Mucosal vaccine-induced cross-reactive CD8
Journal
Nature immunology
ISSN: 1529-2916
Titre abrégé: Nat Immunol
Pays: United States
ID NLM: 100941354
Informations de publication
Date de publication:
09 Feb 2024
09 Feb 2024
Historique:
received:
13
07
2023
accepted:
08
01
2024
medline:
10
2
2024
pubmed:
10
2
2024
entrez:
10
2
2024
Statut:
aheadofprint
Résumé
A nasally delivered chimpanzee adenoviral-vectored severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine (ChAd-SARS-CoV-2-S) is currently used in India (iNCOVACC). Here, we update this vaccine by creating ChAd-SARS-CoV-2-BA.5-S, which encodes a prefusion-stabilized BA.5 spike protein. Whereas serum neutralizing antibody responses induced by monovalent or bivalent adenoviral vaccines were poor against the antigenically distant XBB.1.5 strain and insufficient to protect in passive transfer experiments, mucosal antibody and cross-reactive memory T cell responses were robust, and protection was evident against WA1/2020 D614G and Omicron variants BQ.1.1 and XBB.1.5 in mice and hamsters. However, depletion of memory CD8
Identifiants
pubmed: 38337035
doi: 10.1038/s41590-024-01743-x
pii: 10.1038/s41590-024-01743-x
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : NIAID NIH HHS
ID : R01 AI157155
Pays : United States
Organisme : NIAID NIH HHS
ID : HHSN272201400008C
Pays : United States
Organisme : NIAID NIH HHS
ID : 75N93021C00014
Pays : United States
Organisme : NIAID NIH HHS
ID : R01 AI146779
Pays : United States
Organisme : NCI NIH HHS
ID : R01 CA211096
Pays : United States
Organisme : NIAID NIH HHS
ID : 75N93021C00016
Pays : United States
Informations de copyright
© 2024. The Author(s).
Références
Polack, F. P. et al. Safety and efficacy of the BNT162b2 mRNA COVID-19 vaccine. N. Engl. J. Med. 383, 2603–2615 (2020).
pubmed: 33301246
doi: 10.1056/NEJMoa2034577
Baden, L. R. et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N. Engl. J. Med. 384, 403–416 (2021).
pubmed: 33378609
doi: 10.1056/NEJMoa2035389
Knoll, M. D. & Wonodi, C. Oxford–AstraZeneca COVID-19 vaccine efficacy. Lancet 397, 72–74 (2021).
pubmed: 33306990
doi: 10.1016/S0140-6736(20)32623-4
Regev-Yochay, G. et al. Efficacy of a fourth dose of COVID-19 mRNA vaccine against Omicron. N. Engl. J. Med. 386, 1377–1380 (2022).
pubmed: 35297591
doi: 10.1056/NEJMc2202542
Link-Gelles, R. et al. Early estimates of bivalent mRNA booster dose vaccine effectiveness in preventing symptomatic SARS-CoV-2 infection attributable to Omicron BA.5- and XBB/XBB.1.5-related sublineages among immunocompetent adults—increasing community access to testing program, United States, December 2022–January 2023. MMWR Morb. Mortal. Wkly Rep. 72, 119–124 (2023).
pubmed: 36730051
pmcid: 9927070
doi: 10.15585/mmwr.mm7205e1
Cao, Y. et al. BA.2.12.1, BA.4 and BA.5 escape antibodies elicited by Omicron infection. Nature 608, 593–602 (2022).
pubmed: 35714668
pmcid: 9385493
doi: 10.1038/s41586-022-04980-y
Hachmann, N. P. et al. Neutralization escape by SARS-CoV-2 Omicron subvariants BA.2.12.1, BA.4, and BA.5. N. Engl. J. Med. 387, 86–88 (2022).
pubmed: 35731894
doi: 10.1056/NEJMc2206576
Khan, K. et al. Omicron BA.4/BA.5 escape neutralizing immunity elicited by BA.1 infection. Nat. Commun. 13, 4686 (2022).
pubmed: 35948557
pmcid: 9364294
doi: 10.1038/s41467-022-32396-9
Wang, Q. et al. Antibody response to Omicron BA.4–BA.5 bivalent booster. N. Engl. J. Med. 388, 567–569 (2023).
pubmed: 36630643
doi: 10.1056/NEJMc2213907
Lau, J. J. et al. Real-world COVID-19 vaccine effectiveness against the Omicron BA.2 variant in a SARS-CoV-2 infection-naive population. Nat. Med. 29, 348–357 (2023).
pubmed: 36652990
pmcid: 9941049
doi: 10.1038/s41591-023-02219-5
Kurhade, C. et al. Low neutralization of SARS-CoV-2 Omicron BA.2.75.2, BQ.1.1 and XBB.1 by parental mRNA vaccine or a BA.5 bivalent booster. Nat. Med. 29, 344–347 (2023).
pubmed: 36473500
doi: 10.1038/s41591-022-02162-x
Wang, Q. et al. Alarming antibody evasion properties of rising SARS-CoV-2 BQ and XBB subvariants. Cell 186, 279–286 (2023).
pubmed: 36580913
pmcid: 9747694
doi: 10.1016/j.cell.2022.12.018
Yue, C. et al. ACE2 binding and antibody evasion in enhanced transmissibility of XBB.1.5. Lancet Infect. Dis. 23, 278–280 (2023).
pubmed: 36746173
pmcid: 9897732
doi: 10.1016/S1473-3099(23)00010-5
Waltz, E. How nasal-spray vaccines could change the pandemic. Nature 609, 240–242 (2022).
pubmed: 36068305
doi: 10.1038/d41586-022-02824-3
Hassan, A. O. et al. A single-dose intranasal ChAd vaccine protects upper and lower respiratory tracts against SARS-CoV-2. Cell 183, 169–184 (2020).
pubmed: 32931734
pmcid: 7437481
doi: 10.1016/j.cell.2020.08.026
van Doremalen, N. et al. Intranasal ChAdOx1 nCoV-19/AZD1222 vaccination reduces viral shedding after SARS-CoV-2 D614G challenge in preclinical models. Sci. Transl. Med. 13, eabh0755 (2021).
pubmed: 34315826
pmcid: 9267380
doi: 10.1126/scitranslmed.abh0755
Le Nouen, C. et al. Intranasal pediatric parainfluenza virus-vectored SARS-CoV-2 vaccine is protective in monkeys. Cell 185, 4811–4825 (2022).
pubmed: 36423629
pmcid: 9684001
doi: 10.1016/j.cell.2022.11.006
Mao, T. et al. Unadjuvanted intranasal spike vaccine booster elicits robust protective mucosal immunity against sarbecoviruses. Science 378, eabo2523 (2022).
pubmed: 36302057
pmcid: 9798903
doi: 10.1126/science.abo2523
Hassan, A. O. et al. A single intranasal dose of chimpanzee adenovirus-vectored vaccine protects against SARS-CoV-2 infection in rhesus macaques. Cell Rep. Med. 2, 100230 (2021).
pubmed: 33754147
pmcid: 7969912
doi: 10.1016/j.xcrm.2021.100230
Langel, S. N. et al. Adenovirus type 5 SARS-CoV-2 vaccines delivered orally or intranasally reduced disease severity and transmission in a hamster model. Sci. Transl. Med. 14, eabn6868 (2022).
pubmed: 35511920
doi: 10.1126/scitranslmed.abn6868
King, R. G. et al. Single-dose intranasal administration of AdCOVID elicits systemic and mucosal immunity against SARS-CoV-2 and fully protects mice from lethal challenge. Vaccines 9, 881 (2021).
pubmed: 34452006
pmcid: 8402488
doi: 10.3390/vaccines9080881
Madhavan, M. et al. Tolerability and immunogenicity of an intranasally-administered adenovirus-vectored COVID-19 vaccine: an open-label partially-randomised ascending dose phase I trial. EBioMedicine 85, 104298 (2022).
pubmed: 36229342
pmcid: 9550199
doi: 10.1016/j.ebiom.2022.104298
Jin, L. et al. Antibody persistence and safety after heterologous boosting with orally aerosolised Ad5-nCoV in individuals primed with two-dose CoronaVac previously: 12-month analyses of a randomized controlled trial. Emerg. Microbes Infect. 12, 2155251 (2023).
pubmed: 36503413
doi: 10.1080/22221751.2022.2155251
Rosato, P. C., Beura, L. K. & Masopust, D. Tissue resident memory T cells and viral immunity. Curr. Opin. Virol. 22, 44–50 (2017).
pubmed: 27987416
doi: 10.1016/j.coviro.2016.11.011
McMahan, K. et al. Correlates of protection against SARS-CoV-2 in rhesus macaques. Nature 590, 630–634 (2021).
pubmed: 33276369
doi: 10.1038/s41586-020-03041-6
Liu, J. et al. CD8 T cells contribute to vaccine protection against SARS-CoV-2 in macaques. Sci. Immunol. 7, eabq7647 (2022).
pubmed: 35943359
doi: 10.1126/sciimmunol.abq7647
Kedzierska, K. & Thomas, P. G. Count on us: T cells in SARS-CoV-2 infection and vaccination. Cell Rep. Med. 3, 100562 (2022).
pubmed: 35474748
pmcid: 8872824
doi: 10.1016/j.xcrm.2022.100562
Sette, A. & Crotty, S. Adaptive immunity to SARS-CoV-2 and COVID-19. Cell 184, 861–880 (2021).
pubmed: 33497610
pmcid: 7803150
doi: 10.1016/j.cell.2021.01.007
Weisberg, S. P., Ural, B. B. & Farber, D. L. Tissue-specific immunity for a changing world. Cell 184, 1517–1529 (2021).
pubmed: 33740452
pmcid: 7988978
doi: 10.1016/j.cell.2021.01.042
Wu, T. et al. Lung-resident memory CD8 T cells (T
pubmed: 24006506
pmcid: 3896663
doi: 10.1189/jlb.0313180
Zheng, M. Z. M. & Wakim, L. M. Tissue resident memory T cells in the respiratory tract. Mucosal Immunol. 15, 379–388 (2022).
pubmed: 34671115
doi: 10.1038/s41385-021-00461-z
Li, C. et al. Mechanisms of innate and adaptive immunity to the Pfizer-BioNTech BNT162b2 vaccine. Nat. Immunol. 23, 543–555 (2022).
pubmed: 35288714
pmcid: 8989677
doi: 10.1038/s41590-022-01163-9
Winkler, E. S. et al. SARS-CoV-2 infection of human ACE2-transgenic mice causes severe lung inflammation and impaired function. Nat. Immunol. 21, 1327–1335 (2020).
pubmed: 32839612
pmcid: 7578095
doi: 10.1038/s41590-020-0778-2
Ying, B. et al. Protective activity of mRNA vaccines against ancestral and variant SARS-CoV-2 strains. Sci. Transl. Med. 14, eabm3302 (2022).
pubmed: 34846168
doi: 10.1126/scitranslmed.abm3302
Ying, B. et al. Boosting with variant-matched or historical mRNA vaccines protects against Omicron infection in mice. Cell 185, 1572–1587 (2022).
pubmed: 35452622
pmcid: 8958157
doi: 10.1016/j.cell.2022.03.037
Uraki, R. et al. Characterization of SARS-CoV-2 Omicron BA.4 and BA.5 isolates in rodents. Nature 612, 540–545 (2022).
pubmed: 36323336
doi: 10.1038/s41586-022-05482-7
Uraki, R. et al. Characterization and antiviral susceptibility of SARS-CoV-2 Omicron BA.2. Nature 607, 119–127 (2022).
pubmed: 35576972
pmcid: 10579982
doi: 10.1038/s41586-022-04856-1
Halfmann, P. J. et al. SARS-CoV-2 Omicron virus causes attenuated disease in mice and hamsters. Nature 603, 687–692 (2022).
pubmed: 35062015
pmcid: 8942849
doi: 10.1038/s41586-022-04441-6
Merad, M. & Martin, J. C. Pathological inflammation in patients with COVID-19: a key role for monocytes and macrophages. Nat. Rev. Immunol. 20, 355–362 (2020).
pubmed: 32376901
pmcid: 7201395
doi: 10.1038/s41577-020-0331-4
Moore, J. B. & June, C. H. Cytokine release syndrome in severe COVID-19. Science 368, 473–474 (2020).
pubmed: 32303591
doi: 10.1126/science.abb8925
Chalkias, S. et al. A bivalent Omicron-containing booster vaccine against COVID-19. N. Engl. J. Med. 387, 1279–1291 (2022).
pubmed: 36112399
doi: 10.1056/NEJMoa2208343
Scheaffer, S. M. et al. Bivalent SARS-CoV-2 mRNA vaccines increase breadth of neutralization and protect against the BA.5 Omicron variant in mice. Nat. Med. 29, 247–257 (2023).
pubmed: 36265510
doi: 10.1038/s41591-022-02092-8
Davis-Gardner, M. E. et al. Neutralization against BA.2.75.2, BQ.1.1, and XBB from mRNA bivalent booster. N. Engl. J. Med. 388, 183–185 (2023).
pubmed: 36546661
doi: 10.1056/NEJMc2214293
Zou, J. et al. Neutralization of BA.4-BA.5, BA.4.6, BA.2.75.2, BQ.1.1, and XBB.1 with bivalent vaccine. N. Engl. J. Med. 388, 854–857 (2023).
pubmed: 36734885
doi: 10.1056/NEJMc2214916
Corleis, B. et al. Efficacy of an unmodified bivalent mRNA vaccine against SARS-CoV-2 variants in female small animal models. Nat. Commun. 14, 816 (2023).
pubmed: 36781853
pmcid: 9924835
doi: 10.1038/s41467-023-36110-1
Tenforde, M. W. et al. Early estimates of bivalent mRNA vaccine effectiveness in preventing COVID-19-associated emergency department or urgent care encounters and hospitalizations among immunocompetent adults—VISION Network, Nine States, September–November 2022. MMWR Morb. Mortal. Wkly Rep. 71, 1616–1624 (2022).
Zhang, X. et al. Omicron sublineage recombinant XBB evades neutralising antibodies in recipients of BNT162b2 or CoronaVac vaccines. Lancet Microbe 4, e131 (2023).
pubmed: 36493789
doi: 10.1016/S2666-5247(22)00335-4
Son, Y. M. et al. Tissue-resident CD4
pubmed: 33419791
pmcid: 8056937
doi: 10.1126/sciimmunol.abb6852
Israelow, B. et al. Adaptive immune determinants of viral clearance and protection in mouse models of SARS-CoV-2. Sci. Immunol. 6, eabl4509 (2021).
pubmed: 34623900
pmcid: 9047536
doi: 10.1126/sciimmunol.abl4509
Moss, P. The T cell immune response against SARS-CoV-2. Nat. Immunol. 23, 186–193 (2022).
pubmed: 35105982
doi: 10.1038/s41590-021-01122-w
Tarke, A. et al. SARS-CoV-2 vaccination induces immunological T cell memory able to cross-recognize variants from Alpha to Omicron. Cell 185, 847–859 (2022).
pubmed: 35139340
pmcid: 8784649
doi: 10.1016/j.cell.2022.01.015
Keeton, R. et al. T cell responses to SARS-CoV-2 spike cross-recognize Omicron. Nature 603, 488–492 (2022).
pubmed: 35102311
pmcid: 8930768
doi: 10.1038/s41586-022-04460-3
Gao, Y. et al. Ancestral SARS-CoV-2-specific T cells cross-recognize the Omicron variant. Nat. Med. 28, 472–476 (2022).
pubmed: 35042228
pmcid: 8938268
doi: 10.1038/s41591-022-01700-x
GeurtsvanKessel, C. H. et al. Divergent SARS-CoV-2 Omicron-reactive T and B cell responses in COVID-19 vaccine recipients. Sci. Immunol. 7, eabo2202 (2022).
Geers, D. et al. SARS-CoV-2 variants of concern partially escape humoral but not T-cell responses in COVID-19 convalescent donors and vaccinees. Sci. Immunol. 6, eabj1750 (2021).
pubmed: 34035118
pmcid: 9268159
doi: 10.1126/sciimmunol.abj1750
Traut, C. C. & Blankson, J. N. Bivalent mRNA vaccine-elicited SARS-CoV-2 specific T cells recognise the Omicron XBB sublineage. Lancet Microbe 4, e388 (2023).
Khoury, D. S. et al. Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection. Nat. Med. 27, 1205–1211 (2021).
pubmed: 34002089
doi: 10.1038/s41591-021-01377-8
Mackin, S. R. et al. Fc-γR-dependent antibody effector functions are required for vaccine-mediated protection against antigen-shifted variants of SARS-CoV-2. Nat. Microbiol. 2023 8, 569–580. (2023).
Lau, E. H. Y. et al. Neutralizing antibody titres in SARS-CoV-2 infections. Nat. Commun. 12, 63 (2021).
pubmed: 33397909
pmcid: 7782739
doi: 10.1038/s41467-020-20247-4
Lin, D. Y. et al. Effectiveness of bivalent boosters against severe Omicron infection. N. Engl. J. Med. 388, 764–766 (2023).
pubmed: 36734847
doi: 10.1056/NEJMc2215471
Glass, W. G., Subbarao, K., Murphy, B. & Murphy, P. M. Mechanisms of host defense following severe acute respiratory syndrome-coronavirus (SARS-CoV) pulmonary infection of mice. J. Immunol. 173, 4030–4039 (2004).
pubmed: 15356152
doi: 10.4049/jimmunol.173.6.4030
Goldblatt, D., Alter, G., Crotty, S. & Plotkin, S. A. Correlates of protection against SARS-CoV-2 infection and COVID-19 disease. Immunol. Rev. 310, 6–26 (2022).
pubmed: 35661178
doi: 10.1111/imr.13091
Cohen, B. et al. COVID-19 infection in 10 common variable immunodeficiency patients in New York City. J. Allergy Clin. Immunol. Pract. 9, 504–507 (2021).
pubmed: 33217615
doi: 10.1016/j.jaip.2020.11.006
Bange, E. M. et al. CD8
pubmed: 34017137
pmcid: 8291091
doi: 10.1038/s41591-021-01386-7
Horiuchi, S. et al. Immune memory from SARS-CoV-2 infection in hamsters provides variant-independent protection but still allows virus transmission. Sci. Immunol. 6, eabm3131 (2021).
pubmed: 34699266
doi: 10.1126/sciimmunol.abm3131
Matchett, W. E. et al. Cutting edge: Nucleocapsid vaccine elicits spike-independent SARS-CoV-2 protective immunity. J. Immunol. 207, 376–379 (2021).
pubmed: 34193597
doi: 10.4049/jimmunol.2100421
Zens, K. D., Chen, J. K. & Farber, D. L. Vaccine-generated lung tissue-resident memory T cells provide heterosubtypic protection to influenza infection. JCI Insight 1, e85832 (2016).
pubmed: 27468427
pmcid: 4959801
doi: 10.1172/jci.insight.85832
Liang, S., Mozdzanowska, K., Palladino, G. & Gerhard, W. Heterosubtypic immunity to influenza type A virus in mice. Effector mechanisms and their longevity. J. Immunol. 152, 1653–1661 (1994).
pubmed: 8120375
doi: 10.4049/jimmunol.152.4.1653
Thomas, P. G., Keating, R., Hulse-Post, D. J. & Doherty, P. C. Cell-mediated protection in influenza infection. Emerg. Infect. Dis. 12, 48–54 (2006).
pubmed: 16494717
pmcid: 3291410
doi: 10.3201/eid1201.051237
Warkentin, T. E. et al. Adenovirus-associated thrombocytopenia, thrombosis, and VITT-like antibodies. N. Engl. J. Med. 389, 574–577 (2023).
pubmed: 37590457
doi: 10.1056/NEJMc2307721
Xu, J. W. et al. Safety and immunogenicity of heterologous boosting with orally administered aerosolized bivalent adenovirus type-5 vectored COVID-19 vaccine and B.1.1.529 variant adenovirus type-5 vectored COVID-19 vaccine in adults 18 years and older: a randomized, double blinded, parallel controlled trial. Emerg. Microbes Infect. 13, 2281355 (2023).
pubmed: 37933089
doi: 10.1080/22221751.2023.2281355
Zang, R. et al. TMPRSS2 and TMPRSS4 promote SARS-CoV-2 infection of human small intestinal enterocytes. Sci. Immunol. 5, eabc3582 (2020).
pubmed: 32404436
pmcid: 7285829
doi: 10.1126/sciimmunol.abc3582
Chen, R. E. et al. Resistance of SARS-CoV-2 variants to neutralization by monoclonal and serum-derived polyclonal antibodies. Nat. Med. 27, 717–726 (2021).
pubmed: 33664494
pmcid: 8058618
doi: 10.1038/s41591-021-01294-w
Plante, J. A. et al. Spike mutation D614G alters SARS-CoV-2 fitness. Nature 592, 116–121 (2021).
pubmed: 33106671
doi: 10.1038/s41586-020-2895-3
DeGrace, M. M. et al. Defining the risk of SARS-CoV-2 variants on immune protection. Nature 605, 640–652 (2022).
pubmed: 35361968
pmcid: 9345323
doi: 10.1038/s41586-022-04690-5
Imai, M. et al. Syrian hamsters as a small animal model for SARS-CoV-2 infection and countermeasure development. Proc. Natl Acad. Sci. USA 117, 16587–16595 (2020).
pubmed: 32571934
pmcid: 7368255
doi: 10.1073/pnas.2009799117
Hsieh, C. L. et al. Structure-based design of prefusion-stabilized SARS-CoV-2 spikes. Science 369, 1501–1505 (2020).
pubmed: 32703906
doi: 10.1126/science.abd0826
Maizel, J. V. Jr., White, D. O. & Scharff, M. D. The polypeptides of adenovirus. I. Evidence for multiple protein components in the virion and a comparison of types 2, 7A, and 12. Virology 36, 115–125 (1968).
pubmed: 5669982
doi: 10.1016/0042-6822(68)90121-9
VanBlargan, L. et al. A potently neutralizing SARS-CoV-2 antibody inhibits variants of concern by utilizing unique binding residues in a highly conserved epitope. Immunity 54, 2399–2416.e6 (2021).
pubmed: 34481543
pmcid: 8373659
doi: 10.1016/j.immuni.2021.08.016
Case, J. B., Bailey, A. L., Kim, A. S., Chen, R. E. & Diamond, M. S. Growth, detection, quantification, and inactivation of SARS-CoV-2. Virology 548, 39–48 (2020).
pubmed: 32838945
doi: 10.1016/j.virol.2020.05.015
Chu, D. K. W. et al. Molecular diagnosis of a novel coronavirus (2019-nCoV) causing an outbreak of pneumonia. Clin. Chem. 66, 549–555 (2020).
pubmed: 32031583
pmcid: 7108203
doi: 10.1093/clinchem/hvaa029
Meyerholz, D. K., Sieren, J. C., Beck, A. P. & Flaherty, H. A. Approaches to evaluate lung inflammation in translational research. Vet. Pathol. 55, 42–52 (2018).
pubmed: 28812529
doi: 10.1177/0300985817726117
Wong, L. R. et al. Eicosanoid signalling blockade protects middle-aged mice from severe COVID-19. Nature 605, 146–151 (2022).
pubmed: 35314834
pmcid: 9783543
doi: 10.1038/s41586-022-04630-3
Meyerholz, D. K. & Beck, A. P. Histopathologic evaluation and scoring of viral lung infection. Methods Mol. Biol. 2099, 205–220 (2020).
pubmed: 31883098
doi: 10.1007/978-1-0716-0211-9_16
Dinnon, K. H. III et al. SARS-CoV-2 infection produces chronic pulmonary epithelial and immune cell dysfunction with fibrosis in mice. Sci. Transl. Med. 14, eabo5070 (2022).
pubmed: 35857635
doi: 10.1126/scitranslmed.abo5070