Intersubunit communication in glycogen phosphorylase influences substrate recognition at the catalytic sites.
Chemical probing
Glycogen phosphorylase
Intersubunit communication
Phosphorylation regulation
Phospho–dephospho hybrid
Substrate recognition
Journal
Amino acids
ISSN: 1438-2199
Titre abrégé: Amino Acids
Pays: Austria
ID NLM: 9200312
Informations de publication
Date de publication:
10 Feb 2024
10 Feb 2024
Historique:
received:
15
12
2022
accepted:
18
12
2023
medline:
11
2
2024
pubmed:
10
2
2024
entrez:
10
2
2024
Statut:
epublish
Résumé
Glycogen phosphorylase (GP) is biologically active as a dimer of identical subunits, each activated by phosphorylation of the serine-14 residue. GP exists in three interconvertible forms, namely GPa (di-phosphorylated form), GPab (mono-phosphorylated form), and GPb (non-phosphorylated form); however, information on GPab remains scarce. Given the prevailing view that the two GP subunits collaboratively determine their catalytic characteristics, it is essential to conduct GPab characterization to gain a comprehensive understanding of glycogenolysis regulation. Thus, in the present study, we prepared rabbit muscle GPab from GPb, using phosphorylase kinase as the catalyst, and identified it using a nonradioactive phosphate-affinity gel electrophoresis method. Compared with the half-half GPa/GPb mixture, the as-prepared GPab showed a unique AMP-binding affinity. To further investigate the intersubunit communication in GP, its catalytic site was probed using pyridylaminated-maltohexaose (a maltooligosaccharide-based substrate comprising the essential dextrin structure for GP; abbreviated as PA-0) and a series of specifically modified PA-0 derivatives (substrate analogs lacking part of the essential dextrin structure). By comparing the initial reaction rates toward the PA-0 derivative (V
Identifiants
pubmed: 38340233
doi: 10.1007/s00726-023-03362-6
pii: 10.1007/s00726-023-03362-6
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
14Informations de copyright
© 2024. The Author(s).
Références
Barford D, Hu SH, Johnson LN (1991) Structural mechanism for glycogen phosphorylase control by phosphorylation and AMP. J Mol Biol 218:233–260
doi: 10.1016/0022-2836(91)90887-C
pubmed: 1900534
Buchbinder JL, Guinovart JJ, Fletterick RJ (1995) Mutations in paired α-helices at the subunit interface of glycogen phosphorylase alter homotropic and heterotropic cooperativity. Biochemistry 34:6423–6432
doi: 10.1021/bi00019a023
pubmed: 7756273
Burkhardt G, Wegener G (1994) Glycogen phosphorylase from flight muscle of the hawk moth, Manduca sexta: purification and properties of three interconvertible forms and the effect of flight on their interconversion. J Comp Physiol B 164:261–271
doi: 10.1007/BF00346441
Chan KFJ, Graves DJ (1982) Rabbit skeletal muscle phosphorylase kinase. J Biol Chem 257:5948–5955
doi: 10.1016/S0021-9258(19)83870-X
pubmed: 6279620
Dombrádi D (1981) Structural aspects of the catalytic and regulatory function of glycogen phosphorylase. Int J Biochem 13:125–139
doi: 10.1016/0020-711X(81)90147-6
pubmed: 7009252
Harris WR, Graves DJ (1990) Kinetic analysis of the separate phosphorylation events in the phosphorylase kinase reaction. Arch Biochem Biophys 276:102–108
doi: 10.1016/0003-9861(90)90015-Q
pubmed: 2105076
Johnson LN, Cheetham J, McLaughlin PJ, Acharya KR, Barford D, Phillips DC (1988) Protein–oligosaccharide interactions: lysozyme, phosphorylase, amylases. Curr Top Microbiol Immunol 139:81–134
pubmed: 2461836
Katz A (2022) A century of exercise physiology: key concepts in regulation of glycogen metabolism in skeletal muscle. Eur J Appl Physiol 122:1751–1772
doi: 10.1007/s00421-022-04935-1
pubmed: 35355125
pmcid: 9287217
Kinoshita E, Kinoshita-Kikuta E (2011) Improved Phos-tag SDS-PAGE under neutral pH conditions for advanced protein phosphorylation profiling. Proteomics 11:319–323
doi: 10.1002/pmic.201000472
pubmed: 21204258
Kinoshita E, Kinoshita-Kikuta E, Takiyama K, Koike T (2006) Phosphate-binding tag, a new tool to visualize phosphorylated proteins. Mol Cell Proteom 5:749–757
doi: 10.1074/mcp.T500024-MCP200
Kish M, Subramanian S, Smith V, Lethbridge N, Cole L, Vollmer F, Bond NJ, Phillips JJ (2023) Allosteric regulation of glycogen phosphorylase by order/disorder transition of the 250’ and 280s loops. Biochemistry 62:1360–1368
doi: 10.1021/acs.biochem.2c00671
pubmed: 36989206
Krebs EG, Love DS, Bratvold GE, Trayser KA, Meyer WL, Fischer EH (1964) Purification and properties of rabbit skeletal muscle phosphorylase b kinase. Biochemistry 3:1022–1033
doi: 10.1021/bi00896a003
pubmed: 14220660
Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685
doi: 10.1038/227680a0
pubmed: 5432063
Lowry OH, Schult DW, Passonneau JV (1964) Effects of adenylic acid on the kinetics of muscle phosphorylase a. J Biol Chem 239:1947–1953
doi: 10.1016/S0021-9258(18)91289-5
pubmed: 14213382
Madsen NB, Shechosky S, Fletterick RJ (1983) Site-site interactions in glycogen phosphorylase b probed by ligands specific for each site. Biochemistry 22:4460–4465
doi: 10.1021/bi00288a017
pubmed: 6414512
Makino Y, Fujii Y, Taniguchi M (2015) Properties and functions of the storage sites of glycogen phosphorylase. J Biochem 157:451–458
doi: 10.1093/jb/mvv007
pubmed: 25619970
Mathieu C, Dupret JM, Lima FR (2017) The structure of brain glycogen phosphorylase–from allosteric regulation mechanisms to clinical perspectives. FEBS J 284:546–554
doi: 10.1111/febs.13937
pubmed: 27782369
Miyagawa D, Makino Y, Sato M (2016) Sensitive, nonradioactive assay of phosphorylase kinase through measurement of enhanced phosphorylase activity towards fluorogenic dextrin. J Biochem 159:239–246
doi: 10.1093/jb/mvv097
pubmed: 26378249
Nadeau OW, Fontes JD, Carlson GM (2018) The regulation of glycogenolysis in the brain. J Biol Chem 293:7099–7107
doi: 10.1074/jbc.R117.803023
pubmed: 29483194
pmcid: 5950003
Nakamura M, Makino Y, Takagi C, Yamagaki T, Sato M (2017) Probing the catalytic site of rabbit muscle glycogen phosphorylase using a series of specifically modified maltohexaose derivatives. Glycoconj J 34:563–574
doi: 10.1007/s10719-017-9776-5
pubmed: 28597243
Oikonomakos NG, Somsák L (2008) Advances in glycogen phosphorylase inhibitor design. Curr Opin Investig Drugs 9:379–395
pubmed: 18393105
Prats C, Graham TE, Shearer J (2018) The dynamic life of the glycogen granule. J Biol Chem 293:7089–7098
doi: 10.1074/jbc.R117.802843
pubmed: 29483195
pmcid: 5949993
Rath VL, Ammirati M, LeMotte PK, Fennell KF, Mansour MN, Danley DE, Hynes TR, Schulte GK, Wasilko DJ, Pandit J (2000) Activation of human liver glycogen phosphorylase by alteration of the secondary structure and packing of the catalytic core. Mol Cell 6:139–148
doi: 10.1016/S1097-2765(05)00006-7
pubmed: 10949035
Roach PJ, Depaoli-Roach AA, Hurley TD, Tagliabracci VS (2012) Glycogen and its metabolism: some new developments and old themes. Biochem J 441:763–787
doi: 10.1042/BJ20111416
pubmed: 22248338
Rush JWE, Spriet LL (2001) Skeletal muscle glycogen phosphorylase a kinetics: effects of adenine nucleotides and caffeine. J Appl Physiol 91:2071–2078
doi: 10.1152/jappl.2001.91.5.2071
pubmed: 11641346
Somsák L (2011) Glucose derived inhibitors of glycogen phosphorylase. C R Chimie 14:211–223
doi: 10.1016/j.crci.2010.09.004
Sprang SR, Acharya KR, Goldsmith EJ, Stuart DI, Varvill K, Fletterick RJ, Madsen NB, Johnson LN (1988) Structural changes in glycogen phosphorylase induced by phosphorylation. Nature 336:215–221
doi: 10.1038/336215a0
pubmed: 3194008
Sprang SR, Withers SG, Goldsmith EJ, Fletterick RJ, Madsen NB (1991) Structural basis for the activation of glycogen phosphorylase b by adenosine monophosphate. Science 254:1367–1371
doi: 10.1126/science.1962195
pubmed: 1962195
Tagaya M, Fukui T (1984) Catalytic reaction of glycogen phosphorylase reconstituted with a coenzyme-substrate conjugate. J Biol Chem 259:4860–4865
doi: 10.1016/S0021-9258(17)42925-5
pubmed: 6425278
Titani K, Koide A, Hermann J, Ericsson LH, Kumar S, Wade RD, Walsh KA, Neurath H, Fisher EH (1977) Complete amino acid sequence of rabbit muscle glycogen phosphorylase. Proc Natl Acad Sci USA 74:4762–4766
doi: 10.1073/pnas.74.11.4762
pubmed: 270711
pmcid: 432035
Vereb G, Fodor A, Bot G (1987) Kinetic characterization of rabbit muscle phosphorylase ab hybrid. Biochim Biophys Acta 915:19–27
doi: 10.1016/0167-4838(87)90120-8
pubmed: 3113485
Vereb G, Pallagi E, Gergely P (1992) Phosphorylation-induced conformational changes in the phosphorylase ab hybrid as revealed by resolution of pyridoxal 5’-phosphate with imidazole citrate cysteine. Mol Cell Biochem 110:113–121
doi: 10.1007/BF02454188
pubmed: 1584200
Weber IT, Johnson LN, Wilson KS, Yeates DG, Wild DL, Jenkins JA (1978) Crystallographic studies on the activity of glycogen phosphorylase b. Nature 274:433–437
doi: 10.1038/274433a0
pubmed: 672971
Yamamoto E, Makino Y, Omichi K (2007) Active site mapping of amylo-α-1,6-glucosidase in porcine liver glycogen debranching enzyme using fluorogenic 6-O-α-glucosyl-maltooligosaccharides. J Biochem 141:627–634
doi: 10.1093/jb/mvm065
pubmed: 17317688