doi: 10.1038/s41577-020-0331-4
Moore, J. B. & June, C. H. Cytokine release syndrome in severe COVID-19. Science 368, 473–474 (2020).
pubmed: 32303591 doi: 10.1126/science.abb8925
Chalkias, S. et al. A bivalent Omicron-containing booster vaccine against COVID-19. N. Engl. J. Med. 387, 1279–1291 (2022).
pubmed: 36112399 doi: 10.1056/NEJMoa2208343
Scheaffer, S. M. et al. Bivalent SARS-CoV-2 mRNA vaccines increase breadth of neutralization and protect against the BA.5 Omicron variant in mice. Nat. Med. 29, 247–257 (2023).
pubmed: 36265510 doi: 10.1038/s41591-022-02092-8
Davis-Gardner, M. E. et al. Neutralization against BA.2.75.2, BQ.1.1, and XBB from mRNA bivalent booster. N. Engl. J. Med. 388, 183–185 (2023).
pubmed: 36546661 doi: 10.1056/NEJMc2214293
Zou, J. et al. Neutralization of BA.4-BA.5, BA.4.6, BA.2.75.2, BQ.1.1, and XBB.1 with bivalent vaccine. N. Engl. J. Med. 388, 854–857 (2023).
pubmed: 36734885 doi: 10.1056/NEJMc2214916
Corleis, B. et al. Efficacy of an unmodified bivalent mRNA vaccine against SARS-CoV-2 variants in female small animal models. Nat. Commun. 14, 816 (2023).
pubmed: 36781853 pmcid: 9924835 doi: 10.1038/s41467-023-36110-1
Tenforde, M. W. et al. Early estimates of bivalent mRNA vaccine effectiveness in preventing COVID-19-associated emergency department or urgent care encounters and hospitalizations among immunocompetent adults—VISION Network, Nine States, September–November 2022. MMWR Morb. Mortal. Wkly Rep. 71, 1616–1624 (2022).
Zhang, X. et al. Omicron sublineage recombinant XBB evades neutralising antibodies in recipients of BNT162b2 or CoronaVac vaccines. Lancet Microbe 4, e131 (2023).
pubmed: 36493789 doi: 10.1016/S2666-5247(22)00335-4
Son, Y. M. et al. Tissue-resident CD4
pubmed: 33419791 pmcid: 8056937 doi: 10.1126/sciimmunol.abb6852
Israelow, B. et al. Adaptive immune determinants of viral clearance and protection in mouse models of SARS-CoV-2. Sci. Immunol. 6, eabl4509 (2021).
pubmed: 34623900 pmcid: 9047536 doi: 10.1126/sciimmunol.abl4509
Moss, P. The T cell immune response against SARS-CoV-2. Nat. Immunol. 23, 186–193 (2022).
pubmed: 35105982 doi: 10.1038/s41590-021-01122-w
Tarke, A. et al. SARS-CoV-2 vaccination induces immunological T cell memory able to cross-recognize variants from Alpha to Omicron. Cell 185, 847–859 (2022).
pubmed: 35139340 pmcid: 8784649 doi: 10.1016/j.cell.2022.01.015
Keeton, R. et al. T cell responses to SARS-CoV-2 spike cross-recognize Omicron. Nature 603, 488–492 (2022).
pubmed: 35102311 pmcid: 8930768 doi: 10.1038/s41586-022-04460-3
Gao, Y. et al. Ancestral SARS-CoV-2-specific T cells cross-recognize the Omicron variant. Nat. Med. 28, 472–476 (2022).
pubmed: 35042228 pmcid: 8938268 doi: 10.1038/s41591-022-01700-x
GeurtsvanKessel, C. H. et al. Divergent SARS-CoV-2 Omicron-reactive T and B cell responses in COVID-19 vaccine recipients. Sci. Immunol. 7, eabo2202 (2022).
Geers, D. et al. SARS-CoV-2 variants of concern partially escape humoral but not T-cell responses in COVID-19 convalescent donors and vaccinees. Sci. Immunol. 6, eabj1750 (2021).
pubmed: 34035118 pmcid: 9268159 doi: 10.1126/sciimmunol.abj1750
Traut, C. C. & Blankson, J. N. Bivalent mRNA vaccine-elicited SARS-CoV-2 specific T cells recognise the Omicron XBB sublineage. Lancet Microbe 4, e388 (2023).
Khoury, D. S. et al. Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection. Nat. Med. 27, 1205–1211 (2021).
pubmed: 34002089 doi: 10.1038/s41591-021-01377-8
Mackin, S. R. et al. Fc-γR-dependent antibody effector functions are required for vaccine-mediated protection against antigen-shifted variants of SARS-CoV-2. Nat. Microbiol. 2023 8, 569–580. (2023).
Lau, E. H. Y. et al. Neutralizing antibody titres in SARS-CoV-2 infections. Nat. Commun. 12, 63 (2021).
pubmed: 33397909 pmcid: 7782739 doi: 10.1038/s41467-020-20247-4
Lin, D. Y. et al. Effectiveness of bivalent boosters against severe Omicron infection. N. Engl. J. Med. 388, 764–766 (2023).
pubmed: 36734847 doi: 10.1056/NEJMc2215471
Glass, W. G., Subbarao, K., Murphy, B. & Murphy, P. M. Mechanisms of host defense following severe acute respiratory syndrome-coronavirus (SARS-CoV) pulmonary infection of mice. J. Immunol. 173, 4030–4039 (2004).
pubmed: 15356152 doi: 10.4049/jimmunol.173.6.4030
Goldblatt, D., Alter, G., Crotty, S. & Plotkin, S. A. Correlates of protection against SARS-CoV-2 infection and COVID-19 disease. Immunol. Rev. 310, 6–26 (2022).
pubmed: 35661178 doi: 10.1111/imr.13091
Cohen, B. et al. COVID-19 infection in 10 common variable immunodeficiency patients in New York City. J. Allergy Clin. Immunol. Pract. 9, 504–507 (2021).
pubmed: 33217615 doi: 10.1016/j.jaip.2020.11.006
Bange, E. M. et al. CD8
pubmed: 34017137 pmcid: 8291091 doi: 10.1038/s41591-021-01386-7
Horiuchi, S. et al. Immune memory from SARS-CoV-2 infection in hamsters provides variant-independent protection but still allows virus transmission. Sci. Immunol. 6, eabm3131 (2021).
pubmed: 34699266 doi: 10.1126/sciimmunol.abm3131
Matchett, W. E. et al. Cutting edge: Nucleocapsid vaccine elicits spike-independent SARS-CoV-2 protective immunity. J. Immunol. 207, 376–379 (2021).
pubmed: 34193597 doi: 10.4049/jimmunol.2100421
Zens, K. D., Chen, J. K. & Farber, D. L. Vaccine-generated lung tissue-resident memory T cells provide heterosubtypic protection to influenza infection. JCI Insight 1, e85832 (2016).
pubmed: 27468427 pmcid: 4959801 doi: 10.1172/jci.insight.85832
Liang, S., Mozdzanowska, K., Palladino, G. & Gerhard, W. Heterosubtypic immunity to influenza type A virus in mice. Effector mechanisms and their longevity. J. Immunol. 152, 1653–1661 (1994).
pubmed: 8120375 doi: 10.4049/jimmunol.152.4.1653
Thomas, P. G., Keating, R., Hulse-Post, D. J. & Doherty, P. C. Cell-mediated protection in influenza infection. Emerg. Infect. Dis. 12, 48–54 (2006).
pubmed: 16494717 pmcid: 3291410 doi: 10.3201/eid1201.051237
Warkentin, T. E. et al. Adenovirus-associated thrombocytopenia, thrombosis, and VITT-like antibodies. N. Engl. J. Med. 389, 574–577 (2023).
pubmed: 37590457 doi: 10.1056/NEJMc2307721
Xu, J. W. et al. Safety and immunogenicity of heterologous boosting with orally administered aerosolized bivalent adenovirus type-5 vectored COVID-19 vaccine and B.1.1.529 variant adenovirus type-5 vectored COVID-19 vaccine in adults 18 years and older: a randomized, double blinded, parallel controlled trial. Emerg. Microbes Infect. 13, 2281355 (2023).
pubmed: 37933089 doi: 10.1080/22221751.2023.2281355
Zang, R. et al. TMPRSS2 and TMPRSS4 promote SARS-CoV-2 infection of human small intestinal enterocytes. Sci. Immunol. 5, eabc3582 (2020).
pubmed: 32404436 pmcid: 7285829 doi: 10.1126/sciimmunol.abc3582
Chen, R. E. et al. Resistance of SARS-CoV-2 variants to neutralization by monoclonal and serum-derived polyclonal antibodies. Nat. Med. 27, 717–726 (2021).
pubmed: 33664494 pmcid: 8058618 doi: 10.1038/s41591-021-01294-w
Plante, J. A. et al. Spike mutation D614G alters SARS-CoV-2 fitness. Nature 592, 116–121 (2021).
pubmed: 33106671 doi: 10.1038/s41586-020-2895-3
DeGrace, M. M. et al. Defining the risk of SARS-CoV-2 variants on immune protection. Nature 605, 640–652 (2022).
pubmed: 35361968 pmcid: 9345323 doi: 10.1038/s41586-022-04690-5
Imai, M. et al. Syrian hamsters as a small animal model for SARS-CoV-2 infection and countermeasure development. Proc. Natl Acad. Sci. USA 117, 16587–16595 (2020).
pubmed: 32571934 pmcid: 7368255 doi: 10.1073/pnas.2009799117
Hsieh, C. L. et al. Structure-based design of prefusion-stabilized SARS-CoV-2 spikes. Science 369, 1501–1505 (2020).
pubmed: 32703906 doi: 10.1126/science.abd0826
Maizel, J. V. Jr., White, D. O. & Scharff, M. D. The polypeptides of adenovirus. I. Evidence for multiple protein components in the virion and a comparison of types 2, 7A, and 12. Virology 36, 115–125 (1968).
pubmed: 5669982 doi: 10.1016/0042-6822(68)90121-9
VanBlargan, L. et al. A potently neutralizing SARS-CoV-2 antibody inhibits variants of concern by utilizing unique binding residues in a highly conserved epitope. Immunity 54, 2399–2416.e6 (2021).
pubmed: 34481543 pmcid: 8373659 doi: 10.1016/j.immuni.2021.08.016
Case, J. B., Bailey, A. L., Kim, A. S., Chen, R. E. & Diamond, M. S. Growth, detection, quantification, and inactivation of SARS-CoV-2. Virology 548, 39–48 (2020).
pubmed: 32838945 doi: 10.1016/j.virol.2020.05.015
Chu, D. K. W. et al. Molecular diagnosis of a novel coronavirus (2019-nCoV) causing an outbreak of pneumonia. Clin. Chem. 66, 549–555 (2020).
pubmed: 32031583 pmcid: 7108203 doi: 10.1093/clinchem/hvaa029
Meyerholz, D. K., Sieren, J. C., Beck, A. P. & Flaherty, H. A. Approaches to evaluate lung inflammation in translational research. Vet. Pathol. 55, 42–52 (2018).
pubmed: 28812529 doi: 10.1177/0300985817726117
Wong, L. R. et al. Eicosanoid signalling blockade protects middle-aged mice from severe COVID-19. Nature 605, 146–151 (2022).
pubmed: 35314834 pmcid: 9783543 doi: 10.1038/s41586-022-04630-3
Meyerholz, D. K. & Beck, A. P. Histopathologic evaluation and scoring of viral lung infection. Methods Mol. Biol. 2099, 205–220 (2020).
pubmed: 31883098 doi: 10.1007/978-1-0716-0211-9_16
Dinnon, K. H. III et al. SARS-CoV-2 infection produces chronic pulmonary epithelial and immune cell dysfunction with fibrosis in mice. Sci. Transl. Med. 14, eabo5070 (2022).
pubmed: 35857635 doi: 10.1126/scitranslmed.abo5070

Auteurs

Baoling Ying (B)

Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.

Tamarand L Darling (TL)

Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.

Pritesh Desai (P)

Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.

Chieh-Yu Liang (CY)

Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA.

Igor P Dmitriev (IP)

Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA.

Nadia Soudani (N)

Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA.

Traci Bricker (T)

Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.

Elena A Kashentseva (EA)

Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA.

Houda Harastani (H)

Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.

Saravanan Raju (S)

Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA.

Meizi Liu (M)

Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.

Aaron G Schmidt (AG)

Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA.
Department of Microbiology, Harvard Medical School, Boston, MA, USA.

David T Curiel (DT)

Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA.

Adrianus C M Boon (ACM)

Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA. jboon@wustl.edu.
Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA. jboon@wustl.edu.
Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA. jboon@wustl.edu.
Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA. jboon@wustl.edu.

Michael S Diamond (MS)

Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA. mdiamond@wustl.edu.
Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA. mdiamond@wustl.edu.
Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA. mdiamond@wustl.edu.
Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA. mdiamond@wustl.edu.
Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St. Louis, MO, USA. mdiamond@wustl.edu.

Classifications MeSH