Identification and characterization of stromal-like cells with CD207

Cell lines Cellular model Histiocytoses In vitro study Langerhans cell histiocytosis Rare disorders

Journal

BMC cancer
ISSN: 1471-2407
Titre abrégé: BMC Cancer
Pays: England
ID NLM: 100967800

Informations de publication

Date de publication:
12 Feb 2024
Historique:
received: 08 05 2023
accepted: 28 12 2023
medline: 12 2 2024
pubmed: 12 2 2024
entrez: 11 2 2024
Statut: epublish

Résumé

Histiocytoses are rare disorders manifested by increased proliferation of pathogenic myeloid cells sharing histological features with macrophages or dendritic cells and accumulating in various organs, i.a., bone and skin. Pre-clinical in vitro models that could be used to determine molecular pathways of the disease are limited, hence research on histiocytoses is challenging. The current study compares cytophysiological features of progenitor, stromal-like cells derived from histiocytic lesions (sl-pHCs) of three pediatric patients with different histiocytoses types and outcomes. The characterized cells may find potential applications in drug testing. Molecular phenotype of the cells, i.e. expression of CD1a and CD207 (langerin), was determined using flow cytometry. Cytogenetic analysis included GTG-banded metaphases and microarray (aCGH) evaluation. Furthermore, the morphology and ultrastructure of cells were evaluated using a confocal and scanning electron microscope. The microphotographs from the confocal imaging were used to reconstruct the mitochondrial network and its morphology. Basic cytophysiological parameters, such as viability, mitochondrial activity, and proliferation, were analyzed using multiple cellular assays, including Annexin V/7-AAD staining, mitopotential analysis, BrdU test, clonogenicity analysis, and distribution of cells within the cell cycle. Biomarkers potentially associated with histiocytoses progression were determined using RT-qPCR at mRNA, miRNA and lncRNA levels. Intracellular accumulation of histiocytosis-specific proteins was detected with Western blot. Cytotoxicyty and IC50 of vemurafenib and trametinib were determined with MTS assay. Obtained cellular models, i.e. RAB-1, HAN-1, and CHR-1, are heterogenic in terms of molecular phenotype and morphology. The cells express CD1a/CD207 markers characteristic for dendritic cells, but also show intracellular accumulation of markers characteristic for cells of mesenchymal origin, i.e. vimentin (VIM) and osteopontin (OPN). In subsequent cultures, cells remain viable and metabolically active, and the mitochondrial network is well developed, with some distinctive morphotypes noted in each cell line. Cell-specific transcriptome profile was noted, providing information on potential new biomarkers (non-coding RNAs) with diagnostic and prognostic features. The cells showed different sensitivity to vemurafenib and trametinib. Obtained and characterized cellular models of stromal-like cells derived from histiocytic lesions can be used for studies on histiocytosis biology and drug testing.

Sections du résumé

BACKGROUND BACKGROUND
Histiocytoses are rare disorders manifested by increased proliferation of pathogenic myeloid cells sharing histological features with macrophages or dendritic cells and accumulating in various organs, i.a., bone and skin. Pre-clinical in vitro models that could be used to determine molecular pathways of the disease are limited, hence research on histiocytoses is challenging. The current study compares cytophysiological features of progenitor, stromal-like cells derived from histiocytic lesions (sl-pHCs) of three pediatric patients with different histiocytoses types and outcomes. The characterized cells may find potential applications in drug testing.
METHODS METHODS
Molecular phenotype of the cells, i.e. expression of CD1a and CD207 (langerin), was determined using flow cytometry. Cytogenetic analysis included GTG-banded metaphases and microarray (aCGH) evaluation. Furthermore, the morphology and ultrastructure of cells were evaluated using a confocal and scanning electron microscope. The microphotographs from the confocal imaging were used to reconstruct the mitochondrial network and its morphology. Basic cytophysiological parameters, such as viability, mitochondrial activity, and proliferation, were analyzed using multiple cellular assays, including Annexin V/7-AAD staining, mitopotential analysis, BrdU test, clonogenicity analysis, and distribution of cells within the cell cycle. Biomarkers potentially associated with histiocytoses progression were determined using RT-qPCR at mRNA, miRNA and lncRNA levels. Intracellular accumulation of histiocytosis-specific proteins was detected with Western blot. Cytotoxicyty and IC50 of vemurafenib and trametinib were determined with MTS assay.
RESULTS RESULTS
Obtained cellular models, i.e. RAB-1, HAN-1, and CHR-1, are heterogenic in terms of molecular phenotype and morphology. The cells express CD1a/CD207 markers characteristic for dendritic cells, but also show intracellular accumulation of markers characteristic for cells of mesenchymal origin, i.e. vimentin (VIM) and osteopontin (OPN). In subsequent cultures, cells remain viable and metabolically active, and the mitochondrial network is well developed, with some distinctive morphotypes noted in each cell line. Cell-specific transcriptome profile was noted, providing information on potential new biomarkers (non-coding RNAs) with diagnostic and prognostic features. The cells showed different sensitivity to vemurafenib and trametinib.
CONCLUSION CONCLUSIONS
Obtained and characterized cellular models of stromal-like cells derived from histiocytic lesions can be used for studies on histiocytosis biology and drug testing.

Identifiants

pubmed: 38342891
doi: 10.1186/s12885-023-11807-0
pii: 10.1186/s12885-023-11807-0
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

105

Subventions

Organisme : Agencja Badań Medycznych
ID : 2019/ABM/01/00016-00
Organisme : Agencja Badań Medycznych
ID : 2019/ABM/01/00016-00
Organisme : Agencja Badań Medycznych
ID : 2019/ABM/01/00016-00
Organisme : Agencja Badań Medycznych
ID : 2019/ABM/01/00016-00
Organisme : Agencja Badań Medycznych
ID : 2019/ABM/01/00016-00
Organisme : Agencja Badań Medycznych
ID : 2019/ABM/01/00016-00

Informations de copyright

© 2024. The Author(s).

Références

Emile J-F, Cohen-Aubart F, Collin M, Fraitag S, Idbaih A, Abdel-Wahab O, Rollins BJ, Donadieu J, Haroche J. Histiocytosis. Lancet. 2021;398:157–70. https://doi.org/10.1016/S0140-6736(21)00311-1 .
pubmed: 33901419 pmcid: 9364113 doi: 10.1016/S0140-6736(21)00311-1
McClain KL, Bigenwald C, Collin M, Haroche J, Marsh RA, Merad M, Picarsic J, Ribeiro KB, Allen CE. Histiocytic disorders. Nat Rev Dis Primers. 2021;7:73. https://doi.org/10.1038/s41572-021-00307-9 .
pubmed: 34620874 pmcid: 10031765 doi: 10.1038/s41572-021-00307-9
Emile J-F, Abla O, Fraitag S, Horne A, Haroche J, Donadieu J, Requena-Caballero L, Jordan MB, Abdel-Wahab O, Allen CE, et al. Revised classification of histiocytoses and neoplasms of the macrophage-dendritic cell lineages. Blood. 2016;127:2672–81. https://doi.org/10.1182/blood-2016-01-690636 .
pubmed: 26966089 pmcid: 5161007 doi: 10.1182/blood-2016-01-690636
Egan C, Jaffe ES. Non-neoplastic histiocytic and dendritic cell disorders in lymph nodes. Semin Diagn Pathol. 2018;35:20–33. https://doi.org/10.1053/j.semdp.2017.11.002 .
pubmed: 29150219 doi: 10.1053/j.semdp.2017.11.002
Huynh KN, Nguyen BD. Histiocytosis and neoplasms of macrophage-dendritic cell lineages: multimodality imaging with emphasis on PET/CT. Radiographics. 2021;41:576–94. https://doi.org/10.1148/rg.2021200096 .
pubmed: 33606566 doi: 10.1148/rg.2021200096
Gogusev J, Telvi L, Murakami I, Lepelletier Y, Nezelof C, Stojkoski A, Glorion C, Jaubert F. DOR-1, A novel CD10+ stromal cell line derived from progressive Langerhans cell histiocytosis of bone. Pediatr Blood Cancer. 2005;44:128–37. https://doi.org/10.1002/pbc.20090 .
pubmed: 15390308 doi: 10.1002/pbc.20090
Murakami I, Gogusev J, Jaubert F, Matsushita M, Hayashi K, Miura I, Tanaka T, Oka T, Yoshino T. Establishment of a Langerhans cell histiocytosis lesion cell line with dermal dendritic cell characteristics. Oncol Rep. 2015;33:171–8. https://doi.org/10.3892/or.2014.3567 .
pubmed: 25351656 doi: 10.3892/or.2014.3567
Smieszek A, Marcinkowska K, Pielok A, Sikora M, Valihrach L, Carnevale E, Marycz K. Obesity affects the proliferative potential of equine endometrial progenitor cells and modulates their molecular phenotype associated with mitochondrial metabolism. Cells. 2022;11:1437. https://doi.org/10.3390/cells11091437 .
pubmed: 35563743 pmcid: 9100746 doi: 10.3390/cells11091437
Sikora M, Marcinkowska K, Marycz K, Wiglusz RJ, Śmieszek A. The potential selective cytotoxicity of poly (L- Lactic Acid)-based scaffolds functionalized with nanohydroxyapatite and europium (III) ions toward osteosarcoma cells. Materials (Basel). 2019;12:3779. https://doi.org/10.3390/ma12223779 .
pubmed: 31752084 doi: 10.3390/ma12223779
Sikora M, Śmieszek A, Marycz K. Bone marrow stromal cells (BMSCs CD45- /CD44+ /CD73+ /CD90+ ) isolated from osteoporotic mice SAM/P6 as a novel model for osteoporosis investigation. J Cell Mol Med. 2021;25:6634–51. https://doi.org/10.1111/jcmm.16667 .
pubmed: 34075722 pmcid: 8278098 doi: 10.1111/jcmm.16667
Heuer GG, Skorupa AF, Prasad Alur RK, Jiang K, Wolfe JH. Accumulation of abnormal amounts of glycosaminoglycans in murine mucopolysaccharidosis type VII neural progenitor cells does not alter the growth rate or efficiency of differentiation into neurons. Mol Cell Neurosci. 2001;17:167–78. https://doi.org/10.1006/mcne.2000.0917 .
pubmed: 11161477 doi: 10.1006/mcne.2000.0917
Doubling Time - Online computing with 2 points. https://www.doubling-time.com/compute.php .
Smieszek A, Kornicka K, Szłapka-Kosarzewska J, Androvic P, Valihrach L, Langerova L, Rohlova E, Kubista M, Marycz K. Metformin increases proliferative activity and viability of multipotent stromal stem cells isolated from adipose tissue derived from horses with equine metabolic syndrome. Cells. 2019;8:80. https://doi.org/10.3390/cells8020080 .
pubmed: 30678275 pmcid: 6406832 doi: 10.3390/cells8020080
Kalmer M, Pannen K, Lemanzyk R, Wirths C, Baumeister J, Maurer A, Kricheldorf K, Schifflers J, Gezer D, Isfort S, et al. Clonogenic assays improve determination of variant allele frequency of driver mutations in myeloproliferative neoplasms. Ann Hematol. 2022;101:2655–63. https://doi.org/10.1007/s00277-022-05000-9 .
pubmed: 36269400 pmcid: 9646600 doi: 10.1007/s00277-022-05000-9
Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987;162:156–9. https://doi.org/10.1006/abio.1987.9999 .
pubmed: 2440339 doi: 10.1006/abio.1987.9999
AAT Bioquest, Inc. (2023, February 18). Quest Graph
Xiao Y, van Halteren AGS, Lei X, Borst J, Steenwijk E, de Wit T, Grabowska J, Voogd R, Kemps P, Picarsic J, et al. Bone marrow-derived myeloid progenitors as driver mutation carriers in high- and low-risk Langerhans cell histiocytosis. Blood. 2020;136:2188–99. https://doi.org/10.1182/blood.2020005209 .
pubmed: 32750121 doi: 10.1182/blood.2020005209
Allen CE, Li L, Peters TL, Leung H-CE, Yu A, Man T-K, Gurusiddappa S, Phillips MT, Hicks MJ, Gaikwad A, et al. Cell-specific gene expression in Langerhans cell histiocytosis lesions reveals a distinct profile compared with epidermal Langerhans cells. J Immunol. 2010;184:4557–67. https://doi.org/10.4049/jimmunol.0902336 .
pubmed: 20220088 doi: 10.4049/jimmunol.0902336
Gulati N, Allen CE. Langerhans cell histiocytosis: Version 2021. Hematol Oncol. 2021;39(Suppl 1):15–23. https://doi.org/10.1002/hon.2857 .
pubmed: 34105821 pmcid: 9150752 doi: 10.1002/hon.2857
Betts DR, Leibundgut KE, Feldges A, Plüss HJ, Niggli FK. Cytogenetic abnormalities in Langerhans cell histiocytosis. Br J Cancer. 1998;77:552–555.
Goyal G, Tazi A, Go RS, Rech KL, Picarsic JL, Vassallo R, Young JR, Cox CW, Van Laar J, Hermiston ML, et al. International expert consensus recommendations for the diagnosis and treatment of Langerhans cell histiocytosis in adults. Blood. 2022;139:2601–21. https://doi.org/10.1182/blood.2021014343 .
pubmed: 35271698 doi: 10.1182/blood.2021014343
Caux C, Dezutter-Dambuyant C, Schmitt D, Banchereau J. GM-CSF and TNF-alpha cooperate in the generation of dendritic Langerhans cells. Nature. 1992;360:258–61. https://doi.org/10.1038/360258a0 .
pubmed: 1279441 doi: 10.1038/360258a0
Strobl H, Riedl E, Scheinecker C, Bello-Fernandez C, Pickl WF, Rappersberger K, Majdic O, Knapp W. TGF-beta 1 promotes in vitro development of dendritic cells from CD34+ hemopoietic progenitors. J Immunol. 1996;157:1499–507.
pubmed: 8759731 doi: 10.4049/jimmunol.157.4.1499
Yasmin N, Bauer T, Modak M, Wagner K, Schuster C, Köffel R, Seyerl M, Stöckl J, Elbe-Bürger A, Graf D, et al. Identification of bone morphogenetic protein 7 (BMP7) as an instructive factor for human epidermal Langerhans cell differentiation. J Exp Med. 2013;210:2597–610. https://doi.org/10.1084/jem.20130275 .
pubmed: 24190429 pmcid: 3832935 doi: 10.1084/jem.20130275
Bigley V, McGovern N, Milne P, Dickinson R, Pagan S, Cookson S, Haniffa M, Collin M. Langerin-expressing dendritic cells in human tissues are related to CD1c+ dendritic cells and distinct from Langerhans cells and CD141high XCR1+ dendritic cells. J Leukoc Biol. 2015;97:627–34. https://doi.org/10.1189/jlb.1HI0714-351R .
pubmed: 25516751 doi: 10.1189/jlb.1HI0714-351R
Mitchell J, Kannourakis G. Does CD1a expression influence T cell function in patients with langerhans cell histiocytosis? Front Immunol. 2021;12:773598.
pubmed: 34956202 pmcid: 8702800 doi: 10.3389/fimmu.2021.773598
Andersen WK, Knowles DM, Silvers DN. CD1 (OKT6)-positive juvenile xanthogranuloma. OKT6 is not specific for Langerhans cell histiocytosis (histiocytosis X). J Am Acad Dermatol. 1992;26:850–4. https://doi.org/10.1016/0190-9622(92)70120-5 .
pubmed: 1613148 doi: 10.1016/0190-9622(92)70120-5
Lie E, Jedrych J, Sweren R, Kerns ML. Generalized indeterminate cell histiocytosis successfully treated with methotrexate. JAAD Case Rep. 2022;25:93–6. https://doi.org/10.1016/j.jdcr.2022.05.027 .
pubmed: 35799682 pmcid: 9253551 doi: 10.1016/j.jdcr.2022.05.027
Kvedaraite E, Milne P, Khalilnezhad A, Chevrier M, Sethi R, Lee HK, Hagey DW, von Bahr Greenwood T, Mouratidou N, Jädersten M, et al. Notch-dependent cooperativity between myeloid lineages promotes Langerhans cell histiocytosis pathology. Sci Immunol. 2022;7:eadd3330. https://doi.org/10.1126/sciimmunol.add3330 .
pubmed: 36525505 pmcid: 7614120 doi: 10.1126/sciimmunol.add3330
Al-Maghrabi J. Vimentin immunoexpression is associated with higher tumor grade, metastasis, and shorter survival in colorectal cancer. Int J Clin Exp Pathol. 2020;13:493–500.
pubmed: 32269687 pmcid: 7137029
Madabhavi I, Patel A, Modi G, Anand A, Panchal H, Parikh S. Interdigitating dendritic cell tumor: a rare case report with review of literature. J Cancer Res Ther. 2018;14:690–3. https://doi.org/10.4103/0973-1482.183189 .
pubmed: 29893342 doi: 10.4103/0973-1482.183189
Therrien A, El Haffaf Z, Wartelle-Bladou C, Côté-Daigneault J, Nguyen BN. Langerhans cell histiocytosis presenting as Crohn’s disease: a case report. Int J Colorectal Dis. 2018;33:1501–4. https://doi.org/10.1007/s00384-018-3066-y .
pubmed: 29737419 doi: 10.1007/s00384-018-3066-y
Luz FB, Gaspar TAP, Kalil-Gaspar N, Ramos-e-Silva M. Multicentric reticulohistiocytosis. J Eur Acad Dermatol Venereol. 2001;15:524–31. https://doi.org/10.1046/j.1468-3083.2001.00362.x .
pubmed: 11843211 doi: 10.1046/j.1468-3083.2001.00362.x
Butti R, Kumar TVS, Nimma R, Banerjee P, Kundu IG, Kundu GC. Osteopontin signaling in shaping tumor microenvironment conducive to malignant progression. Adv Exp Med Biol. 2021;1329:419–41. https://doi.org/10.1007/978-3-030-73119-9_20 .
pubmed: 34664250 doi: 10.1007/978-3-030-73119-9_20
Del Prete A, Scutera S, Sozzani S, Musso T. Role of osteopontin in dendritic cell shaping of immune responses. Cytokine Growth Factor Rev. 2019;50:19–28. https://doi.org/10.1016/j.cytogfr.2019.05.004 .
pubmed: 31126876 doi: 10.1016/j.cytogfr.2019.05.004
Tan Y, Zhao L, Yang Y-G, Liu W. The role of osteopontin in tumor progression through tumor-associated macrophages. Front Oncol. 2022;12: 953283. https://doi.org/10.3389/fonc.2022.953283 .
pubmed: 35898884 pmcid: 9309262 doi: 10.3389/fonc.2022.953283
Zhao H, Chen Q, Alam A, Cui J, Suen KC, Soo AP, Eguchi S, Gu J, Ma D. The role of osteopontin in the progression of solid organ tumour. Cell Death Dis. 2018;9:1–15. https://doi.org/10.1038/s41419-018-0391-6 .
doi: 10.1038/s41419-018-0391-6
Zhao Y, Huang C. The role of osteopontin in the development and metastasis of melanoma. Melanoma Res. 2021;31:283–9. https://doi.org/10.1097/CMR.0000000000000753 .
pubmed: 34039941 doi: 10.1097/CMR.0000000000000753
Yoo J, Jung JH, Kang SJ, Kang CS. Expression of matrix metalloproteinase-9 correlates with poor prognosis in human malignant fibrous histiocytoma. Cancer Res Treat. 2004;36:384–8. https://doi.org/10.4143/crt.2004.36.6.384 .
pubmed: 20368833 pmcid: 2843884 doi: 10.4143/crt.2004.36.6.384
Salemi R, Falzone L, Madonna G, Polesel J, Cinà D, Mallardo D, Ascierto PA, Libra M, Candido S. MMP-9 as a candidate marker of response to BRAF inhibitors in melanoma patients with BRAFV600E mutation detected in circulating-free DNA. Front Pharmacol. 2018;9:856. https://doi.org/10.3389/fphar.2018.00856 .
pubmed: 30154717 pmcid: 6102751 doi: 10.3389/fphar.2018.00856
Burgos M, Cavero-Redondo I, Álvarez-Bueno C, Galán-Moya EM, Pandiella A, Amir E, Ocaña A. Prognostic value of the immune target CEACAM6 in cancer: a meta-analysis. Ther Adv Med Oncol. 2022;14:17588359211072620. https://doi.org/10.1177/17588359211072621 .
pubmed: 35082925 pmcid: 8785271 doi: 10.1177/17588359211072621
Redd L, Schmelz M, Burack WR, Cook JR, Day AW, Rimsza L. Langerhans cell histiocytosis shows distinct cytoplasmic expression of major histocompatibility class II antigens. J Hematop. 2016;9:107–12. https://doi.org/10.1007/s12308-016-0272-9 .
pubmed: 30338008 doi: 10.1007/s12308-016-0272-9
Cavalli G, Dagna L, Biavasco R, Villa A, Doglioni C, Ferrero E, Ferrarini M. Erdheim-Chester disease: an in vivo human model of Mϕ activation at the crossroad between chronic inflammation and cancer. J Leukoc Biol. 2020;108:591–9. https://doi.org/10.1002/JLB.3MR0120-203RR .
pubmed: 32056262 doi: 10.1002/JLB.3MR0120-203RR
Grau-Vorster M, Laitinen A, Nystedt J, Vives J. HLA-DR expression in clinical-grade bone marrow-derived multipotent mesenchymal stromal cells: a two-site study. Stem Cell Res Ther. 2019;10:164. https://doi.org/10.1186/s13287-019-1279-9 .
pubmed: 31196185 pmcid: 6567533 doi: 10.1186/s13287-019-1279-9
van Megen KM, van ’t Wout EJT, Lages Motta J, Dekker B, Nikolic T, Roep BO. Activated mesenchymal stromal cells process and present antigens regulating adaptive immunity. Front Immunol. 2019;10:694. https://doi.org/10.3389/fimmu.2019.00694 .
Polchert D, Sobinsky J, Douglas G, Kidd M, Moadsiri A, Reina E, Genrich K, Mehrotra S, Setty S, Smith B, et al. IFN-gamma activation of mesenchymal stem cells for treatment and prevention of graft versus host disease. Eur J Immunol. 2008;38:1745–55. https://doi.org/10.1002/eji.200738129 .
pubmed: 18493986 pmcid: 3021120 doi: 10.1002/eji.200738129
Müller L, Tunger A, Wobus M, von Bonin M, Towers R, Bornhäuser M, Dazzi F, Wehner R, Schmitz M. Immunomodulatory properties of mesenchymal stromal cells: an update. Front Cell Dev Biol. 2021;9:637725. https://doi.org/10.3389/fcell.2021.637725 .
pubmed: 33634139 pmcid: 7900158 doi: 10.3389/fcell.2021.637725
Scheid AD, Beadnell TC, Welch DR. Roles of mitochondria in the hallmarks of metastasis. Br J Cancer. 2021;124:124–35. https://doi.org/10.1038/s41416-020-01125-8 .
pubmed: 33144695 doi: 10.1038/s41416-020-01125-8
Liu Y, Sun Y, Guo Y, Shi X, Chen X, Feng W, Wu L-L, Zhang J, Yu S, Wang Y, et al. An overview: the diversified role of mitochondria in cancer metabolism. Int J Biol Sci. 2023;19:897–915. https://doi.org/10.7150/ijbs.81609 .
pubmed: 36778129 pmcid: 9910000 doi: 10.7150/ijbs.81609
Grieco JP, Allen ME, Perry JB, Wang Y, Song Y, Rohani A, Compton SLE, Smyth JW, Swami NS, Brown DA, et al. Progression-mediated changes in mitochondrial morphology promotes adaptation to hypoxic peritoneal conditions in serous ovarian cancer. Front Oncol. 2021;10:60011. https://doi.org/10.3389/fonc.2020.600113
doi: 10.3389/fonc.2020.600113
Tomková V, Sandoval-Acuña C, Torrealba N, Truksa J. Mitochondrial fragmentation, elevated mitochondrial superoxide and respiratory supercomplexes disassembly is connected with the tamoxifen-resistant phenotype of breast cancer cells. Free Radic Biol Med. 2019;143:510–21. https://doi.org/10.1016/j.freeradbiomed.2019.09.004 .
pubmed: 31494243 doi: 10.1016/j.freeradbiomed.2019.09.004
Ma Y, Wang L, Jia R. The role of mitochondrial dynamics in human cancers. Am J Cancer Res. 2020;10:1278–93.
pubmed: 32509379 pmcid: 7269774
Boulton DP, Caino MC. Mitochondrial fission and fusion in tumor progression to metastasis. Front Cell Dev Biol. 2022;10:849962. https://doi.org/10.3389/fcell.2022.849962 .
pubmed: 35356277 pmcid: 8959575 doi: 10.3389/fcell.2022.849962
Tanwar DK, Parker DJ, Gupta P, Spurlock B, Alvarez RD, Basu MK, Mitra K. Crosstalk between the mitochondrial fission protein, Drp1, and the cell cycle is identified across various cancer types and can impact survival of epithelial ovarian cancer patients. Oncotarget. 2016;7:60021–37. https://doi.org/10.18632/oncotarget.11047 .
pubmed: 27509055 pmcid: 5312366 doi: 10.18632/oncotarget.11047
Bleiberg H, Galand P. In vitro autoradiographic determination of cell kinetic parameters in adenocarcinomas and adjacent healthy mucosa of the human colon and rectum. Cancer Res. 1976;36:325–8.
pubmed: 1260740
Yano S, Miwa S, Mii S, Hiroshima Y, Uehara F, Yamamoto M, Kishimoto H, Tazawa H, Bouvet M, Fujiwara T, et al. Invading cancer cells are predominantly in G0/G1 resulting in chemoresistance demonstrated by real-time FUCCI imaging. Cell Cycle. 2014;13:953–60. https://doi.org/10.4161/cc.27818 .
pubmed: 24552821 pmcid: 3984318 doi: 10.4161/cc.27818
Greenberg A, Simon I. S phase duration is determined by local rate and global organization of replication. Biology (Basel). 2022;11:718. https://doi.org/10.3390/biology11050718 .
pubmed: 35625446 doi: 10.3390/biology11050718
Mitra K, Wunder C, Roysam B, Lin G, Lippincott-Schwartz J. A hyperfused mitochondrial state achieved at G1–S regulates cyclin E buildup and entry into S phase. Proc Natl Acad Sci. 2009;106:11960–5. https://doi.org/10.1073/pnas.0904875106 .
pubmed: 19617534 pmcid: 2710990 doi: 10.1073/pnas.0904875106
Azizidoost S, Nasrolahi A, Ghaedrahmati F, Kempisty B, Mozdziak P, Radoszkiewicz K, Farzaneh M. The pathogenic roles of lncRNA-Taurine upregulated 1 (TUG1) in colorectal cancer. Cancer Cell Int. 2022;22:335. https://doi.org/10.1186/s12935-022-02745-1 .
pubmed: 36333703 pmcid: 9636703 doi: 10.1186/s12935-022-02745-1
Hsieh PF, Yu CC, Chu PM, Hsieh PL. Long Non-Coding RNA MEG3 in Cellular Stemness. Int J Mol Sci. 2021;22:5348. https://doi.org/10.3390/ijms22105348 .
pubmed: 34069546 pmcid: 8161278 doi: 10.3390/ijms22105348
Yao Q, Yang J, Liu T, Zhang J, Zheng Y. Long noncoding RNA MALAT1 promotes the stemness of esophageal squamous cell carcinoma by enhancing YAP transcriptional activity. FEBS Open Bio. 2019;9:1392–402. https://doi.org/10.1002/2211-5463.12676 .
pubmed: 31116509 pmcid: 6668371 doi: 10.1002/2211-5463.12676
Koyama S, Tsuchiya H, Amisaki M, Sakaguchi H, Honjo S, Fujiwara Y, Shiota G. NEAT1 is required for the expression of the liver cancer stem cell marker CD44. Int J Mol Sci. 2020;21:1927. https://doi.org/10.3390/ijms21061927 .
pubmed: 32168951 pmcid: 7139689 doi: 10.3390/ijms21061927
Wang M, Gu J, Zhang X, Yang J, Zhang X, Fang X. Long non-coding RNA DANCR in cancer: roles, mechanisms, and implications. Front Cell Dev Biol. 2021;9:753706. https://doi.org/10.3389/fcell.2021.753706 .
pubmed: 34722539 pmcid: 8554091 doi: 10.3389/fcell.2021.753706
Khales SA, Mozaffari-Jovin S, Geerts D, Abbaszadegan MR. TWIST1 activates cancer stem cell marker genes to promote epithelial-mesenchymal transition and tumorigenesis in esophageal squamous cell carcinoma. BMC Cancer. 2022;22:1272. https://doi.org/10.1186/s12885-022-10252-9 .
pubmed: 36474162 pmcid: 9724315 doi: 10.1186/s12885-022-10252-9
Huang K, Tang Y. SChLAP1 promotes prostate cancer development through interacting with EZH2 to mediate promoter methylation modification of multiple miRNAs of chromosome 5 with a DNMT3a-feedback loop. Cell Death Dis. 2021;12:1–16. https://doi.org/10.1038/s41419-021-03455-8 .
doi: 10.1038/s41419-021-03455-8
Kidd SG, Carm KT, Bogaard M, Olsen LG, Bakken AC, Løvf M, Lothe RA, Axcrona K, Axcrona U, Skotheim RI. High expression of SCHLAP1 in primary prostate cancer is an independent predictor of biochemical recurrence, despite substantial heterogeneity. Neoplasia. 2021;23:634–41. https://doi.org/10.1016/j.neo.2021.05.012 .
pubmed: 34107378 pmcid: 8192444 doi: 10.1016/j.neo.2021.05.012
Liang Y, Zhang D, Zheng T, Yang G, Wang J, Meng F, Liu Y, Zhang G, Zhang L, Han J, et al. lncRNA-SOX2OT promotes hepatocellular carcinoma invasion and metastasis through miR-122-5p-mediated activation of PKM2. Oncogenesis. 2020;9:1–12. https://doi.org/10.1038/s41389-020-0242-z .
doi: 10.1038/s41389-020-0242-z

Auteurs

Agnieszka Śmieszek (A)

Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Norwida 31, 50-375, Wroclaw, Poland. agnieszka.smieszek@upwr.edu.pl.

Klaudia Marcinkowska (K)

Department of Experimental Biology, Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, Norwida 27B, 50-375, Wroclaw, Poland.

Zofia Małas (Z)

Department of Oncology and Surgical Oncology for Children and Youth, Institute of Mother and Child, Kasprzaka 17a, 01-211, Warsaw, Poland.

Mateusz Sikora (M)

Department of Experimental Biology, Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, Norwida 27B, 50-375, Wroclaw, Poland.

Martyna Kępska (M)

Department of Experimental Biology, Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, Norwida 27B, 50-375, Wroclaw, Poland.

Beata A Nowakowska (BA)

Medical Genetics Department, Cytogenetics Laboratory, Institute of Mother and Child, Kasprzaka 17a, 01-211, Warsaw, Poland.

Marta Deperas (M)

Medical Genetics Department, Cytogenetics Laboratory, Institute of Mother and Child, Kasprzaka 17a, 01-211, Warsaw, Poland.

Marta Smyk (M)

Medical Genetics Department, Cytogenetics Laboratory, Institute of Mother and Child, Kasprzaka 17a, 01-211, Warsaw, Poland.

Carlos Rodriguez-Galindo (C)

Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA.

Anna Raciborska (A)

Department of Oncology and Surgical Oncology for Children and Youth, Institute of Mother and Child, Kasprzaka 17a, 01-211, Warsaw, Poland. anna.raciborska@hoga.pl.

Classifications MeSH