First molecular detection and genetic diversity of Hepatozoon sp. (Apicomplexa) and Brugia sp. (Nematoda) in a crocodile monitor in Nakhon Pathom, Thailand.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
12 02 2024
12 02 2024
Historique:
received:
13
03
2023
accepted:
10
02
2024
medline:
13
2
2024
pubmed:
13
2
2024
entrez:
12
2
2024
Statut:
epublish
Résumé
The crocodile monitor (Varanus salvator) is the most common monitor lizard in Thailand. Based on habitat and food, they have the potential to transmit zoonoses, with a high possibility of infecting ectoparasites and endoparasites. Diseases that could infect crocodile monitors and be transmitted to other animals, including humans. This research aims to identify and evaluate the phylogenetic relationships of Hepatozoon sp. and sheathed microfilaria in crocodile monitors. The phylogenetic analyses of Hepatozoon, based on 18S rRNA, and sheathed microfilaria, based on the COX1 gene, revealed that the Hepatozoon sp. were grouped with H. caimani, while sheathed microfilaria were grouped together with B. timori. This study provides insights into the genetic diversity and host-parasite interactions of hemoparasites in crocodile monitors in Thailand.
Identifiants
pubmed: 38347146
doi: 10.1038/s41598-024-54276-6
pii: 10.1038/s41598-024-54276-6
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
3526Subventions
Organisme : Chulalongkorn University
ID : FOOD66310019
Informations de copyright
© 2024. The Author(s).
Références
Böhme, W. Checklist of the living monitor lizards of the world (family Varanidae). Zool. Verh. 34, 3–43 (2003).
Vidal, N. et al. Molecular evidence for an Asian origin of monitor lizards followed by tertiary dispersals to Africa and Australasia. Biol. Lett. 8(5), 853–855 (2012).
doi: 10.1098/rsbl.2012.0460
pubmed: 22809723
pmcid: 3441001
Lauprasert, K. & Thirakhupt, K. Species diversity, distribution and proposed status of monitor lizards (family Varanidae) in southern Thailand. Nat. Hist. J. Chulalongkorn Univ. 1(1), 39–46 (2001).
Cota, M., Chan-Ard, T., Mekchai, S. & Laoteaw, S. Geographical distribution, instinctive feeding behavior and report of nocturnal activity of Varanus dumerilii in Thailand. Biawak 2(4), 152–158 (2008).
Koch, A., Ziegler, T., Böhme, W., Arida, E. & Auliya, M. Pressing problems: distribution, threats, and conservation status of the monitor lizards (Varanidae: Varanus spp.) of Southeast Asia and the Indo-Australian Archipelago. Herpetol. Conserv. Biol. 8(3), 1–62 (2013).
Joshi, M., Das, S. K. & Sarma, K. Taxonomy, population status and ecology of Indian desert monitor lizard Varanus griseus koniecznyi Mertens 1954 in the Thar desert of Rajasthan. Saudi J. Biol. Sci. 28, 4542–4552 (2021).
doi: 10.1016/j.sjbs.2021.04.055
pubmed: 34354440
pmcid: 8324945
Cota, M. Study and conservation of varanids of Thailand: Past achievements and future challenges. J. Wildl. Thailand 16, 11–12 (2009).
Vilcins, I. M., Ujvari, B., Old, J. M. & Deane, E. Molecular and morphological description of a Hepatozoon species in reptiles and their ticks in the Northern Territory, Australia. J. Parasitol. 95, 434–442 (2009).
doi: 10.1645/GE-1725.1
pubmed: 18710299
Rataj, A. V., Lindtner-Knific, R., Vlahović, K., Mavri, U. & Dovč, A. Parasites in pet reptiles. Acta Vet. Scand. 53, 33. https://doi.org/10.1186/1751-0147-53-33 (2011).
doi: 10.1186/1751-0147-53-33
pubmed: 21624124
pmcid: 3118381
Doornbos, K. et al. Rickettsia sp. closely related to Rickettsia raoultii (Rickettsiales: Rickettsiaceae) in an Amblyomma helvolum (Acarina: Ixodidae) tick from a Varanus salvator (Squamata: Varanidae) in Thailand. J. Med. Entomol. 50(1), 217–220 (2013).
doi: 10.1603/ME12010
pubmed: 23427674
Enabulele, E. E., Ozemoka, H. J., Awharitoma, A. O. & Aisien, M. S. O. Parasitic infections of the African dwarf crocodile (Osteolaemus tetraspis) and the ornate Nile monitor (Varanus ornatus) from Nigeria. Acta Parasitol. 58(2), 191–197 (2013).
doi: 10.2478/s11686-013-0131-0
pubmed: 23666655
Cook, C. A., Netherlands, E. C. & Smit, N. J. Redescription, molecular characterization and taxonomic re-evaluation of a unique African monitor lizard haemogregarine Karyolysus paradoxa (Dias, 1954) n. comb (Karyolysidae). Parasites Vectors 9, 347. https://doi.org/10.1186/s13071-016-1600-8 (2016).
doi: 10.1186/s13071-016-1600-8
pubmed: 27305899
pmcid: 4910240
Calil, P. R. et al. Hemogregarine parasites in wild captive animals, a broad study in São Paulo Zoo. J. Entomol. Zool. Stud. 5(6), 1378–1387 (2017).
Mendoza-Roldan, J. A. et al. Molecular detection of vector-borne agents in ectoparasites and reptiles from Brazil. Ticks Tick-borne Dis. 12, 101585. https://doi.org/10.1016/j.ttbdis.2020.101585 (2021).
doi: 10.1016/j.ttbdis.2020.101585
pubmed: 33113476
Jameie, F., Nasiri, V. & Paykari, H. Morphological detection and molecular characterization of Hepatozoon spp. from venomous terrestrial snakes in Iran. Exp. Parasitol. 239, 108309. https://doi.org/10.1016/j.exppara.2022.108309 (2023).
doi: 10.1016/j.exppara.2022.108309
Wicks, R. M. et al. Morphological and molecular characteristics of a species of Hepatozoon Miller, 1908 (Apicomplexa: Adeleorina) from the blood of Isoodon obesulus (Marsupialia: Peramelidae) in Western Australia. Syst. Parasitol. 65, 19–25 (2006).
doi: 10.1007/s11230-006-9036-8
pubmed: 16758303
Salakij, C. et al. Quantitative and qualitative morphologic, cytochemical, and ultrastructural characteristics of blood cells in captive Asian water monitors. Vet. Clin. Pathol. 43(4), 538–546 (2014).
doi: 10.1111/vcp.12183
pubmed: 25123583
Moço, T. C. et al. Morphological, morphometric and molecular characterization of Hepatozoon spp. Apicomplexa, Hepatozoidae) from naturally infected Caudisona durissa terrifica. Parasitol. Res. 110, 1393–1401 (2012).
doi: 10.1007/s00436-011-2639-2
pubmed: 21922238
Tomé, B., Maia, J. P. M. C. & Harris, D. J. Hepatozoon infection prevalence in four snakes genera: influence of diet, prey parasitemia levels, or parasite type?. J. Parasitol. 98(5), 913–917 (2012).
doi: 10.1645/GE-3111.1
pubmed: 22551400
Maia, J. P., Crottini, A. & Harris, D. J. Microscopic and molecular characterization of Hepatozoon domerguei (Apicomplexa) and Foleyella furcata (Nematoda) in wild endemic reptiles from Madagascar. Parasite 21, 47. https://doi.org/10.1051/parasite/2014046 (2014).
doi: 10.1051/parasite/2014046
pubmed: 25224723
pmcid: 4165108
Ujvari, B., Madsen, T. & Olsson, M. High prevalence of Hepatozoon spp. (Apicomplexa, Hepatozoidae) infection in water pythons (Liasis fuscus) from tropical Australia. J. Parasitol. 90, 670–672 (2004).
doi: 10.1645/GE-204R
pubmed: 15270125
Perkins, S. L. & Keller, A. K. Phylogeny of nuclear small subunit rRNA genes of hemogregarines amplified with specific primers. J. Parasitol. 87, 870–876 (2001).
doi: 10.1645/0022-3395(2001)087[0870:PONSSR]2.0.CO;2
pubmed: 11534653
Harris, D. J., Maia, J. P. & Perera, A. Molecular characterization of Hepatozoon species in reptiles from the Seychelles. J. Parasitol. 97, 106–110 (2011).
doi: 10.1645/GE-2470.1
pubmed: 21348615
Maia, J. P. M. C., Harris, D. J. & Perera, A. Molecular survey of Hepatozoon species in lizards from North Africa. J. Parasitol. 97, 513–517 (2011).
doi: 10.1645/GE-2666.1
pubmed: 21506764
Mathew, J. S. et al. Phylogenetic relationships of Hepatozoon (Apicomplexa, Adeleina) based on molecular, morphologic, and life-cycle characters. J. Parasitol. 86, 366–372 (2000).
doi: 10.1645/0022-3395(2000)086[0366:PROHAA]2.0.CO;2
pubmed: 10780559
O’Dwyer, L. H. et al. Description of three new species of Hepatozoon (Apicomplexa, Hepatozoidae) from rattlesnakes (Crotalus durissus terrificus) based on molecular, morphometric and morphologic characters. Exp. Parasitol. 135, 200–207 (2013).
doi: 10.1016/j.exppara.2013.06.019
pubmed: 23867148
Telford, S. R. Jr., Butler, J. F. & Telford, R. S. Hepatozoon polytopis n. sp. parasitic in two genera and species of colubrid snakes in Southern Florida. J. Parasitol. 91, 144–147 (2005).
doi: 10.1645/GE-3358
pubmed: 15856889
Barta, J. R., Ogedengbe, J. D., Martin, D. S. & Smith, T. G. Phylogenetic position of the adeleorinid coccidia (Myzozoa, Apicomplexa, Coccidia, Eucoccidiorida, Adeleorina) inferred using 18S rDNA sequences. J. Euk. Microbiol. 59, 171–180 (2012).
doi: 10.1111/j.1550-7408.2011.00607.x
pubmed: 22313415
Uni, S. et al. Morphological and molecular characteristics of Malayfilaria sofiani Uni, Mat Udin & Takaoka n. g., n. sp. (Nematoda: Filarioidea) from the common treeshrew Tupaia glis Diard & Duvaucel (Mammalia: Scandentia) in Peninsular Malaysia. Parasites Vectors 10, 194. https://doi.org/10.1186/s13071-017-2105-9 (2017).
doi: 10.1186/s13071-017-2105-9
pubmed: 28427478
pmcid: 5397817
Rosenblatt, J. E. Laboratory diagnosis of infections due to blood and tissue parasites. Clin. Infect. Dis. 49, 1103–1108 (2009).
doi: 10.1086/605574
pubmed: 19691431
Saitou, N. & Nei, M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425 (1987).
pubmed: 3447015
Huelsenbeck, J. P. & Ronquist, F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754–755 (2001).
doi: 10.1093/bioinformatics/17.8.754
pubmed: 11524383
Felsenstein, J. Phylogenies and the comparative method. Am. Nat. 125, 1–15 (1985).
doi: 10.1086/284325
Nei, M. & Kumar, S. Molecular Evolution and Phylogenetics. (Oxford University Press, 2000).
Kimura, M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111–120 (1980).
doi: 10.1007/BF01731581
pubmed: 7463489
Hall, T. A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95–98 (1999).
Librado, P. & Rozas, J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism. Bioinformatics 25, 1451–1452 (2009).
doi: 10.1093/bioinformatics/btp187
pubmed: 19346325
Clement, M., Snell, Q., Walker, P., Posada, D. & Crandall, K. TCS: Estimating gene genealogies, in Parallel and Distributed Processing Symposium. International Proceedings, Vol. 2, 184 (2002). https://doi.org/10.1109/IPDPS.2002.1016585 .
Leigh, J. W. & Bryant, D. PopART: Full-feature software for haplotype network construction. Methods Ecol. Evol. 6, 1110–1116 (2015).
doi: 10.1111/2041-210X.12410
Laidoudi, Y., Ringot, D., Watier-Grillot, S., Davoust, B. & Mediannikov, O. Cardiac and subcutaneous canine dirofilariosis outbreak in a kennel in central France. Parasites 26, 72. https://doi.org/10.1051/parasite/2019073 (2019).
doi: 10.1051/parasite/2019073
Laidoudi, Y. et al. Development of a multiplexed qPCRs-based approach for the diagnosis of Dirofilaria immitis, D. repens, Acanthocheilonema reconditum. Parasites Vectors Dev. 13, 319. https://doi.org/10.1186/s13071-020-04185-0 (2019).
doi: 10.1186/s13071-020-04185-0
Laidoudi, Y. et al. Detection of canine vector-borne filariasis and their Wolbachia endosymbionts in French Guiana. Microorganisms 8, 770. https://doi.org/10.3390/microorganisms8050770 (2020).
doi: 10.3390/microorganisms8050770
pubmed: 32455576
pmcid: 7285362