Safety and immunogenicity of an adjuvanted recombinant spike protein-based severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine, SpikeVet™, in selected Carnivora, Primates and Artiodactyla in Australian zoos.

SARS-CoV-2 SpikeVet™ immunogenicity safety vaccine zoo animals

Journal

Journal of veterinary pharmacology and therapeutics
ISSN: 1365-2885
Titre abrégé: J Vet Pharmacol Ther
Pays: England
ID NLM: 7910920

Informations de publication

Date de publication:
12 Feb 2024
Historique:
revised: 23 01 2024
received: 13 12 2023
accepted: 24 01 2024
medline: 12 2 2024
pubmed: 12 2 2024
entrez: 12 2 2024
Statut: aheadofprint

Résumé

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can infect a broad range of animal species and has been associated with severe disease in some taxa. Few studies have evaluated optimal strategies to mitigate the risk to susceptible zoo animals. This study evaluated the safety and immunogenicity of a protein-based veterinary SARS-CoV-2 vaccine (SpikeVet™) in zoo animals. Two to three doses of SpikeVet™ were administered intramuscularly or subcutaneously 3-4 weeks apart to 354 zoo animals representing 38 species. SpikeVet™ was very well tolerated across all species. Minor adverse effects were observed in 1.69% of animals vaccinated, or 1.04% of vaccine doses administered. Preliminary immunogenicity analyses in representative carnivores (meerkats, lions) and an artiodactylid (domestic goat) showed SpikeVet™-immunized animals developed serum antibodies able to neutralize a range of SARS-CoV-2 variants, including the vaccine-homologous Wuhan and Mu variants, as well as vaccine-heterologous Omicron BA.2 and XBB.1 strains. Prior to vaccination, all eight lions were seropositive for Wuhan strain by surrogate viral neutralization testing, suggesting past infection with SARS-CoV-2 or cross-reactive antibodies generated by another closely related coronavirus. These results from a range of zoo species support the ongoing development of SpikeVet™ as a safe and effective veterinary SARS-CoV-2 vaccine.

Identifiants

pubmed: 38345094
doi: 10.1111/jvp.13429
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : Vaxine Pty Ltd

Informations de copyright

© 2024 John Wiley & Sons Ltd.

Références

Adney, D. R., Wang, L., van Doremalen, N., Shi, W., Zhang, Y., Kong, W. P., Miller, M. R., Bushmaker, T., Scott, D., de Wit, E., Modjarrad, K., Petrovsky, N., Graham, B. S., Bowen, R. A., & Munster, V. J. (2019). Efficacy of an adjuvanted middle east respiratory syndrome coronavirus spike protein vaccine in dromedary camels and alpacas. Viruses, 11(3), 212.
Bartlett, S. L., Koeppel, K. N., Cushing, A. C., Bellon, H. F., Almagro, V., Gyimesi, Z. S., Thies, T., Hård, T., Denitton, D., Fox, K. Z., & Vodička, R. (2023). Global retrospective review of severe acute respiratory syndrome SARS CoV-2 infection in nondomestic felids: March 2020-February 2021. Journal of Zoo and Wildlife Medicine, 54(3), 607-616.
Bielefeldt-Ohmann, H., Prow, N. A., Wang, W., Tan, C. S., Coyle, M., Douma, A., Hobson-Peters, J., Kidd, L., Hall, R. A., & Petrovsky, N. (2014). Safety and immunogenicity of a delta inulin-adjuvanted inactivated Japanese encephalitis virus vaccine in pregnant mares and foals. Veterinary Research, 45(1), 130.
Bui, V. N., Dao, T. D., Tran, L. H., Vu, T. T., Nguyen, T. H., Nguyen, G. H., Tran, K. V., Nguyen, H. X., Bui, A. N., Unger, F., & Nguyen-Viet, H. (2023). SARS-CoV-2 infection in a hippopotamus, Hanoi, Vietnam. Emerging Infectious Diseases, 29, 658-661.
Conceicao, C., Thakur, N., Human, S., Kelly, J. T., Logan, L., Bialy, D., Bhat, S., Stevenson-Leggett, P., Zagrajek, A. K., Hollinghurst, P., Varga, M., Tsirigoti, C., Tully, M., Chiu, C., Moffat, K., Silesian, A. P., Hammond, J. A., Maier, H. J., Bickerton, E., … Bailey, D. (2020). The SARS-CoV-2 spike protein has a broad tropism for mammalian ACE2 proteins. PLoS Biology, 18(12), e3001016.
Crawford, K. H. D., Eguia, R., Dingens, A. S., Loes, A. N., Malone, K. D., Wolf, C. R., Chu, H. Y., Tortorici, M. A., Veesler, D., Murphy, M., Pettie, D., King, N. P., Balazs, A. B., & Bloom, J. D. (2020). Protocol and reagents for pseudotyping lentiviral particles with SARS-CoV-2 spike protein for neutralization assays. Viruses, 12(5), 513.
Cui, S., Liu, Y., Zhao, J., Peng, X., Lu, G., Shi, W., Pan, Y., Zhang, D., Yang, P., & Wang, Q. (2022). An updated review on SARS-CoV-2 infection in animals. Viruses, 14, 1527.
de Oliveira-Filho, E. F., de Carvalho, O. V., Carneiro, I. O., Fernandes, F. D., Vaz, S. N., Pedroso, C., Gonzalez-Auza, L., Urbieta, V. C., Kuhne, A., Mayoral, R., Jo, W. K., Moreira-Soto, A., Reusken, C., Drosten, C., Brites, C., Osterrieder, K., Netto, E. M., Ristow, L. E., Maia, R. C., … Drexler, J. F. (2022). Frequent infection of cats with SARS-CoV-2 irrespective of pre-existing enzootic coronavirus immunity, Brazil 2020. Frontiers in Immunology, 13, 857322.
Doliff, R., & Martens, P. (2022). Cats and SARS-CoV-2: A scoping review. Animals, 12, 1413.
EFSA Panel on Animal Health and Welfare (AHAW), Nielsen, S. S., Alvarez, J., Bicout, D. J., Calistri, P., Canali, E., Drewe, J. A., Garin-Bastuji, B., Gonzales Rojas, J. L., Gortázar, C., & Herskin, M. (2023). SARS-CoV-2 in animals: Susceptibility of animal species, risk for animal and public health, monitoring, prevention and control. EFSA Journal, 21(2), e07822.
Freedman, N. D., Brown, L., Newman, L. M., Jones, J. M., Benoit, T. J., Averhoff, F., Bu, X., Bayrak, K., Lu, A., Coffey, B., & Jackson, L. (2022). COVID-19 SeroHub, an online repository of SARS-CoV-2 seroprevalence studies in the United States. Scientific Data, 9(1), 727.
Foley, J. E., Swift, P., Fleer, K. A., Torres, S., Girard, Y. A., & Johnson, C. K. (2013). Risk factors for exposure to feline pathogens in California mountain lions (Puma concolor). Journal of Wildlife Diseases, 49(2), 279-293.
Hale, V. L., Dennis, P. M., McBride, D. S., Nolting, J. M., Madden, C., Huey, D., Ehrlich, M., Grieser, J., Winston, J., Lombardi, D., Gibson, S., Saif, L., Killian, M. L., Lantz, K., Tell, R. M., Torchetti, M., Robbe-Austerman, S., Nelson, M. I., Faith, S. A., & Bowman, A. S. (2022). SARS-CoV-2 infection in free-ranging white-tailed deer. Nature, 602(7897), 481-486.
Hancock, T. J., Hickman, P., Kazerooni, N., Kennedy, M., Kania, S. A., Dennis, M., Szafranski, N., Gerhold, R., Su, C., Masi, T., Smith, S., & Sparer, T. E. (2022). Possible cross-reactivity of feline and white-tailed deer antibodies against the SARS-CoV-2 receptor binding domain. Journal of Virology, 96(8), e0025022.
Hofmann-Lehmann, R., Fehr, D., Grob, M., Elgizoli, M., Packer, C., Martenson, J. S., O'Brien, S. J., & Lutz, H. (1996). Prevalence of antibodies to feline parvovirus, calicivirus, herpesvirus, coronavirus, and immunodeficiency virus and of feline leukemia virus antigen and the interrelationship of these viral infections in free-ranging lions in east Africa. Clinical and Diagnostic Laboratory Immunology, 3(5), 554-562.
Honda-Okubo, Y., Cartee, R. T., Thanawastien, A., Seung Yang, J., Killeen, K. P., & Petrovsky, N. (2022). A typhoid fever protein capsular matrix vaccine candidate formulated with Advax-CpG adjuvant induces a robust and durable anti-typhoid Vi polysaccharide antibody response in mice, rabbits and nonhuman primates. Vaccine, 40(32), 4625-4634.
Kingstad-Bakke, B., Lee, W., Chandrasekar, S. S., Gasper, D. J., Salas-Quinchucua, C., Cleven, T., Sullivan, J. A., Talaat, A., Osorio, J. E., & Suresh, M. (2022). Vaccine-induced systemic and mucosal T cell immunity to SARS-CoV-2 viral variants. Proceedings of the National Academy of Sciences of the United States of America, 119(20), e2118312119.
Kurhade, C., Zou, J., Xia, H., Liu, M., Chang, H. C., Ren, P., Xie, X., & Shi, P. Y. (2023). Low neutralization of SARS-CoV-2 Omicron BA.2.75.2, BQ.1.1 and XBB.1 by parental mRNA vaccine or a BA.5 bivalent booster. Nature Medicine, 29(2), 344-347.
Lebedin, Y., Petukhov, P., Maygurova, V., Klyuchnikova, P., & Naidenko, S. (2021). Occurrence of spike antigen specific SARS-CoV-2 antibodies in pre-pandemic samples of domestic cats raises new questions. Biology Bulletin, 48, S75-S81.
Li, H., Monslow, M. A., Freed, D. C., Chang, D., Li, F., Gindy, M., Wang, D., Vora, K., Espeseth, A. S., Petrovsky, N., & Fu, T. M. (2021). Novel adjuvants enhance immune responses elicited by a replication-defective human cytomegalovirus vaccine in nonhuman primates. Vaccine, 39(51), 7446-7456.
Li, L., Honda-Okubo, Y., Baldwin, J., Bowen, R., Bielefeldt-Ohmann, H., & Petrovsky, N. (2022). Covax-19/Spikogen® vaccine based on recombinant spike protein extracellular domain with Advax-CpG55.2 adjuvant provides single dose protection against SARS-CoV-2 infection in hamsters. Vaccine, 40(23), 3182-3192.
Li, L., Honda-Okubo, Y., Huang, Y., Jang, H., Carlock, M. A., Baldwin, J., Piplani, S., Bebin-Blackwell, A. G., Forgacs, D., Sakamoto, K., Stella, A., Turville, S., Chataway, T., Colella, A., Triccas, J., Ross, T. M., & Petrovsky, N. (2021). Immunisation of ferrets and mice with recombinant SARS-CoV-2 spike protein formulated with Advax-SM adjuvant protects against COVID-19 infection. Vaccine, 39(40), 5940-5953.
Li, S., Yang, R., Zhang, D., Han, P., Xu, Z., Chen, Q., Zhao, R., Zhao, X., Qu, X., Zheng, A., Wang, L., Li, L., Hu, Y., Zhang, R., Su, C., Niu, S., Zhang, Y., Qi, J., Liu, K., … Gao, G. F. (2022). Cross-species recognition and molecular basis of SARS-CoV-2 and SARS-CoV binding to ACE2s of marine animals. National Science Review, 9(9), nwac122.
Lu, L., Sikkema, R. S., Velkers, F. C., Nieuwenhuijse, D. F., Fischer, E. A. J., Meijer, P. A., Bouwmeester-Vincken, N., Rietveld, A., Wegdam-Blans, M. C. A., Tolsma, P., Koppelman, M., Smit, L. A. M., Hakze-van der Honing, R. W., van der Poel, W. H. M., van der Spek, A. N., Spierenburg, M. A. H., Molenaar, R. J., Rond, J., Augustijn, M., … Koopmans, M. P. G. (2021). Adaptation, spread and transmission of SARS-CoV-2 in farmed minks and associated humans in The Netherlands. Nature Communications, 12(1), 6802.
McAloose, D., Laverack, M., Wang, L., Killian, M. L., Caserta, L. C., Yuan, F., Mitchell, P. K., Queen, K., Mauldin, M. R., Cronk, B. D., Bartlett, S. L., Sykes, J. M., Zec, S., Stokol, T., Ingerman, K., Delaney, M. A., Fredrickson, R., Ivancic, M., Jenkins-Moore, M., … Diel, D. G. (2020). From people to Panthera: Natural SARS-CoV-2 infection in tigers and lions at the Bronx zoo. MBio, 11(5), e02220-20.
Mohebali, M., Hassanpour, G., Zainali, M., Gouya, M. M., Khayatzadeh, S., Parsaei, M., Sarafraz, N., Hassanzadeh, M., Azarm, A., Salehi-Vaziri, M., Sasani, F., Heidari, Z., Jalali, T., Pouriayevali, M. H., Shoja, Z., Ahmadi, Z., Sadjadi, M., Tavakoli, M., Azad-Manjiri, S., … Zarei, Z. (2022). SARS-CoV-2 in domestic cats (Felis catus) in the northwest of Iran: Evidence for SARS-CoV-2 circulating between human and cats. Virus Research, 310, 198673.
Mykytyn, A. Z., Rissmann, M., Kok, A., Rosu, M. E., Schipper, D., Breugem, T. I., van den Doel, P. B., Chandler, F., Bestebroer, T., de Wit, M., van Royen, M. E., Molenkamp, R., Oude Munnink, B. B., de Vries, R. D., GeurtsvanKessel, C., Smith, D. J., Koopmans, M. P. G., Rockx, B., Lamers, M. M., … Haagmans, B. L. (2022). Antigenic cartography of SARS-CoV-2 reveals that Omicron BA.1 and BA.2 are antigenically distinct. Science Immunology, 7(75), eabq4450.
Pappas, G., Vokou, D., Sainis, I., & Halley, J. M. (2022). SARS-CoV-2 as a zooanthroponotic infection: Spillbacks, secondary spillovers, and their importance. Microorganisms, 10(11), 2166.
Piplani, S., Singh, P. K., Winkler, D. A., & Petrovsky, N. (2021). In silico comparison of SARS-CoV-2 spike protein-ACE2 binding affinities across species and implications for virus origin. Scientific Reports, 11(1), 13063.
Rabail, R., Ahmed, W., Ilyas, M., Rajoka, M. S., Hassoun, A., Khalid, A. R., Khan, M. R., & Aadil, R. M. (2022). The side effects and adverse clinical cases reported after COVID-19 immunization. Vaccine, 10(4), 488.
Ronchi, G. F., Monaco, F., Harrak, M. E., Chafiqa, L., Capista, S., Bortone, G., Orsini, G., Pinoni, C., Iorio, M., Iapaolo, F., Pini, A., & Di Ventura, M. (2016). Preliminary results on innocuity and immunogenicity of an inactivated vaccine against Peste des petits ruminants. Veterinaria Italiana, 52(2), 101-109.
Saade, F., Honda-Okubo, Y., Trec, S., & Petrovsky, N. (2013). A novel hepatitis B vaccine containing Advax, a polysaccharide adjuvant derived from delta inulin, induces robust humoral and cellular immunity with minimal reactogenicity in preclinical testing. Vaccine, 31(15), 1999-2007.
Scheaffer, S. M., Lee, D., Whitener, B., Ying, B., Wu, K., Liang, C. Y., Jani, H., Martin, P., Amato, N. J., Avena, L. E., Berrueta, D. M., Schmidt, S. D., O'Dell, S., Nasir, A., Chuang, G. Y., Stewart-Jones, G., Koup, R. A., Doria-Rose, N. A., Carfi, A., … Diamond, M. S. (2023). Bivalent SARS-CoV-2 mRNA vaccines increase breadth of neutralization and protect against the BA.5 Omicron variant in mice. Nature Medicine, 29(1), 247-257.
Sharun, K., Tiwari, R., Saied, A. A., & Dhama, K. (2021). SARS-CoV-2 vaccine for domestic and captive animals: An effort to counter COVID-19 pandemic at the human-animal interface. Vaccine, 39(49), 7119-7122.
Siegrist, A. A., Richardson, K. L., Ghai, R. R., Pope, B., Yeadon, J., Culp, B., Behravesh, C. B., Liu, L., Brown, J. A., & Boyer, L. V. (2023). Probable transmission of SARS-CoV-2 from African lion to zoo employees, Indiana, USA, 2021. Emerging Infectious Diseases, 29(6), 1102-1108.
Tabarsi, P., Anjidani, N., Shahpari, R., Mardani, M., Sabzvari, A., Yazdani, B., Kafi, H., Fallah, N., Ebrahimi, A., Taheri, A., Petrovsky, N., & Barati, S. (2022). Evaluating the efficacy and safety of SpikoGen®, an Advax-CpG55.2-adjuvanted severe acute respiratory syndrome coronavirus 2 spike protein vaccine: A phase 3 randomized placebo-controlled trial. Clinical Microbiology and Infection, 29, 215-220.
Tabarsi, P., Anjidani, N., Shahpari, R., Mardani, M., Sabzvari, A., Yazdani, B., Roshanzamir, K., Bayatani, B., Taheri, A., Petrovsky, N., Li, L., & Barati, S. (2022). Safety and immunogenicity of SpikoGen®, an Advax-CpG55.2-adjuvanted SARS-CoV-2 spike protein vaccine: A phase 2 randomized placebo-controlled trial in both seropositive and seronegative populations. Clinical Microbiology and Infection, 28(9), 1263-1271.
Tabarsi, P., Anjidani, N., Shahpari, R., Roshanzamir, K., Fallah, N., Andre, G., Petrovsky, N., & Barati, S. (2022). Immunogenicity and safety of SpikoGen®, an adjuvanted recombinant SARS-CoV-2 spike protein vaccine as a homologous and heterologous booster vaccination: A randomized placebo-controlled trial. Immunology, 167(3), 340-353.
Tabynov, K., Orynbassar, M., Yelchibayeva, L., Turebekov, N., Yerubayev, T., Matikhan, N., Yespolov, T., Petrovsky, N., & Tabynov, K. (2022). A spike protein-based subunit SARS-CoV-2 vaccine for pets: Safety, immunogenicity, and protective efficacy in juvenile cats. Frontiers in Veterinary Science, 9, 815978.
Tamura, T., Ito, J., Uriu, K., Zahradnik, J., Kida, I., Anraku, Y., Nasser, H., Shofa, M., Oda, Y., Lytras, S., Nao, N., Itakura, Y., Deguchi, S., Suzuki, R., Wang, L., Begum, M. M., Kita, S., Yajima, H., Sasaki, J., … Sato, K. (2023). Virological characteristics of the SARS-CoV-2 XBB variant derived from recombination of two Omicron subvariants. Nature Communications, 14(1), 2800.
TASS Russian News Agency. (2021). Russia registers world's first anti-coronavirus vaccine for animals. Retrieved from https://tass.com/world/1272331
Vercammen, F., Cay, B., Gryseels, S., Balmelle, N., Joffrin, L., Van Hoorde, K., Verhaegen, B., Mathijs, E., Van Vredendaal, R., Dharmadhikari, T., & Chiers, K. (2023). SARS-CoV-2 infection in captive hippos (Hippopotamus amphibius), Belgium. Animals, 13(2), 316.
Wang, L., Gyimesi, Z. S., Killian, M. L., Torchetti, M., Olmstead, C., Fredrickson, R., & Terio, K. A. (2022). Detection of SARS-CoV-2 clade B.1.2 in three snow leopards. Transboundary and Emerging Diseases, 69(5), e3346-e3351.
Wappel, S., Hainer, N., Horst, H. V., Hutchinson, K., King, V., Dunham, S., Klesmith, J., Dunkle, B., Aleo, M., Baima, E., & Tkalcevic, G. (2020). Efficacy of a SARS-CoV-2 recombinant vaccine via serologic response in cats and dogs. In: World Health Congress 2020 (p. 2).
WOAH. (2023). SARS-COV-2 in animals - Situation report 22. Retrieved from https://www.woah.org/en/document/sars-cov-2-in-animals-situation-report-22/
Yamamoto, J. K., Edison, L. K., Rowe-Haas, D. K., Takano, T., Gilor, C., Crews, C. D., Tuanyok, A., Arukha, A. P., Shiomitsu, S., Walden, H. D. S., Hohdatsu, T., Tompkins, S. M., Morris, J. G., Jr., Sahay, B., & Kariyawasam, S. (2023). Both feline coronavirus serotypes 1 and 2 infected domestic cats develop cross-reactive antibodies to SARS-CoV-2 receptor binding domain: Its implication to Pan-CoV vaccine development. Viruses, 15(4), 914.

Auteurs

David J McLelland (DJ)

Zoos South Australia, Adelaide, South Australia, Australia.
Zoo and Aquarium Association, Mosman, New South Wales, Australia.

Michael Lynch (M)

Melbourne Zoo, Melbourne, Victoria, Australia.

Larry Vogelnest (L)

Taronga Zoo, Sydney, New South Wales, Australia.

Paul Eden (P)

Werribee Open Range Zoo, Werribee, Victoria, Australia.

Alisa Wallace (A)

Taronga Western Plains Zoo, Dubbo, New South Wales, Australia.

Jayne Weller (J)

National Zoo and Aquarium, Canberra, Australian Capital Territory, Australia.

Sam Young (S)

Australia Zoo, Beerwah, Queensland, Australia.

Rebecca Vaughan-Higgins (R)

Perth Zoo, Perth, Western Australia, Australia.

Anna Antipov (A)

Vaxine Pty Ltd, Bedford Park, South Australia, Australia.

Yoshikazu Honda-Okubo (Y)

Vaxine Pty Ltd, Bedford Park, South Australia, Australia.

Nikolai Petrovsky (N)

Vaxine Pty Ltd, Bedford Park, South Australia, Australia.

Classifications MeSH