Role of Sam68 as an adaptor protein in inflammatory signaling.
Arthritis
BCR
Cardiovascular disease
Inflammation
Inflammatory bowel disease
Sam68
TCR
TLR
TNF
Journal
Cellular and molecular life sciences : CMLS
ISSN: 1420-9071
Titre abrégé: Cell Mol Life Sci
Pays: Switzerland
ID NLM: 9705402
Informations de publication
Date de publication:
14 Feb 2024
14 Feb 2024
Historique:
received:
18
08
2023
accepted:
25
12
2023
revised:
25
11
2023
medline:
14
2
2024
pubmed:
14
2
2024
entrez:
13
2
2024
Statut:
epublish
Résumé
Sam68 is a ubiquitously expressed KH-domain containing RNA-binding protein highly studied for its involvement in regulating multiple steps of RNA metabolism. Sam68 also contains multiple protein-protein interaction regions such as proline-rich regions, tyrosine phosphorylation sites, and arginine methylation sites, all of which facilitate its participation as an adaptor protein in multiple signaling pathways, likely independent of its RNA-binding role. This review focuses on providing a comprehensive report on the adaptor roles of Sam68 in inflammatory signaling and inflammatory diseases. The insights presented here have the potential to open new avenues in inflammation research and justify targeting Sam68 to control aberrant inflammatory responses.
Identifiants
pubmed: 38351330
doi: 10.1007/s00018-023-05108-9
pii: 10.1007/s00018-023-05108-9
doi:
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
89Subventions
Organisme : NIH/NIDDK
ID : R01DK128463
Organisme : NIH/NIAID
ID : R01AI116730
Organisme : NIH/NCI
ID : R21CA246194
Organisme : Juvenile Diabetes Research Foundation United States of America
ID : 3-SRA-2022-1193-S-B
Informations de copyright
© 2024. The Author(s).
Références
Bielli P, Busà R, Paronetto MP, Sette C (2011) The RNA-binding protein Sam68 is a multifunctional player in human cancer. Endocr Relat Cancer 18(4):R91–R102. https://doi.org/10.1530/erc-11-0041
doi: 10.1530/erc-11-0041
pubmed: 21565971
Frisone P, Pradella D, Di Matteo A, Belloni E, Ghigna C, Paronetto MP (2015) SAM68: signal transduction and RNA metabolism in human cancer. Biomed Res Int 2015:528954. https://doi.org/10.1155/2015/528954
doi: 10.1155/2015/528954
pubmed: 26273626
pmcid: 4529925
Feracci M, Foot JN, Grellscheid SN et al (2016) Structural basis of RNA recognition and dimerization by the STAR proteins T-STAR and Sam68. Nat Commun 7(1):10355. https://doi.org/10.1038/ncomms10355
doi: 10.1038/ncomms10355
pubmed: 26758068
pmcid: 4735526
Li QH, Fan TX, Pang TX, Yuan WS, Han ZC (2006) Effect of proline rich domain of an RNA-binding protein Sam68 in cell growth process, death and B cell signal transduction. Chin Med J 119(18):1536–1542
doi: 10.1097/00029330-200609020-00006
pubmed: 16996007
Sun W, Qin R, Wang R et al (2018) Sam68 promotes invasion, migration, and proliferation of fibroblast-like synoviocytes by enhancing the NF-κB/P65 pathway in rheumatoid arthritis. Inflammation 41(5):1661–1670. https://doi.org/10.1007/s10753-018-0809-4
doi: 10.1007/s10753-018-0809-4
pubmed: 29785588
Ramakrishnan P, Baltimore D (2011) Sam68 is required for both NF-κB activation and apoptosis signaling by the TNF receptor. Mol Cell 43(2):167–179. https://doi.org/10.1016/j.molcel.2011.05.007
doi: 10.1016/j.molcel.2011.05.007
pubmed: 21620750
pmcid: 3142289
Lin C-H, Liao C-C, Wang S-Y et al (2022) Comparative O-GlcNAc proteomic analysis reveals a role of O-GlcNAcylated SAM68 in lung cancer aggressiveness. Cancers 14(1):243
doi: 10.3390/cancers14010243
pubmed: 35008409
pmcid: 8749979
Côté J, Boisvert FM, Boulanger MC, Bedford MT, Richard S (2003) Sam68 RNA binding protein is an in vivo substrate for protein arginine N-methyltransferase 1. Mol Biol Cell 14(1):274–287. https://doi.org/10.1091/mbc.e02-08-0484
doi: 10.1091/mbc.e02-08-0484
pubmed: 12529443
pmcid: 140244
Babic I, Cherry E, Fujita DJ (2006) SUMO modification of Sam68 enhances its ability to repress cyclin D1 expression and inhibits its ability to induce apoptosis. Oncogene 25(36):4955–4964. https://doi.org/10.1038/sj.onc.1209504
doi: 10.1038/sj.onc.1209504
pubmed: 16568089
Babic I, Jakymiw A, Fujita DJ (2004) The RNA binding protein Sam68 is acetylated in tumor cell lines, and its acetylation correlates with enhanced RNA binding activity. Oncogene 23(21):3781–3789. https://doi.org/10.1038/sj.onc.1207484
doi: 10.1038/sj.onc.1207484
pubmed: 15021911
Rho J, Choi S, Jung CR, Im DS (2007) Arginine methylation of Sam68 and SLM proteins negatively regulates their poly(U) RNA binding activity. Arch Biochem Biophys 466(1):49–57. https://doi.org/10.1016/j.abb.2007.07.017
doi: 10.1016/j.abb.2007.07.017
pubmed: 17764653
Zhao J, Li J, Hassan W, Xu D, Wang X, Huang Z (2020) Sam68 promotes aerobic glycolysis in colorectal cancer by regulating PKM2 alternative splicing. Ann Transl Med 8(7):459
doi: 10.21037/atm.2020.03.108
pubmed: 32395503
pmcid: 7210197
Stockley J, Markert E, Zhou Y et al (2015) The RNA-binding protein Sam68 regulates expression and transcription function of the androgen receptor splice variant AR-V7. Sci Rep 5(1):1–13
doi: 10.1038/srep13426
Najib S, Martín-Romero C, González-Yanes C, Sánchez-Margalet V (2005) Role of Sam68 as an adaptor protein in signal transduction. Cell Mol Life Sci CMLS 62(1):36–43. https://doi.org/10.1007/s00018-004-4309-3
doi: 10.1007/s00018-004-4309-3
pubmed: 15619005
Pérez-Pérez A, Sánchez-Jiménez F, Vilariño-García T, de la Cruz L, Virizuela JA, Sánchez-Margalet V (2016) Sam68 mediates the activation of insulin and leptin signalling in breast cancer cells. PLoS ONE 11(7):e0158218. https://doi.org/10.1371/journal.pone.0158218
doi: 10.1371/journal.pone.0158218
pubmed: 27415018
pmcid: 4944952
Fu K, Sun X, Zheng W et al (2013) Sam68 modulates the promoter specificity of NF-κB and mediates expression of CD25 in activated T cells. Nat Commun 4:1909. https://doi.org/10.1038/ncomms2916
doi: 10.1038/ncomms2916
pubmed: 23715268
Tomalka JA, de Jesus TJ, Ramakrishnan P (2017) Sam68 is a regulator of Toll-like receptor signaling. Cell Mol Immunol 14(1):107–117. https://doi.org/10.1038/cmi.2016.32
doi: 10.1038/cmi.2016.32
pubmed: 27374795
Xiao J, Wang Q, Yang Q et al (2018) Clinical significance and effect of Sam68 expression in gastric cancer. Oncol Lett 15(4):4745–4752. https://doi.org/10.3892/ol.2018.7930
doi: 10.3892/ol.2018.7930
pubmed: 29552114
pmcid: 5840748
Goodman WA, Basavarajappa SC, Liu AR, Rodriguez FDS, Mathes T, Ramakrishnan P (2021) Sam68 contributes to intestinal inflammation in experimental and human colitis. Cell Mol Life Sci CMLS 78(23):7635–7648. https://doi.org/10.1007/s00018-021-03976-7
doi: 10.1007/s00018-021-03976-7
pubmed: 34693458
Xu L, Sun C, Zhang S et al (2015) Sam68 promotes NF-κB activation and apoptosis signaling in articular chondrocytes during osteoarthritis. Inflamm Res 64(11):895–902. https://doi.org/10.1007/s00011-015-0872-3
doi: 10.1007/s00011-015-0872-3
pubmed: 26350037
Han S, Xu S, Zhou J et al (2019) Sam68 impedes the recovery of arterial injury by augmenting inflammatory response. J Mol Cell Cardiol 137:82–92. https://doi.org/10.1016/j.yjmcc.2019.10.003
doi: 10.1016/j.yjmcc.2019.10.003
pubmed: 31639388
pmcid: 6889069
Jordan MS, Singer AL, Koretzky GA (2003) Adaptors as central mediators of signal transduction in immune cells. Nat Immunol 4(2):110–116. https://doi.org/10.1038/ni0203-110
doi: 10.1038/ni0203-110
pubmed: 12555096
Borowicz P, Chan H, Hauge A, Spurkland A (2020) Adaptor proteins: Flexible and dynamic modulators of immune cell signalling. Scand J Immunol 92(5):e12951. https://doi.org/10.1111/sji.12951
doi: 10.1111/sji.12951
pubmed: 32734639
Hwang JR, Byeon Y, Kim D, Park SG (2020) Recent insights of T cell receptor-mediated signaling pathways for T cell activation and development. Exp Mol Med 52(5):750–761. https://doi.org/10.1038/s12276-020-0435-8
doi: 10.1038/s12276-020-0435-8
pubmed: 32439954
pmcid: 7272404
Lang V, Mège D, Semichon M, Gary-Gouy H, Bismuth G (1997) A dual participation of ZAP-70 and scr protein tyrosine kinases is required for TCR-induced tyrosine phosphorylation of Sam68 in Jurkat T cells. Eur J Immunol 27(12):3360–3367. https://doi.org/10.1002/eji.1830271235
doi: 10.1002/eji.1830271235
pubmed: 9464824
Najib S, Sánchez-Margalet V (2002) Sam68 associates with the SH3 domains of Grb2 recruiting GAP to the Grb2-SOS complex in insulin receptor signaling. J Cell Biochem 86(1):99–106. https://doi.org/10.1002/jcb.10198
doi: 10.1002/jcb.10198
pubmed: 12112020
Fusaki N, Iwamatsu A, Iwashima M, Fujisawa J (1997) Interaction between Sam68 and Src family tyrosine kinases, Fyn and Lck, in T cell receptor signaling. J Biol Chem 272(10):6214–6219. https://doi.org/10.1074/jbc.272.10.6214
doi: 10.1074/jbc.272.10.6214
pubmed: 9045636
Salmond RJ, Filby A, Qureshi I, Caserta S, Zamoyska R (2009) T-cell receptor proximal signaling via the Src-family kinases, Lck and Fyn, influences T-cell activation, differentiation, and tolerance. Immunol Rev 228(1):9–22. https://doi.org/10.1111/j.1600-065X.2008.00745.x
doi: 10.1111/j.1600-065X.2008.00745.x
pubmed: 19290918
Asbach B, Ludwig C, Saksela K, Wagner R (2012) Comprehensive analysis of interactions between the Src-associated protein in mitosis of 68 kDa and the human Src-homology 3 proteome. PLoS ONE 7(6):e38540. https://doi.org/10.1371/journal.pone.0038540
doi: 10.1371/journal.pone.0038540
pubmed: 22745667
pmcid: 3379994
Shah K, Al-Haidari A, Sun J, Kazi JU (2021) T cell receptor (TCR) signaling in health and disease. Signal Transduct Target Ther 6(1):412. https://doi.org/10.1038/s41392-021-00823-w
doi: 10.1038/s41392-021-00823-w
pubmed: 34897277
pmcid: 8666445
Volpe E, Cesari E, Mercatelli N et al (2019) The RNA binding protein Sam68 controls T helper 1 differentiation and anti-mycobacterial response through modulation of miR-29. Cell Death Differ 26(6):1169–1180. https://doi.org/10.1038/s41418-018-0201-9
doi: 10.1038/s41418-018-0201-9
pubmed: 30258098
Treanor B (2012) B-cell receptor: from resting state to activate. Immunology 136(1):21–27. https://doi.org/10.1111/j.1365-2567.2012.03564.x
doi: 10.1111/j.1365-2567.2012.03564.x
pubmed: 22269039
pmcid: 3372753
Tokunaga R, Naseem M, Lo JH et al (2019) B cell and B cell-related pathways for novel cancer treatments. Cancer Treat Rev 73:10–19. https://doi.org/10.1016/j.ctrv.2018.12.001
doi: 10.1016/j.ctrv.2018.12.001
pubmed: 30551036
Finan PM, Hall A, Kellie S (1996) Sam68 from an immortalised B-cell line associates with a subset of SH3 domains. FEBS Lett 389(2):141–144. https://doi.org/10.1016/0014-5793(96)00552-2
doi: 10.1016/0014-5793(96)00552-2
pubmed: 8766817
Sánchez-Margalet V, Najib S (2001) Sam68 is a docking protein linking GAP and PI3K in insulin receptor signaling. Mol Cell Endocrinol 183(1–2):113–121. https://doi.org/10.1016/s0303-7207(01)00587-1
doi: 10.1016/s0303-7207(01)00587-1
pubmed: 11604231
Guinamard R, Fougereau M, Seckinger P (1997) The SH3 domain of Bruton’s tyrosine kinase interacts with Vav, Sam68 and EWS. Scand J Immunol 45(6):587–595. https://doi.org/10.1046/j.1365-3083.1997.d01-447.x
doi: 10.1046/j.1365-3083.1997.d01-447.x
pubmed: 9201297
de Jesus AA, Chen G, Yang D et al (2023) Constitutively active Lyn kinase causes a cutaneous small vessel vasculitis and liver fibrosis syndrome. Nat Commun 14(1):1502. https://doi.org/10.1038/s41467-023-36941-y
doi: 10.1038/s41467-023-36941-y
pubmed: 36932076
pmcid: 10022554
Sanderson MP, Wex E, Kono T, Uto K, Schnapp A (2010) Syk and Lyn mediate distinct Syk phosphorylation events in FcɛRI-signal transduction: implications for regulation of IgE-mediated degranulation. Mol Immunol 48(1):171–178. https://doi.org/10.1016/j.molimm.2010.08.012
doi: 10.1016/j.molimm.2010.08.012
pubmed: 20828828
Kurosaki T, Kurosaki M (1997) Transphosphorylation of Bruton’s tyrosine kinase on tyrosine 551 is critical for B cell antigen receptor function. J Biol Chem 272(25):15595–15598. https://doi.org/10.1074/jbc.272.25.15595
doi: 10.1074/jbc.272.25.15595
pubmed: 9188445
Baba Y, Hashimoto S, Matsushita M et al (2001) BLNK mediates Syk-dependent Btk activation. Proc Natl Acad Sci USA 98(5):2582–2586. https://doi.org/10.1073/pnas.051626198
doi: 10.1073/pnas.051626198
pubmed: 11226282
pmcid: 30181
Desaulniers P, Fernandes M, Gilbert C, Bourgoin SG, Naccache PH (2001) Crystal-induced neutrophil activation. VII. Involvement of Syk in the responses to monosodium urate crystals. J Leukocyte Biol 70(4):659–668
doi: 10.1189/jlb.70.4.659
pubmed: 11590204
Guitard E, Barlat I, Maurier F, Schweighoffer F, Tocque B (1998) Sam68 is a Ras-GAP-associated protein in mitosis. Biochem Biophys Res Commun 245(2):562–566. https://doi.org/10.1006/bbrc.1998.8374
doi: 10.1006/bbrc.1998.8374
pubmed: 9571195
Neumann K, Oellerich T, Urlaub H, Wienands J (2009) The B-lymphoid Grb2 interaction code. Immunol Rev 232(1):135–149. https://doi.org/10.1111/j.1600-065X.2009.00845.x
doi: 10.1111/j.1600-065X.2009.00845.x
pubmed: 19909361
Boucher J, Kleinridders A, Kahn CR (2014) Insulin receptor signaling in normal and insulin-resistant states. Cold Spring Harbor Perspect Biol. https://doi.org/10.1101/cshperspect.a009191
doi: 10.1101/cshperspect.a009191
Sánchez-Margalet V, Najib S (1999) p68 Sam is a substrate of the insulin receptor and associates with the SH2 domains of p85 PI3K. FEBS Lett 455(3):307–310. https://doi.org/10.1016/S0014-5793(99)00887-X
doi: 10.1016/S0014-5793(99)00887-X
pubmed: 10437794
Quintana-Portillo R, Canfrán-Duque A, Issad T, Sánchez-Margalet V, González-Yanes C (2012) Sam68 interacts with IRS1. Biochem Pharmacol 83(1):78–87. https://doi.org/10.1016/j.bcp.2011.09.030
doi: 10.1016/j.bcp.2011.09.030
pubmed: 22005517
Wu W, Liu Y, Wang Y (2016) Sam68 promotes Schwann cell proliferation by enhancing the PI3K/Akt pathway and acts on regeneration after sciatic nerve crush. Biochem Biophys Res Commun 473(4):1045–1051. https://doi.org/10.1016/j.bbrc.2016.04.013
doi: 10.1016/j.bbrc.2016.04.013
pubmed: 27059137
Chen L, Chen R, Wang H, Liang F (2015) Mechanisms linking inflammation to insulin resistance. Int J Endocrinol 2015:508409. https://doi.org/10.1155/2015/508409
doi: 10.1155/2015/508409
pubmed: 26136779
pmcid: 4468292
Rehman K, Akash MS (2016) Mechanisms of inflammatory responses and development of insulin resistance: how are they interlinked? J Biomed Sci 23(1):87. https://doi.org/10.1186/s12929-016-0303-y
doi: 10.1186/s12929-016-0303-y
pubmed: 27912756
pmcid: 5135788
Hotamisligil GS, Murray DL, Choy LN, Spiegelman BM (1994) Tumor necrosis factor alpha inhibits signaling from the insulin receptor. Proc Natl Acad Sci USA 91(11):4854–4858. https://doi.org/10.1073/pnas.91.11.4854
doi: 10.1073/pnas.91.11.4854
pubmed: 8197147
pmcid: 43887
Maroni P, Citterio L, Piccoletti R, Bendinelli P (2009) Sam68 and ERKs regulate leptin-induced expression of OB-Rb mRNA in C2C12 myotubes. Mol Cell Endocrinol 309(1–2):26–31. https://doi.org/10.1016/j.mce.2009.05.021
doi: 10.1016/j.mce.2009.05.021
pubmed: 19524014
Villanueva EC, Myers MG Jr (2008) Leptin receptor signaling and the regulation of mammalian physiology. Int J Obesity 32(Suppl 7):S8-12. https://doi.org/10.1038/ijo.2008.232
doi: 10.1038/ijo.2008.232
La Cava A (2017) Leptin in inflammation and autoimmunity. Cytokine 98:51–58. https://doi.org/10.1016/j.cyto.2016.10.011
doi: 10.1016/j.cyto.2016.10.011
pubmed: 27916613
pmcid: 5453851
Procaccini C, Lourenco EV, Matarese G, La Cava A (2009) Leptin signaling: a key pathway in immune responses. Curr Signal Transduct Ther 4(1):22–30. https://doi.org/10.2174/157436209787048711
doi: 10.2174/157436209787048711
pubmed: 19774101
pmcid: 2747760
Li C, Friedman JM (1999) Leptin receptor activation of SH2 domain containing protein tyrosine phosphatase 2 modulates Ob receptor signal transduction. Proc Natl Acad Sci USA 96(17):9677–9682. https://doi.org/10.1073/pnas.96.17.9677
doi: 10.1073/pnas.96.17.9677
pubmed: 10449753
pmcid: 22269
Aggarwal BB, Gupta SC, Kim JH (2012) Historical perspectives on tumor necrosis factor and its superfamily: 25 years later, a golden journey. Blood 119(3):651–665. https://doi.org/10.1182/blood-2011-04-325225
doi: 10.1182/blood-2011-04-325225
pubmed: 22053109
pmcid: 3265196
Hildt E, Oess S (1999) Identification of Grb2 as a novel binding partner of tumor necrosis factor (TNF) receptor I. J Exp Med 189(11):1707–1714. https://doi.org/10.1084/jem.189.11.1707
doi: 10.1084/jem.189.11.1707
pubmed: 10359574
pmcid: 2193078
Lu Y, Li X, Liu S, Zhang Y, Zhang D (2018) Toll-like receptors and inflammatory bowel disease. Front Immunol 9:72. https://doi.org/10.3389/fimmu.2018.00072
doi: 10.3389/fimmu.2018.00072
pubmed: 29441063
pmcid: 5797585
Lai CY, Su YW, Lin KI, Hsu LC, Chuang TH (2017) Natural modulators of endosomal toll-like receptor-mediated psoriatic skin inflammation. J Immunol Res 2017:7807313. https://doi.org/10.1155/2017/7807313
doi: 10.1155/2017/7807313
pubmed: 28894754
pmcid: 5574364
Huang QQ, Pope RM (2009) The role of toll-like receptors in rheumatoid arthritis. Curr Rheumatol Rep 11(5):357–364. https://doi.org/10.1007/s11926-009-0051-z
doi: 10.1007/s11926-009-0051-z
pubmed: 19772831
pmcid: 2913446
Green NM, Marshak-Rothstein A (2011) Toll-like receptor driven B cell activation in the induction of systemic autoimmunity. Semin Immunol 23(2):106–112. https://doi.org/10.1016/j.smim.2011.01.016
doi: 10.1016/j.smim.2011.01.016
pubmed: 21306913
pmcid: 3070769
Covacu R, Arvidsson L, Andersson A et al (2009) TLR activation induces TNF-alpha production from adult neural stem/progenitor cells. J Immunol (Baltimore, Md). 182(11):6889–6895. https://doi.org/10.4049/jimmunol.0802907
doi: 10.4049/jimmunol.0802907
Berenbaum F, Walker C (2020) Osteoarthritis and inflammation: a serious disease with overlapping phenotypic patterns. Postgrad Med 132(4):377–384. https://doi.org/10.1080/00325481.2020.1730669
doi: 10.1080/00325481.2020.1730669
pubmed: 32100608
Cho Y, Jeong S, Kim H et al (2021) Disease-modifying therapeutic strategies in osteoarthritis: current status and future directions. Exp Mol Med 53(11):1689–1696. https://doi.org/10.1038/s12276-021-00710-y
doi: 10.1038/s12276-021-00710-y
pubmed: 34848838
pmcid: 8640059
Molnar V, Matišić V, Kodvanj I et al (2021) Cytokines and chemokines involved in osteoarthritis pathogenesis. Int J Mol Sci 22(17):9208
doi: 10.3390/ijms22179208
pubmed: 34502117
pmcid: 8431625
Herrero-Beaumont G, Pérez-Baos S, Sánchez-Pernaute O, Roman-Blas JA, Lamuedra A, Largo R (2019) Targeting chronic innate inflammatory pathways, the main road to prevention of osteoarthritis progression. Biochem Pharmacol 165:24–32. https://doi.org/10.1016/j.bcp.2019.02.030
doi: 10.1016/j.bcp.2019.02.030
pubmed: 30825432
Yang J, Hu S, Bian Y et al (2022) Targeting cell death: pyroptosis, ferroptosis, apoptosis and necroptosis in osteoarthritis. Front Cell Develop Biol. https://doi.org/10.3389/fcell.2021.789948
doi: 10.3389/fcell.2021.789948
Guo Q, Wang Y, Xu D, Nossent J, Pavlos NJ, Xu J (2018) Rheumatoid arthritis: pathological mechanisms and modern pharmacologic therapies. Bone research 6:15. https://doi.org/10.1038/s41413-018-0016-9
doi: 10.1038/s41413-018-0016-9
pubmed: 29736302
pmcid: 5920070
Ibáñez-Costa A, Perez-Sanchez C, Patiño-Trives AM et al (2022) Splicing machinery is impaired in rheumatoid arthritis, associated with disease activity and modulated by anti-TNF therapy. Ann Rheum Dis 81(1):56–67. https://doi.org/10.1136/annrheumdis-2021-220308
doi: 10.1136/annrheumdis-2021-220308
pubmed: 34625402
Ilchovska D, Barrow DM (2021) An Overview of the NF-kB mechanism of pathophysiology in rheumatoid arthritis, investigation of the NF-kB ligand RANKL and related nutritional interventions. Autoimmun Rev 20(2):102741. https://doi.org/10.1016/j.autrev.2020.102741
doi: 10.1016/j.autrev.2020.102741
pubmed: 33340772
Fu K, Sun X, Wier EM, Hodgson A, Hobbs RP, Wan F (2016) Sam68/KHDRBS1-dependent NF-κB activation confers radioprotection to the colon epithelium in γ-irradiated mice. Elife. https://doi.org/10.7554/eLife.21957
doi: 10.7554/eLife.21957
pubmed: 27996939
pmcid: 5214542
Xavier RJ, Podolsky DK (2007) Unravelling the pathogenesis of inflammatory bowel disease. Nature 448(7152):427–434. https://doi.org/10.1038/nature06005
doi: 10.1038/nature06005
pubmed: 17653185
Silverberg MS, Satsangi J, Ahmad T et al (2005) Toward an integrated clinical, molecular and serological classification of inflammatory bowel disease: report of a Working Party of the 2005 Montreal World Congress of Gastroenterology. Can J Gastroenterol 19(Suppl A):5A-36A
doi: 10.1155/2005/269076
pubmed: 16151544
Artis D (2008) Epithelial-cell recognition of commensal bacteria and maintenance of immune homeostasis in the gut. Nat Rev Immunol 8(6):411–420
doi: 10.1038/nri2316
pubmed: 18469830
Hooper LV, Macpherson AJ (2010) Immune adaptations that maintain homeostasis with the intestinal microbiota. Nat Rev Immunol 10(3):159–169
doi: 10.1038/nri2710
pubmed: 20182457
Iwamoto M, Koji T, Makiyama K, Kobayashi N, Nakane PK (1996) Apoptosis of crypt epithelial cells in ulcerative colitis. J Pathol 180(2):152–159. https://doi.org/10.1002/(sici)1096-9896(199610)180:2%3c152::Aid-path649%3e3.0.Co;2-y
doi: 10.1002/(sici)1096-9896(199610)180:2<152::Aid-path649>3.0.Co;2-y
pubmed: 8976873
Hagiwara C, Tanaka M, Kudo H (2002) Increase in colorectal epithelial apoptotic cells in patients with ulcerative colitis ultimately requiring surgery. J Gastroenterol Hepatol 17(7):758–764. https://doi.org/10.1046/j.1440-1746.2002.02791.x
doi: 10.1046/j.1440-1746.2002.02791.x
pubmed: 12121505
Edelblum KL, Yan F, Yamaoka T, Polk DB (2006) Regulation of apoptosis during homeostasis and disease in the intestinal epithelium. Inflamm Bowel Dis 12(5):413–424. https://doi.org/10.1097/01.MIB.0000217334.30689.3e
doi: 10.1097/01.MIB.0000217334.30689.3e
pubmed: 16670531
Bradford EM, Ryu SH, Singh AP et al (2017) Epithelial TNF receptor signaling promotes mucosal repair in inflammatory bowel disease. J Immunol (Baltimore, Md). 199(5):1886–1897. https://doi.org/10.4049/jimmunol.1601066
doi: 10.4049/jimmunol.1601066
Gareb B, Otten AT, Frijlink HW, Dijkstra G, Kosterink JGW (2020) Review: local tumor necrosis factor-α inhibition in inflammatory bowel disease. Pharmaceutics. https://doi.org/10.3390/pharmaceutics12060539
doi: 10.3390/pharmaceutics12060539
pubmed: 32545207
pmcid: 7356880
Dubé PE, Punit S, Polk DB (2015) Redeeming an old foe: protective as well as pathophysiological roles for tumor necrosis factor in inflammatory bowel disease. Am J Physiol Gastrointest Liver Physiol 308(3):161–170
doi: 10.1152/ajpgi.00142.2014
Qian J, Zhao W, Miao X, Li L, Zhang D (2016) Sam68 modulates apoptosis of intestinal epithelial cells via mediating NF-κB activation in ulcerative colitis. Mol Immunol 75:48–59. https://doi.org/10.1016/j.molimm.2016.05.011
doi: 10.1016/j.molimm.2016.05.011
pubmed: 27235792
Mabrouk ME, Diep QN, Benkirane K, Touyz RM, Schiffrin EL (2004) SAM68: a downstream target of angiotensin II signaling in vascular smooth muscle cells in genetic hypertension. Am J Physiol Heart Circ Physiol 286(5):H1954–H1962. https://doi.org/10.1152/ajpheart.00134.2003
doi: 10.1152/ajpheart.00134.2003
pubmed: 14693677
Lukong KE, Richard S (2003) Sam68, the KH domain-containing superSTAR. Biochem Biophys Acta 1653(2):73–86. https://doi.org/10.1016/j.bbcan.2003.09.001
doi: 10.1016/j.bbcan.2003.09.001
pubmed: 14643926
Locatelli A, Lange CA (2011) Met receptors induce Sam68-dependent cell migration by activation of alternate extracellular signal-regulated kinase family members. J Biol Chem 286(24):21062–21072. https://doi.org/10.1074/jbc.M110.211409
doi: 10.1074/jbc.M110.211409
pubmed: 21489997
pmcid: 3122167
Lukong KE, Larocque D, Tyner AL, Richard S (2005) Tyrosine phosphorylation of Sam68 by breast tumor kinase regulates intranuclear localization and cell cycle progression*. J Biol Chem 280(46):38639–38647. https://doi.org/10.1074/jbc.M505802200
doi: 10.1074/jbc.M505802200
pubmed: 16179349
Vogel G, Richard S (2012) Emerging roles for Sam68 in adipogenesis and neuronal development. RNA Biol 9(9):1129–1133. https://doi.org/10.4161/rna.21409
doi: 10.4161/rna.21409
pubmed: 23018781
pmcid: 3579877
Benoit YD, Mitchell RR, Risueño RM et al (2017) Sam68 allows selective targeting of human cancer stem cells. Cell Chem Biol 24(7):833–44.e9. https://doi.org/10.1016/j.chembiol.2017.05.026
doi: 10.1016/j.chembiol.2017.05.026
pubmed: 28648376
Benoit YD, Guezguez B, Boyd AL, Bhatia M (2014) Molecular pathways: epigenetic modulation of Wnt-glycogen synthase kinase-3 signaling to target human cancer stem cells. Clin Cancer Res 20(21):5372–5378. https://doi.org/10.1158/1078-0432.Ccr-13-2491
doi: 10.1158/1078-0432.Ccr-13-2491
pubmed: 25006223
Masibag AN, Bergin CJ, Haebe JR et al (2021) Pharmacological targeting of Sam68 functions in colorectal cancer stem cells. iScience 24(12):103442. https://doi.org/10.1016/j.isci.2021.103442
doi: 10.1016/j.isci.2021.103442
pubmed: 34877499
pmcid: 8633986
Wu Z, Peng Y, Xiong L et al (2022) Role of Sam68 in sunitinib induced renal cell carcinoma apoptosis. Cancer Med 11(19):3674–3686. https://doi.org/10.1002/cam4.4743
doi: 10.1002/cam4.4743
pubmed: 35476809
pmcid: 9554455
Boisvert FM, Chénard CA, Richard S (2005) Protein interfaces in signaling regulated by arginine methylation. Sci STKE 2005(271):re2. https://doi.org/10.1126/stke.2712005re2
doi: 10.1126/stke.2712005re2
pubmed: 15713950