Applying valency-based immuno-selection to generate broadly cross-reactive antibodies against influenza hemagglutinins.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
12 Feb 2024
Historique:
received: 26 10 2022
accepted: 09 01 2024
medline: 13 2 2024
pubmed: 13 2 2024
entrez: 12 2 2024
Statut: epublish

Résumé

Conserved epitopes shared between virus subtypes are often subdominant, making it difficult to induce broadly reactive antibodies by immunization. Here, we generate a plasmid DNA mix vaccine that encodes protein heterodimers with sixteen different influenza A virus hemagglutinins (HA) representing all HA subtypes except H1 (group 1) and H7 (group 2). Each single heterodimer expresses two different HA subtypes and is targeted to MHC class II on antigen presenting cells (APC). Female mice immunized with the plasmid mix produce antibodies not only against the 16 HA subtypes, but also against non-included H1 and H7. We demonstrate that individual antibody molecules cross-react between different HAs. Furthermore, the mix vaccine induces T cell responses to conserved HA epitopes. Immunized mice are partially protected against H1 viruses. The results show that application of valency-based immuno-selection to diversified antigens can be used to direct antibody responses towards conserved (subdominant) epitopes on viral antigens.

Identifiants

pubmed: 38346952
doi: 10.1038/s41467-024-44889-w
pii: 10.1038/s41467-024-44889-w
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

850

Informations de copyright

© 2024. The Author(s).

Références

Iuliano, A. D. et al. Estimates of global seasonal influenza-associated respiratory mortality: a modelling study. Lancet 391, 1285–1300 (2018).
pubmed: 29248255 doi: 10.1016/S0140-6736(17)33293-2
WHO. Influenza (Seasonal) Fact Sheet 2023. Last update: January 12, 2023. Accessed 6 August 2023. https://www.who.int/news-room/fact-sheets/detail/influenza -(seasonal) .
Neumann, G. & Kawaoka, Y. Predicting the next influenza pandemics. J. Infect. Dis. 219, S14–S20 (2019).
pubmed: 30715371 doi: 10.1093/infdis/jiz040
Altman, M. O., Bennink, J. R., Yewdell, J. W. & Herrin, B. R. Lamprey VLRB response to influenza virus supports universal rules of immunogenicity and antigenicity. eLife 4, e07467 (2015).
pubmed: 26252514 pmcid: 4552221 doi: 10.7554/eLife.07467
Webster, R. G., Bean, W. J., Gorman, O. T., Chambers, T. M. & Kawaoka, Y. Evolution and ecology of influenza A viruses. Microbiol. Rev. 56, 157–179 (1992).
doi: 10.1128/mr.56.1.152-179.1992
Röhm, C., Zhou, N., Süss, J., Mackenzie, J. & Webster, R. G. Characterization of a novel influenza hemagglutinin, H15: criteria for determination of Influenza A subtypes. Virology 217, 508–516 (1996).
pubmed: 8610442 doi: 10.1006/viro.1996.0145
Fouchier, R. A. M. et al. Characterization of a novel Influenza A virus hemagglutinin subtype (H16) obtained from black-headed gulls. J. Virol. 79, 2814 (2005).
pubmed: 15709000 pmcid: 548452 doi: 10.1128/JVI.79.5.2814-2822.2005
Wu, Y., Wu, Y., Tefsen, B., Shi, Y. & Gao, G. F. Bat-derived influenza-like viruses H17N10 and H18N11. Trends Microbiol. 22, 183–191 (2014).
pubmed: 24582528 pmcid: 7127364 doi: 10.1016/j.tim.2014.01.010
Freidl, G. S. et al. Influenza at the animal–human interface: a review of the literature for virological evidence of human infection with swine or avian influenza viruses other than A(H5N1). Eur. Surveill. 19, 20793 (2014).
doi: 10.2807/1560-7917.ES2014.19.18.20793
Angeletti, D. & Yewdell, J. W. Understanding and manipulating viral immunity: antibody immunodominance enters center stage. Trends Immunol. 39, 549–561 (2018).
pubmed: 29789196 doi: 10.1016/j.it.2018.04.008
Kirkpatrick, E., Qiu, X., Wilson, P. C., Bahl, J. & Krammer, F. The influenza virus hemagglutinin head evolves faster than the stalk domain. Sci. Rep. 8, 10432–10432 (2018).
pubmed: 29992986 pmcid: 6041311 doi: 10.1038/s41598-018-28706-1
Heaton, N. S., Sachs, D., Chen, C. J., Hai, R. & Palese, P. Genome-wide mutagenesis of influenza virus reveals unique plasticity of the hemagglutinin and NS1 proteins. Proc. Natl Acad. Sci. USA 110, 20248–20253 (2013).
pubmed: 24277853 pmcid: 3864309 doi: 10.1073/pnas.1320524110
Doud, M. B., Lee, J. M. & Bloom, J. D. How single mutations affect viral escape from broad and narrow antibodies to H1 influenza hemagglutinin. Nat. Commun. 9, 1386 (2018).
pubmed: 29643370 pmcid: 5895760 doi: 10.1038/s41467-018-03665-3
Gerdil, C. The annual production cycle for influenza vaccine. Vaccine 21, 1776–1779 (2003).
pubmed: 12686093 doi: 10.1016/S0264-410X(03)00071-9
Corti, D. et al. Tackling influenza with broadly neutralizing antibodies. Curr. Opin. Virol. 24, 60–69 (2017).
pubmed: 28527859 pmcid: 7102826 doi: 10.1016/j.coviro.2017.03.002
Whittle, J. R. R. et al. Broadly neutralizing human antibody that recognizes the receptor-binding pocket of influenza virus hemagglutinin. Proc. Natl Acad. Sci. USA 108, 14216–14221 (2011).
pubmed: 21825125 pmcid: 3161572 doi: 10.1073/pnas.1111497108
Lee, P. S. et al. Heterosubtypic antibody recognition of the influenza virus hemagglutinin receptor binding site enhanced by avidity. Proc. Natl Acad. Sci. USA 109, 17040–17045 (2012).
pubmed: 23027945 pmcid: 3479480 doi: 10.1073/pnas.1212371109
Ekiert, D. C. et al. Cross-neutralization of influenza A viruses mediated by a single antibody loop. Nature 489, 526–532 (2012).
pubmed: 22982990 pmcid: 3538848 doi: 10.1038/nature11414
Ekiert, D. C. et al. Antibody recognition of a highly conserved influenza virus epitope. Science 324, 246–251 (2009).
pubmed: 19251591 pmcid: 2758658 doi: 10.1126/science.1171491
Corti, D. et al. A neutralizing antibody selected from plasma cells that binds to group 1 and group 2 influenza A hemagglutinins. Science 333, 850–856 (2011).
pubmed: 21798894 doi: 10.1126/science.1205669
Guthmiller, J. J. et al. Broadly neutralizing antibodies target a haemagglutinin anchor epitope. Nature 602, 314–320 (2022).
pubmed: 34942633 doi: 10.1038/s41586-021-04356-8
Braathen, R. et al. A DNA vaccine that encodes an antigen-presenting cell-specific heterodimeric protein protects against cancer and influenza. Mol. Ther. Methods Clin. Dev. 17, 378–392 (2020).
pubmed: 32128342 pmcid: 7044496 doi: 10.1016/j.omtm.2020.01.007
Hinke, D. M. et al. Antigen bivalency of antigen-presenting cell-targeted vaccines increases B cell responses. Cell Rep. 39, 110901 (2022).
pubmed: 35649357 doi: 10.1016/j.celrep.2022.110901
Busch, R., Pashine, A., Garcia, K. C. & Mellins, E. D. Stabilization of soluble, low-affinity HLA-DM/HLA-DR1 complexes by leucine zippers. J. Immunol. Methods 263, 111–121 (2002).
pubmed: 12009208 doi: 10.1016/S0022-1759(02)00034-0
Grødeland, G., Mjaaland, S., Roux, K. H., Fredriksen, A. B. & Bogen, B. DNA vaccine that targets hemagglutinin to MHC class II molecules rapidly induces antibody-mediated protection against influenza. J. Immunol. 191, 3221–3231 (2013).
pubmed: 23956431 pmcid: 3767367 doi: 10.4049/jimmunol.1300504
Grødeland, G., Mjaaland, S., Tunheim, G., Fredriksen, A. B. & Bogen, B. The specificity of targeted vaccines for APC surface molecules influences the immune response phenotype. PLoS ONE 8, e80008 (2013).
pubmed: 24244595 pmcid: 3823800 doi: 10.1371/journal.pone.0080008
Fredriksen, A. B., Sandlie, I. & Bogen, B. DNA vaccines increase immunogenicity of idiotypic tumor antigen by targeting novel fusion proteins to antigen-presenting cells. Mol. Ther. 13, 776–785 (2006).
pubmed: 16414309 doi: 10.1016/j.ymthe.2005.10.019
Andersen, T. K. et al. Enhanced germinal center reaction by targeting vaccine antigen to major histocompatibility complex class II molecules. NPJ Vaccines 4, 9 (2019).
pubmed: 30775000 pmcid: 6370881 doi: 10.1038/s41541-019-0101-0
Braathen, R. et al. The magnitude and IgG subclass of antibodies elicited by targeted DNA vaccines are influenced by specificity for APC surface molecules. ImmunoHorizons 2, 38–53 (2018).
pubmed: 31022690 doi: 10.4049/immunohorizons.1700038
Wilson, I. A., Skehel, J. J. & Wiley, D. C. Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 Å resolution. Nature 289, 366–373 (1981).
pubmed: 7464906 doi: 10.1038/289366a0
Gerhard, W., Yewdell, J., Frankel, M. E. & Webster, R. Antigenic structure of influenza virus haemagglutinin defined by hybridoma antibodies. Nature 290, 713–717 (1981).
pubmed: 6163993 doi: 10.1038/290713a0
Caton, A. J., Brownlee, G. G., Yewdell, J. W. & Gerhard, W. The antigenic structure of the influenza virus A/PR/8/34 hemagglutinin (H1 subtype). Cell 32, 417–427 (1982).
doi: 10.1016/0092-8674(82)90135-0
Angeletti, D. et al. Defining B cell immunodominance to viruses. Nat. Immunol. 18, 456–463 (2017).
pubmed: 28192417 pmcid: 5360521 doi: 10.1038/ni.3680
Das, SumanR. et al. Defining Influenza A Virus Hemagglutinin Antigenic Drift by Sequential Monoclonal Antibody Selection. Cell Host Microbe 13, 314–323 (2013).
pubmed: 23498956 pmcid: 3747226 doi: 10.1016/j.chom.2013.02.008
Tamura, M., Kuwano, K., Kurane, I. & Ennis, F. A. Definition of amino acid residues on the epitope responsible for recognition by influenza A virus H1-specific, H2-specific, and H1- and H2-cross-reactive murine cytotoxic T-lymphocyte clones. J. virol. 72, 9404–9406 (1998).
pubmed: 9765498 pmcid: 110370 doi: 10.1128/JVI.72.11.9404-9406.1998
Jegaskanda, S. et al. Cross-reactive influenza-specific antibody-dependent cellular cytotoxicity antibodies in the absence of neutralizing antibodies. J. Immunol. 190, 1837–1848 (2013).
pubmed: 23319732 doi: 10.4049/jimmunol.1201574
DiLillo, D. J., Palese, P., Wilson, P. C. & Ravetch, J. V. Broadly neutralizing anti-influenza antibodies require Fc receptor engagement for in vivo protection. J. Clin. Invest. 126, 605–610 (2016).
pubmed: 26731473 pmcid: 4731186 doi: 10.1172/JCI84428
DiLillo, D. J., Tan, G. S., Palese, P. & Ravetch, J. V. Broadly neutralizing hemagglutinin stalk–specific antibodies require FcγR interactions for protection against influenza virus in vivo. Nat. Med. 20, 143–151 (2014).
pubmed: 24412922 pmcid: 3966466 doi: 10.1038/nm.3443
Fossum, E. et al. Vaccine molecules targeting Xcr1 on cross-presenting DCs induce protective CD8+ T-cell responses against influenza virus. Eur. J. Immunol. 45, 624–635 (2015).
pubmed: 25410055 doi: 10.1002/eji.201445080
Anderson, A. M., Baranowska-Hustad, M., Braathen, R., Grødeland, G. & Bogen, B. Simultaneous targeting of multiple hemagglutinins to APCs for induction of broad immunity against influenza. J. Immunol. 200, 2051–2066 (2018).
doi: 10.4049/jimmunol.1701088
Kanekiyo, M. et al. Mosaic nanoparticle display of diverse influenza virus hemagglutinins elicits broad B cell responses. Nat. Immunol. 20, 362–372 (2019).
pubmed: 30742080 pmcid: 6380945 doi: 10.1038/s41590-018-0305-x
Schwartzman, L. M. et al. An intranasal virus-like particle vaccine broadly protects mice from multiple subtypes of Influenza A virus. MBio 6, e01044 (2015).
pubmed: 26199334 pmcid: 4513078 doi: 10.1128/mBio.01044-15
Krammer, F., Pica, N., Hai, R., Margine, I. & Palese, P. Chimeric hemagglutinin influenza virus vaccine constructs elicit broadly protective stalk-specific antibodies. J. Virol. 87, 6542–6550 (2013).
pubmed: 23576508 pmcid: 3676110 doi: 10.1128/JVI.00641-13
Carter, Donald et al. Design and characterization of a computationally optimized broadly reactive hemagglutinin vaccine for H1N1 influenza viruses. J. Virol. 90, 4720–4734 (2016).
pubmed: 26912624 pmcid: 4836330 doi: 10.1128/JVI.03152-15
Chaudhury, S., Reifman, J. & Wallqvist, A. Simulation of B cell affinity maturation explains enhanced antibody cross-reactivity induced by the polyvalent malaria vaccine AMA1. J. Immunol. 193, 2073 (2014).
pubmed: 25080483 pmcid: 4135178 doi: 10.4049/jimmunol.1401054
Dutta, S. et al. Overcoming antigenic diversity by enhancing the immunogenicity of conserved epitopes on the malaria vaccine candidate apical membrane Antigen-1. PLOS Pathog. 9, e1003840 (2013).
pubmed: 24385910 pmcid: 3873463 doi: 10.1371/journal.ppat.1003840
Turner, L., Theander, T. G. & Lavstsen, T. Immunization with recombinant Plasmodium falciparum Erythrocyte membrane protein 1 CIDRα1 domains induces domain subtype inhibitory antibodies. Infect. Immun. 86, e00435–00418 (2018).
Shaffer, J. S., Moore, P. L., Kardar, M. & Chakraborty, A. K. Optimal immunization cocktails can promote induction of broadly neutralizing Abs against highly mutable pathogens. Proc. Natl Acad. Sci. USA 113, E7039–E7048 (2016).
pubmed: 27791170 pmcid: 5111661 doi: 10.1073/pnas.1614940113
Cohen, A. A. et al. Mosaic RBD nanoparticles protect against challenge by diverse sarbecoviruses in animal models. Science 377, eabq0839 (2022).
pubmed: 35857620 doi: 10.1126/science.abq0839
Arevalo, C. P. et al. A multivalent nucleoside-modified mRNA vaccine against all known influenza virus subtypes. Science 378, 899–904 (2022).
pubmed: 36423275 pmcid: 10790309 doi: 10.1126/science.abm0271
Hillemanns, P. et al. A therapeutic antigen-presenting cell-targeting DNA vaccine VB10.16 in HPV16-positive high-grade cervical intraepithelial neoplasia: results from a phase I/IIa trial. Clin. Cancer Res. 28, 4885–4892 (2022).
pubmed: 36129459 doi: 10.1158/1078-0432.CCR-22-1927
Davenport, F. M., Hennessy, A. V. & Francis, T. Epidemiologic and immunologic significance of age distribution of antibody to antigenic variants of influenza virus. J. Exp. Med. 98, 641–656 (1953).
pubmed: 13109114 pmcid: 2136340 doi: 10.1084/jem.98.6.641
Fonville, J. M. et al. Antibody landscapes after influenza virus infection or vaccination. Science 346, 996–1000 (2014).
pubmed: 25414313 pmcid: 4246172 doi: 10.1126/science.1256427
Miller, M. S. et al. Neutralizing antibodies against previously encountered influenza virus strains increase over time: a longitudinal analysis. Sci. Transl. Med. 5, 198ra107 (2013).
pubmed: 23946196 pmcid: 4091683 doi: 10.1126/scitranslmed.3006637
Gostic, K. M., Ambrose, M., Worobey, M. & Lloyd-Smith, J. O. Potent protection against H5N1 and H7N9 influenza via childhood hemagglutinin imprinting. Science 354, 722–726 (2016).
pubmed: 27846599 pmcid: 5134739 doi: 10.1126/science.aag1322
Chojnacki, S., Cowley, A., Lee, J., Foix, A. & Lopez, R. Programmatic access to bioinformatics tools from EMBL-EBI update: 2017. Nucleic Acids Res. 45, W550–W553 (2017).
pubmed: 28431173 pmcid: 5570243 doi: 10.1093/nar/gkx273
Dereeper, A. et al. Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res. 36, W465–W469 (2008).
pubmed: 18424797 pmcid: 2447785 doi: 10.1093/nar/gkn180
Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).
pubmed: 9254694 pmcid: 146917 doi: 10.1093/nar/25.17.3389
Norderhaug, L., Olafsen, T., Michaelsen, T. E. & Sandlie, I. Versatile vectors for transient and stable expression of recombinant antibody molecules in mammalian cells. J. Immunol. Methods 204, 77–87 (1997).
pubmed: 9202712 doi: 10.1016/S0022-1759(97)00034-3
Andersen, T. K., Zhou, F., Cox, R., Bogen, B. & Grødeland, G. A DNA vaccine that targets hemagglutinin to antigen presenting cells protects mice against H7 influenza. J. Virol. 91, e01340–01317 (2017).
pubmed: 28931687 pmcid: 5686743 doi: 10.1128/JVI.01340-17
Chang, H. C. et al. A general method for facilitating heterodimeric pairing between two proteins: application to expression of alpha and beta T-cell receptor extracellular segments. Proc. Natl Acad. Sci. USA 91, 11408–11412 (1994).
pubmed: 7972074 pmcid: 45240 doi: 10.1073/pnas.91.24.11408
Staudt, L. & Gerhard, W. Generation of antibody diversity in the immune response of BALB/c mice to influenza virus hemagglutinin. I. Significant variation in repertoire expression between individual mice. J. Exp. Med. 157, 687–704 (1983).
pubmed: 6600489 pmcid: 2186921 doi: 10.1084/jem.157.2.687
Reiersen, H. et al. Covalent antibody display-an in vitro antibody-DNA library selection system. Nucleic Acids Res. 33, e10–e10 (2005).
pubmed: 15653626 pmcid: 546181 doi: 10.1093/nar/gni010
Grødeland, G. et al. Induction of cross-reactive and protective antibody responses after DNA vaccination with MHCII-targeted stem domain from influenza hemagglutinin. Front. Immunol. 11, 431 (2020).
pubmed: 32269566 pmcid: 7112135 doi: 10.3389/fimmu.2020.00431
Reed, L. J. & Muench, H. A simple method of estimating fifty per cent endpoints. Am. J. Hyg. 27, 493–497 (1938).

Auteurs

Daniëla Maria Hinke (DM)

K.G. Jebsen Centre for Influenza Vaccine Research, University of Oslo, Oslo, Norway.
Institute of Immunology (IMM), University of Oslo and Oslo University Hospital, Oslo, Norway.

Ane Marie Anderson (AM)

K.G. Jebsen Centre for Influenza Vaccine Research, University of Oslo, Oslo, Norway.
Institute of Immunology (IMM), University of Oslo and Oslo University Hospital, Oslo, Norway.

Kirankumar Katta (K)

Institute of Immunology (IMM), University of Oslo and Oslo University Hospital, Oslo, Norway.

Marlene Fyrstenberg Laursen (MF)

Institute of Immunology (IMM), University of Oslo and Oslo University Hospital, Oslo, Norway.

Demo Yemane Tesfaye (DY)

Institute of Immunology (IMM), University of Oslo and Oslo University Hospital, Oslo, Norway.

Ina Charlotta Werninghaus (IC)

Institute of Immunology (IMM), University of Oslo and Oslo University Hospital, Oslo, Norway.

Davide Angeletti (D)

Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden.

Gunnveig Grødeland (G)

K.G. Jebsen Centre for Influenza Vaccine Research, University of Oslo, Oslo, Norway.
Institute of Immunology (IMM), University of Oslo and Oslo University Hospital, Oslo, Norway.

Bjarne Bogen (B)

K.G. Jebsen Centre for Influenza Vaccine Research, University of Oslo, Oslo, Norway. bjarne.bogen@medisin.uio.no.
Institute of Immunology (IMM), University of Oslo and Oslo University Hospital, Oslo, Norway. bjarne.bogen@medisin.uio.no.

Ranveig Braathen (R)

K.G. Jebsen Centre for Influenza Vaccine Research, University of Oslo, Oslo, Norway. ranveig.braathen@medisin.uio.no.
Institute of Immunology (IMM), University of Oslo and Oslo University Hospital, Oslo, Norway. ranveig.braathen@medisin.uio.no.

Classifications MeSH