Development of the quantitative PET prostate phantom (Q3P) for improved quality assurance of
PSMA
phantoms
quantification
Journal
Medical physics
ISSN: 2473-4209
Titre abrégé: Med Phys
Pays: United States
ID NLM: 0425746
Informations de publication
Date de publication:
13 Feb 2024
13 Feb 2024
Historique:
revised:
12
01
2024
received:
04
06
2023
accepted:
23
01
2024
medline:
13
2
2024
pubmed:
13
2
2024
entrez:
13
2
2024
Statut:
aheadofprint
Résumé
Phantoms are commonly used to evaluate and compare the performance of imaging systems given the known ground truth. Positron emission tomography (PET) scanners are routinely validated using the NEMA image quality phantom, in which lesions are modeled using 10 to 37 mm fillable spheres. The NEMA phantom neglects, however, to model focal (3-10-mm), high-uptake lesions that are increasingly observed in prostate-specific membrane antigen (PSMA) PET images. PSMA-targeting radiopharmaceuticals allow for enhanced detection of metastatic prostate cancers. As such, there is significant need to develop an updated phantom which considers both the quantitative and lesion detectability of this new paradigm in oncological PET imaging. In this work, we present the Quantitative PET Prostate Phantom (Q3P); a portable and modular phantom that can be used to improve and harmonize imaging protocols for A one-piece cylindrical phantom was designed effectively in two halves, which we call modules. Module 1 was designed to mimic lesions in the presence of background, and Module 2 mimicked very high contrast conditions (i.e., very low background) that can be observed in The manufactured phantom is portable (5.7 kg) and scan preparation takes less than 40 min. The total A standardized imaging phantom was developed for lesion quantification assessment in
Sections du résumé
BACKGROUND
BACKGROUND
Phantoms are commonly used to evaluate and compare the performance of imaging systems given the known ground truth. Positron emission tomography (PET) scanners are routinely validated using the NEMA image quality phantom, in which lesions are modeled using 10 to 37 mm fillable spheres. The NEMA phantom neglects, however, to model focal (3-10-mm), high-uptake lesions that are increasingly observed in prostate-specific membrane antigen (PSMA) PET images. PSMA-targeting radiopharmaceuticals allow for enhanced detection of metastatic prostate cancers. As such, there is significant need to develop an updated phantom which considers both the quantitative and lesion detectability of this new paradigm in oncological PET imaging.
PURPOSE
OBJECTIVE
In this work, we present the Quantitative PET Prostate Phantom (Q3P); a portable and modular phantom that can be used to improve and harmonize imaging protocols for
METHODS
METHODS
A one-piece cylindrical phantom was designed effectively in two halves, which we call modules. Module 1 was designed to mimic lesions in the presence of background, and Module 2 mimicked very high contrast conditions (i.e., very low background) that can be observed in
RESULTS
RESULTS
The manufactured phantom is portable (5.7 kg) and scan preparation takes less than 40 min. The total
CONCLUSIONS
CONCLUSIONS
A standardized imaging phantom was developed for lesion quantification assessment in
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Natural Sciences and Engineering Research Council of Canada (NSERC)
ID : RGPIN-2019-06467
Organisme : Natural Sciences and Engineering Research Council of Canada (NSERC)
ID : RGPIN-2021-02965
Organisme : Canadian Institutes of Health Research (CIHR)
ID : PJT-162216
Organisme : Society of Nuclear Medicine & Molecular Imaging (SNMMI)
Informations de copyright
© 2024 The Authors. Medical Physics published by Wiley Periodicals LLC on behalf of American Association of Physicists in Medicine.
Références
Cega P, Ciepucha A, Pachowicz M, Chrapko B, Piotrowski T, Lesiak M. Nuclear cardiology: an overview of radioisotope techniques used in the diagnostic workup of cardiovascular disorders. Kardiol Pol. 2020;78(6):520-528. doi:10.33963/KP.15396
Mahlknecht P, Hotter A, Hussl A, Esterhammer R, Schocke MSK. Significance of MRI in diagnosis and differential diagnosis of Parkinson's disease. Neurodegener Dis. 2010;7(5):300-318.
Guo R, Lu G, Qin B, Fei B. Ultrasound imaging technologies for breast cancer detection and management: a review. Ultrasound Med Biol. 2018;44(1):37-70. doi:10.1016/j.ultrasmedbio.2017.09.012
Yordanova A, Eppard E, Kürpig S, et al. Theranostics in nuclear medicine practice. Onco Targets Ther. 2017;10:4821-4828. doi:10.2147/OTT.S140671
Unterrainer M, Eze C, Ilhan H, et al. Recent advances of PET imaging in clinical radiation oncology. Radiat Oncol. 2020;15(1):1-15. doi:10.1186/s13014-020-01519-1
Dawson LA, Jaffray DA. Advances in image-guided radiation therapy. J Clin Oncol. 2007;25(8):938-946. doi:10.1200/JCO.2006.09.9515
Greer D, Scripko P, Bartscher J, et al. Clinical MRI interpretation for outcome prediction in cardiac arrest. Neurocrit Care. 2012;17(2):240-244. doi:10.1007/s12028-012-9716-y
Naqa I EL. The role of quantitative PET in predicting cancer treatment outcomes. Clin Transl Imaging. 2014;2(4):305-320. doi:10.1007/s40336-014-0063-1
Heiss WD, Kidwell CS. Imaging for prediction of functional outcome and assessment of recovery in ischemic stroke. Stroke. 2014;45(4):1195-1201. doi:10.1161/STROKEAHA.113.003611
Morris MA, Saboury B, Burkett B, Gao J, Siegel EL. Reinventing radiology: big data and the future of medical imaging. J Thorac Imaging. 2018;33(1):4-16. doi:10.1097/RTI.0000000000000311
Yaffe MJ. Emergence of “Big Data” and its potential and current limitations in medical imaging. Semin Nucl Med. 2019;49(2):94-104.
Smith-Bindman R, Kwan ML, Marlow EC, et al. Trends in use of medical imaging in US health care systems and in Ontario, Canada, 2000-2016. JAMA. 2019;322(9):843-856. doi:10.1001/jama.2019.11456
Jha AK, Frey E. No-gold-standard evaluation of image-acquisition methods using patient data. Proc SPIE 10136, Medical Imaging 2017: Image Perception, Observer Performance, and Technology Assessment. 2017;10136:101360L. doi:10.1117/12.2255902
Foncubierta-Rodríguez A, Müller H. Ground truth generation in medical imaging: a crowdsourcing-based iterative approach. CrowdMM 2012-Proceedings of the 2012 ACM Workshop on Crowdsourcing for Multimedia, Co-located with ACM Multimedia 2012; October 29, 2012; Nara, Japan. doi:10.1145/2390803.2390808
Kemp BJ, Hruska CB, McFarland AR, Lenox MW, Lowe VJ. NEMA NU 2-2007 performance measurements of the Siemens Inveon preclinical small animal PET system. Phys Med Biol. 2009;54(8):2359-2376. doi:10.1088/0031-9155/54/8/007
Chen CC, Wan YL, Wai YY, Liu HL. Quality assurance of clinical MRI scanners using ACR MRI phantom: preliminary results. J Digit Imaging. 2004;17(4):279-284. doi:10.1007/s10278-004-1023-5
Hirtl A, Bergmann H, Knäusl B, Beyer T, Figl M, Hummel J. Technical note: fully-automated analysis of Jaszczak phantom measurements as part of routine SPECT quality control. Med Phys. 2017;44(5):1638-1645. doi:10.1002/mp.12150
Difilippo FP, Gallo SL, Klatte RS, Patel S. A fillable micro-hollow sphere lesion detection phantom using superposition. Phys Med Biol. 2010;55(18):5363-5381. doi:10.1088/0031-9155/55/18/007
Wollenweber SD, Alessio AM, Kinahan PE. Phantom and methodology for comparison of small lesion detectability in PET. Med Phys. 2023;50(5):2998-3007. doi:10.1002/mp.16187
Yadav N, Singh M, Mishra SP. Tissue-equivalent materials used to develop phantoms in radiation dosimetry: a review. Mater Today Proc. 2020;47:7170-7173. doi:10.1016/j.matpr.2021.06.359
Raghavendra U, Gudigar A, Ciaccio EJ, et al. 2DSM vs FFDM: a computeraided diagnosis based comparative study for the early detection of breast cancer. Expert Syst. 2021;38(6):e12474. doi:10.1111/exsy.12474
Fu B, Wang G, Wu M, et al. Influence of CT effective dose and convolution kernel on the detection of pulmonary nodules in different artificial intelligence software systems: a phantom study. Eur J Radiol. 2020;126:108928. doi:10.1016/j.ejrad.2020.108928
Boellaard R, Rausch I, Beyer T, et al. Quality control for quantitative multicenter whole-body PET/MR studies: a NEMA image quality phantom study with three current PET/MR systems. Med Phys. 2015;42(10):5961-5969. doi:10.1118/1.4930962
NEMA Standards Publication NU 2-2018. NEMA NU 2: Performance Measurements of Positron Emission Tomographs. National Electrical Manufacturers Association. 2018.
Boellaard R, Delgado-Bolton R, Oyen WJG, et al. FDG PET/CT: eANM procedure guidelines for tumour imaging: version 2.0. Eur J Nucl Med Mol Imaging. 2015;42(2):328-354. doi:10.1007/s00259-014-2961-x
Nichols KJ, DiFilippo FP, Palestro CJ. Texture analysis for automated evaluation of Jaszczak phantom SPECT system tests. Med Phys. 2019;46(1):262-272. doi:10.1002/mp.13289
Turkington TG, DeGrado TR, Sampson WH. Small spheres for lesion detection phantoms. IEEE Nuclear Science Symposium and Medical Imaging Conference; August 31, 2002; San Diego, California. doi:10.1109/nssmic.2001.1009268
Hofheinz F, Dittrich S, Pötzsch C, Hoff JVD. Effects of cold sphere walls in PET phantom measurements on the volume reproducing threshold. Phys Med Biol. 2010;55(4):1099-1113. doi:10.1088/0031-9155/55/4/013
Green S, Grice J. Technical note: 3D-printed phantom for dedicated cardiac protocols and geometries in nuclear medicine. Med Phys. 2022;49(2):943-951. doi:10.1002/mp.15406
Rowe CC, Villemagne VL. Brain amyloid imaging. J Nucl Med Technol. 2013;41(1):11-18. doi:10.2967/jnumed.110.076315
Sollini M, Kirienko M, Gelardi F, Fiz F, Gozzi N, Chiti A. State-of-the-art of FAPI-PET imaging: a systematic review and meta-analysis. Eur J Nucl Med Mol Imaging. 2021;48(13):4396-4414. doi:10.1007/s00259-021-05475-0
Society AC. Key statistics for prostate cancer. American Cancer Society. 2022.Accessed December 10, 2022. https://www.cancer.org/cancer/prostate-cancer/about/key-statistics.html#:~:text=Prostate
Administration USF and D. FDA approves second PSMA-targeted PET imaging drug for men with prostate cancer. US Food and Drug Administration. 2022. Accessed November 29, 2022. https://www.fda.gov/drugs/news-events-human-drugs/fda-approves-second-psma-targeted-pet-imaging-drug-men-prostate-cancer
Rousseau E, Wilson D, Lacroix-Poisson F, et al. A prospective study on 18F-DCFPYL PSMA PET/CT imaging in biochemical recurrence of prostate cancer. J Nucl Med. 2019;60(11):1587-1593. doi:10.2967/jnumed.119.226381
Barbosa F de G, Queiroz MA, Nunes RF, Marin JFG, Buchpiguel CA, Cerri GG. Clinical perspectives of PSMA PET/MRI for prostate cancer. Clinics. 2018;73(10):1-9. doi:10.6061/clinics/2018/e586s
Maurer T, Eiber M, Schwaiger M, Gschwend JE. Current use of PSMA-PET in prostate cancer management. Nat Rev Urol. 2016;13(4):226-235. doi:10.1038/nrurol.2016.26
Jansen BHE, Yaqub M, Voortman J, et al. Simplified methods for quantification of 18 F-DCFPyL uptake in patients with prostate cancer. J Nucl Med. 2019;60(12). doi:10.2967/jnumed.119.227520
Cysouw MCF, Jansen BHE, van de Brug T, et al. Machine learning-based analysis of [18F]DCFPyL PET radiomics for risk stratification in primary prostate cancer. Eur J Nucl Med Mol Imaging. 2021;48(2):340-349. doi:10.1007/s00259-020-04971-z
Eiber M, Herrmann K, Calais J, et al. Prostate cancer molecular imaging standardized evaluation (PROMISE): proposed miTNM classification for the interpretation of PSMA-ligand PET/CT. J Nucl Med. 2018;59(3):469-478. doi:10.2967/jnumed.117.198119
Vlachostergios PJ, Niaz MJ, Sun M, et al. Prostate-specific membrane antigen uptake and survival in metastatic castration-resistant prostate cancer. Front Oncol. 2021;11:1-8. doi:10.3389/fonc.2021.630589
Ceci F, Oprea-Lager DE, Emmett L, et al. E-PSMA: the EANM standardized reporting guidelines v1.0 for PSMA-PET. Eur J Nucl Med Mol Imaging. 2021;48(5):1626-1638. doi:10.1007/s00259-021-05245-y
Andrew V, Rudolf W, Kenneth P, et al. Piflufolastat F-18 (18F-DCFPyL) for PSMA PET imaging in prostate cancer. Expert Rev Anticancer Ther. 2022;22(7):681-694.
Heo YA. Flotufolastat F 18: diagnostic First Approval. Mol Diagn Ther. 2023;27(5):631-636. doi:10.1007/s40291-023-00665-y
Jodal L, Le Loirec C, Champion C. Positron range in PET imaging: an alternative approach for assessing and correcting the blurring. Phys Med Biol. 2012;57(12):3931-3943. doi:10.1088/0031-9155/57/12/3931
Jødal L, Le Loirec C, Champion C. Positron range in PET imaging: non-conventional isotopes. Phys Med Biol. 2014;59(23):7419-7434. doi:10.1088/0031-9155/59/23/7419
Fedrigo R, Kadrmas DJ, Edem PE, et al. Quantitative evaluation of PSMA PET imaging using a realistic anthropomorphic phantom and shell-less radioactive epoxy lesions. EJNMMI Phys. 2022;9(1):2. doi:10.1186/s40658-021-00429-9
Kadrmas DJ, Christian PE. Comparative evaluation of lesion detectability for 6 PET imaging platforms using a highly reproducible whole-body phantom with 22Na lesions and localization ROC analysis. J Nucl Med. 2002;43(11):1545-1554.
Kadrmas DJ, Casey ME, Black NF, Hamill JJ, Panin VY, Conti M. Experimental comparison of lesion detectability for four fully-3D PET reconstruction schemes. IEEE Trans Med Imaging. 2009;28(4):523-524. doi:10.1021/nn2045246.Multifunctional
Morey A, Kadrmas D. Effect of varying number of OSEM subsets on PET lesion detectability. J Nucl Med Technol. 2013;41(4):268-273. doi:10.2967/jnmt.113.131904
Boellaard R, Krak NC, Hoekstra OS, Lammertsma AA. Effects of noise, image resolution, and ROI definition on the accuracy of standard uptake values: a simulation study. J Nucl Med. 2004;45(9):1519-1527.
Krak NC, Boellaard R, Hoekstra OS, Twisk JWR, Hoekstra CJ, Lammertsma AA. Effects of ROI definition and reconstruction method on quantitative outcome and applicability in a response monitoring trial. Eur J Nucl Med Mol Imaging. 2005;32(3):294-301. doi:10.1007/s00259-004-1566-1
Frings V, De Langen AJ, Smit EF, et al. Repeatability of metabolically active volume measurements with 18F-FDG and 18F-FLT PET in non-small cell lung cancer. J Nucl Med. 2010;51(12):1870-1877. doi:10.2967/jnumed.110.077255
International Atomic Energy Agency. Regulations for the safe transport of radioactive material. IAEA Safety Standards Series No. SSR-6 (Rev.1), IAEA, Vienna. 2018; doi: 10.61092/iaea.ur52-my9o
Adler S, Seidel J, Choyke P, et al. Minimum lesion detectability as a measure of PET system performance. EJNMMI Phys. 2017;4(1):13. doi:10.1186/s40658-017-0179-2
van der Vos CS, Koopman D, Rijnsdorp S, et al. Quantification, improvement, and harmonization of small lesion detection with state-of-the-art PET. Eur J Nucl Med Mol Imaging. 2017;44:4-16. doi:10.1007/s00259-017-3727-z
Kadrmas DJ, Casey ME, Conti M, Jakoby BW, Lois C, Townsend DW. Impact of time-of-flight on PET tumor detection. J Nucl Med. 2009;50(8):1315-1323. doi:10.2967/jnumed.109.063016
Kaalep A, Sera T, Rijnsdorp S, et al. Feasibility of state of the art PET/CT systems performance harmonisation. Eur J Nucl Med Mol Imaging. 2018;45(8):1344-1361. doi:10.1007/s00259-018-3977-4
Munk OL, Tolbod LP, Hansen SB, Bogsrud TV. Point-spread function reconstructed PET images of sub-centimeter lesions are not quantitative. EJNMMI Phys. 2017;4(1):1-12. doi:10.1186/s40658-016-0169-9
Lajtos I, Czernin J, Dahlbom M, et al. Cold wall effect eliminating method to determine the contrast recovery coefficient for small animal PET scanners using the NEMA NU-4 image quality phantom. Phys Med Biol. 2014;59(11):2727-2746. doi:10.1088/0031-9155/59/11/2727
Lecchi M, Malaspina S, Del Sole A. Effective and equivalent dose minimization for personnel in PET procedures: how far are we from the goal? Eur J Nucl Med Mol Imaging. 2016;43(13):2279-2282. doi:10.1007/s00259-016-3513-3
Elizarov AM. Automation of PET radiopharmaceutical quality control. In: Scott P, Kilbourn M, eds. Handbook of Radiopharmaceuticals: Methodology and Applications. 2nd ed. John Wiley & Sons, Inc; 2020:457-490. doi:10.1002/9781119500575.ch14
Fedrigo Roberto, Coope Robin, Bloise Ingrid, Gowdy Claire, Rahmim Arman, Uribe C. Negative-cast modelling for oncology (NCMO)-Development of a novel technique for casting radioactive tumour models. Eur J Nucl Med Mol Imaging. 2021;48(1):258.
Lopez BP, Jordan DW, Kemp BJ, Kinahan PE, Schmidtlein CR, Mawlawi OR. PET /CT acceptance testing and quality assurance : executive summary of AAPM task group 126 report. Med Phys. 2021;48(2):e31-e35. doi:10.1002/mp.14656
Reyn G, Zorz A, Boellaard R, et al. Quality control in PET/CT and PET/MRI : results of a survey amongst European countries. Phys Med. 2022;99:16-21. doi:10.1016/j.ejmp.2022.05.004
Singh MK, Mohan VSK, Kaushik C. Operational and performance experience with uMI550 digital PET-CT during routine quality control procedures. World J Nucl Med. 2023;22(4):267-275.
Michael Morey A, Noo F, Kadrmas DJ. Effect of using 2 mm voxels on observer performance for PET lesion detection. IEEE Trans Nucl Sci. 2016;63(3):1359-1366. doi:10.1109/TNS.2016.2518177
IAEA Nuclear Data Section. Table of Nuclides-Nuclear structure and decay data. Accessed April 26, 2023. https://www-nds.iaea.org/relnsd/vcharthtml/VChartHTML.html
Gear JI, Cummings C, Sullivan J, et al. Radioactive 3D printing for the production of molecular imaging phantoms. Phys Med Biol. 2020;65(17):175019. doi:10.1088/1361-6560/aba40e
Bieniosek MF, Lee BJ, Levin CS. Technical note: characterization of custom 3D printed multimodality imaging phantoms. Med Phys. 2015;42(10):5913-5918. doi:10.1118/1.4930803
Hoetjes NJ, Van Velden FHP, Hoekstra OS, et al. Partial volume correction strategies for quantitative FDG PET in oncology. Eur J Nucl Med Mol Imaging. 2010;37(9):1679-1687. doi:10.1007/s00259-010-1472-7
Tran-Gia J, Denis-Bacelar AM, Ferreira KM, et al. A multicentre and multi-national evaluation of the accuracy of quantitative Lu-177 SPECT/CT imaging performed within the MRTDosimetry project. EJNMMI Phys. 2021;8(1):55. doi:10.1186/s40658-021-00397-0
Bettinardi V, Castiglioni I, De Bernardi E, Gilardi MC. PET quantification: strategies for partial volume correction. Clin Transl Imaging. 2014;2(3):199-218. doi:10.1007/s40336-014-0066-y