HYDROchlorothiazide versus placebo to PROTECT polycystic kidney disease patients and improve their quality of life: study protocol and rationale for the HYDRO-PROTECT randomized controlled trial.


Journal

Trials
ISSN: 1745-6215
Titre abrégé: Trials
Pays: England
ID NLM: 101263253

Informations de publication

Date de publication:
14 Feb 2024
Historique:
received: 18 07 2023
accepted: 24 01 2024
medline: 15 2 2024
pubmed: 15 2 2024
entrez: 14 2 2024
Statut: epublish

Résumé

Autosomal dominant polycystic kidney disease (ADPKD) leads to progressive renal cyst formation and loss of kidney function in most patients. Vasopressin 2 receptor antagonists (V2RA) like tolvaptan are currently the only available renoprotective agents for rapidly progressive ADPKD. However, aquaretic side effects substantially limit their tolerability and therapeutic potential. In a preliminary clinical study, the addition of hydrochlorothiazide (HCT) to tolvaptan decreased 24-h urinary volume and appeared to increase renoprotective efficacy. The HYDRO-PROTECT study will investigate the long-term effect of co-treatment with HCT on tolvaptan efficacy (rate of kidney function decline) and tolerability (aquaresis and quality of life) in patients with ADPKD. The HYDRO-PROTECT study is an investigator-initiated, multicenter, double-blind, placebo-controlled, randomized clinical trial. The study is powered to enroll 300 rapidly progressive patients with ADPKD aged ≥ 18 years, with an eGFR of > 25 mL/min/1.73 m The primary study outcome is the rate of kidney function decline (expressed as eGFR slope, in mL/min/1.73 m The HYDRO-PROTECT study will demonstrate whether co-treatment with HCT can improve the renoprotective efficacy and tolerability of tolvaptan in patients with ADPKD.

Sections du résumé

BACKGROUND BACKGROUND
Autosomal dominant polycystic kidney disease (ADPKD) leads to progressive renal cyst formation and loss of kidney function in most patients. Vasopressin 2 receptor antagonists (V2RA) like tolvaptan are currently the only available renoprotective agents for rapidly progressive ADPKD. However, aquaretic side effects substantially limit their tolerability and therapeutic potential. In a preliminary clinical study, the addition of hydrochlorothiazide (HCT) to tolvaptan decreased 24-h urinary volume and appeared to increase renoprotective efficacy. The HYDRO-PROTECT study will investigate the long-term effect of co-treatment with HCT on tolvaptan efficacy (rate of kidney function decline) and tolerability (aquaresis and quality of life) in patients with ADPKD.
METHODS METHODS
The HYDRO-PROTECT study is an investigator-initiated, multicenter, double-blind, placebo-controlled, randomized clinical trial. The study is powered to enroll 300 rapidly progressive patients with ADPKD aged ≥ 18 years, with an eGFR of > 25 mL/min/1.73 m
OUTCOMES RESULTS
The primary study outcome is the rate of kidney function decline (expressed as eGFR slope, in mL/min/1.73 m
CONCLUSION CONCLUSIONS
The HYDRO-PROTECT study will demonstrate whether co-treatment with HCT can improve the renoprotective efficacy and tolerability of tolvaptan in patients with ADPKD.

Identifiants

pubmed: 38355627
doi: 10.1186/s13063-024-07952-x
pii: 10.1186/s13063-024-07952-x
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

120

Subventions

Organisme : ZonMw
ID : 10140022010010
Pays : Netherlands

Informations de copyright

© 2024. The Author(s).

Références

Willey CJ, et al. Prevalence of autosomal dominant polycystic kidney disease in the European Union. Nephrol Dial Transplant. 2017;32:1356–63.
pubmed: 27325254
Lanktree MB, et al. Prevalence estimates of polycystic kidney and liver disease by population sequencing. J Am Soc Nephrol. 2018;29:2593–600.
doi: 10.1681/ASN.2018050493 pubmed: 30135240 pmcid: 6171271
Grantham JJ. Clinical practice. Autosomal dominant polycystic kidney disease. N Engl J Med. 2008;359:1477–85.
doi: 10.1056/NEJMcp0804458 pubmed: 18832246
Chebib FT, Torres VE. Autosomal dominant polycystic kidney disease: core curriculum 2016. Am J Kidney Dis. 2016;67:792–810.
doi: 10.1053/j.ajkd.2015.07.037 pubmed: 26530876
Gattone VH, Wang X, Harris PC, Torres VE. Inhibition of renal cystic disease development and progression by a vasopressin V2 receptor antagonist. Nat Med. 2003;9:1323–6.
doi: 10.1038/nm935 pubmed: 14502283
Torres VE, et al. Effective treatment of an orthologous model of autosomal dominant polycystic kidney disease. Nat Med. 2004;10:363–4.
doi: 10.1038/nm1004 pubmed: 14991049
Torres VE, et al. Tolvaptan in patients with autosomal dominant polycystic kidney disease. N Engl J Med. 2012;367:2407–18.
doi: 10.1056/NEJMoa1205511 pubmed: 23121377 pmcid: 3760207
Torres VE, et al. Tolvaptan in later-stage autosomal dominant polycystic kidney disease. N Engl J Med. 2017;377:1930–42.
doi: 10.1056/NEJMoa1710030 pubmed: 29105594
Edwards ME, et al. Long-term administration of tolvaptan in autosomal dominant polycystic kidney disease. Clin J Am Soc Nephrol. 2018;13:1153–61.
doi: 10.2215/CJN.01520218 pubmed: 30026287 pmcid: 6086720
Devuyst O, Chapman AB, Shoaf SE, Czerwiec FS, Blais JD. Tolerability of aquaretic-related symptoms following tolvaptan for autosomal dominant polycystic kidney disease: results from TEMPO 3:4. Kidney Int Rep. 2017;2:1132–40.
doi: 10.1016/j.ekir.2017.07.004 pubmed: 29270521 pmcid: 5733681
Kramers BJ, van Gastel MDA, Boertien WE, Meijer E, Gansevoort RT. Determinants of urine volume in ADPKD patients using the vasopressin V2 receptor antagonist tolvaptan. Am J Kidney Dis. 2019;73.
Chebib FT, et al. A practical guide for treatment of rapidly progressive ADPKD with tolvaptan. J Am Soc Nephrol. 2018;29:2458–70.
doi: 10.1681/ASN.2018060590 pubmed: 30228150 pmcid: 6171265
Bockenhauer D, Bichet DG. Pathophysiology, diagnosis and management of nephrogenic diabetes insipidus. Nat Rev Nephrol. 2015;11:576–88.
doi: 10.1038/nrneph.2015.89 pubmed: 26077742
Havard CW. Thiazide-induced antidiuresis in diabetes insipidus. Proc R Soc Med. 1965;58:1005–7.
pubmed: 5852668 pmcid: 1899059
Crawford JD, Kennedy GC, Hill LE. Clinical results of treatment of diabetes insipidus with drugs of the chlorothiazide series. N Engl J Med. 1960;262:737–43.
doi: 10.1056/NEJM196004142621501 pubmed: 13812709
Vaz de Castro PAS, et al. Nephrogenic diabetes insipidus: a comprehensive overview. J Pediatr Endocrinol Metab. 2022;35:421–34.
doi: 10.1515/jpem-2021-0566 pubmed: 35146976
Kramers BJ, et al. Effects of hydrochlorothiazide and metformin on aquaresis and nephroprotection by a vasopressin V2 receptor antagonist in ADPKD: a randomized crossover trial. Clin J Am Soc Nephrol. 2022; https://doi.org/10.2215/CJN.11260821 .
Messchendorp AL, et al. Rapid progression of autosomal dominant polycystic kidney disease: urinary biomarkers as predictors. Am J Nephrol. 2019;50:375–85.
doi: 10.1159/000502999 pubmed: 31600749
Pei Y, et al. Unified criteria for ultrasonographic diagnosis of ADPKD. J Am Soc Nephrol. 2009;20:205–12.
doi: 10.1681/ASN.2008050507 pubmed: 18945943 pmcid: 2615723
Saghaei M. An overview of randomization and minimization programs for randomized clinical trials. J Med Signals Sens. 2011;1:55–61.
doi: 10.4103/2228-7477.83520 pubmed: 22606659 pmcid: 3317766
Oberdhan D, et al. Two new instruments to measure autosomal dominant polycystic kidney disease (ADPKD) related burden: ADPKD-Impact Scale (ADPKD-IS) and ADPKD-Urinary Impact Scale (ADPKD-UIS). Google Scholar; 2013. https://doi.org/10.13140/RG.2.2.34784.89607/1 .
doi: 10.13140/RG.2.2.34784.89607/1
EuroQol Research Foundation. EQ-5D-5L user guide. 2019. https://euroqol.org/publications/user-guides . Accessed 13 Sep 2022.
Ware J, Kosinski M, Keller SD. A 12-item short-form health survey: construction of scales and preliminary tests of reliability and validity. Med Care. 1996;34:220–33.
doi: 10.1097/00005650-199603000-00003 pubmed: 8628042
Schrier RW. Optimal care of autosomal dominant polycystic kidney disease patients. Nephrology (Carlton). 2006;11:124–30.
doi: 10.1111/j.1440-1797.2006.00535.x pubmed: 16669974
Meijer E, Gansevoort RT. Emerging non-pharmacological interventions in ADPKD: an update on dietary advices for clinical practice. Curr Opin Nephrol Hypertens. 2021;30:482–92.
doi: 10.1097/MNH.0000000000000734 pubmed: 34261861
Levey AS, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150:604–12.
doi: 10.7326/0003-4819-150-9-200905050-00006 pubmed: 19414839 pmcid: 2763564
de Macedo Andrade AC, et al. Hydrochlorothiazide use is associated with the risk of cutaneous and lip squamous cell carcinoma: a systematic review and meta-analysis. Eur J Clin Pharmacol. 2022;78:919–30.
doi: 10.1007/s00228-022-03299-x pubmed: 35258665
Pedersen SA, et al. Hydrochlorothiazide use and risk of nonmelanoma skin cancer: a nationwide case-control study from Denmark. J Am Acad Dermatol. 2018;78:673-681.e9.
doi: 10.1016/j.jaad.2017.11.042 pubmed: 29217346
Uchiyama K, Kitayama C, Yanai A, Ishibashi Y. The effect of trichlormethiazide in autosomal dominant polycystic kidney disease patients receiving tolvaptan: a randomized crossover controlled trial. Sci Rep. 2021;11:17666.
doi: 10.1038/s41598-021-97113-w pubmed: 34480075 pmcid: 8417075
Sinke AP, et al. Hydrochlorothiazide attenuates lithium-induced nephrogenic diabetes insipidus independently of the sodium-chloride cotransporter. Am J Physiol Renal Physiol. 2014;306:F525–33.
doi: 10.1152/ajprenal.00617.2013 pubmed: 24352504
Kim G-H, et al. Antidiuretic effect of hydrochlorothiazide in lithium-induced nephrogenic diabetes insipidus is associated with upregulation of aquaporin-2, Na-Cl co-transporter, and epithelial sodium channel. J Am Soc Nephrol. 2004;15:2836–43.
doi: 10.1097/01.ASN.0000143476.93376.04 pubmed: 15504936
Zittema D, et al. Vasopressin, copeptin, and renal concentrating capacity in patients with autosomal dominant polycystic kidney disease without renal impairment. Clin J Am Soc Nephrol. 2012;7:906–13.
doi: 10.2215/CJN.11311111 pubmed: 22516290
Ho TA, et al. Autosomal dominant polycystic kidney disease is associated with central and nephrogenic defects in osmoregulation. Kidney Int. 2012;82:1121–9.
doi: 10.1038/ki.2012.225 pubmed: 22718190
Kramers BJ, et al. Salt, but not protein intake, is associated with accelerated disease progression in autosomal dominant polycystic kidney disease. Kidney Int. 2020;98:989–98.
doi: 10.1016/j.kint.2020.04.053 pubmed: 32534051
Levey AS, et al. Change in albuminuria and GFR as end points for clinical trials in early stages of CKD: a scientific workshop sponsored by the National Kidney Foundation in collaboration with the US Food and Drug Administration and European Medicines Agency. Am J Kidney Dis. 2020;75:84–104.
doi: 10.1053/j.ajkd.2019.06.009 pubmed: 31473020
Wada T, Kitamoto K, Nomoto Y, Yoshida R, Yamauchi M. Renal hemodynamic changes associated with antidiuretic actions of chlorpropamide, clofibrate and thiazide in diabetes insipidus. Jpn Circ J. 1973;37:935–9.
doi: 10.1253/jcj.37.935 pubmed: 4800823
Chebib FT, Torres VE. Assessing risk of rapid progression in autosomal dominant polycystic kidney disease and special considerations for disease-modifying therapy. Am J Kidney Dis. 2021;78:282–92.
doi: 10.1053/j.ajkd.2020.12.020 pubmed: 33705818
Müller R-U, et al. An update on the use of tolvaptan for autosomal dominant polycystic kidney disease: consensus statement on behalf of the ERA Working Group on Inherited Kidney Disorders, the European Rare Kidney Disease Reference Network and Polycystic Kidney Disease International. Nephrol Dial Transplant. 2022;37:825–39.
doi: 10.1093/ndt/gfab312 pubmed: 35134221
Schrier RW, et al. Blood pressure in early autosomal dominant polycystic kidney disease. N Engl J Med. 2014;371:2255–66.
doi: 10.1056/NEJMoa1402685 pubmed: 25399733 pmcid: 4343258
Torres VE, et al. Angiotensin blockade in late autosomal dominant polycystic kidney disease. N Engl J Med. 2014;371:2267–76.
doi: 10.1056/NEJMoa1402686 pubmed: 25399731 pmcid: 4284824
Bais T, Gansevoort RT, Meijer E. Drugs in clinical development to treat autosomal dominant polycystic kidney disease. Drugs. 2022;82:1095–115.
doi: 10.1007/s40265-022-01745-9 pubmed: 35852784 pmcid: 9329410

Auteurs

Thomas Bais (T)

Department of Nephrology, University Medical Center Groningen, Groningen, The Netherlands.

Esther Meijer (E)

Department of Nephrology, University Medical Center Groningen, Groningen, The Netherlands.

Bart J Kramers (BJ)

Department of Nephrology, University Medical Center Groningen, Groningen, The Netherlands.

Priya Vart (P)

Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, Groningen, The Netherlands.

Marc Vervloet (M)

Department of Nephrology, Amsterdam University Medical Centers, Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.

Mahdi Salih (M)

Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus University Medical Center, Rotterdam, The Netherlands.

Bert Bammens (B)

Department of Nephrology, Dialysis and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium.

Nathalie Demoulin (N)

Division of Nephrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium.

Polina Todorova (P)

University of Cologne, Faculty of Medicine and University Hospital Cologne, Department 2 for Internal Medicine, Cologne, Germany.

Roman-Ulrich Müller (RU)

University of Cologne, Faculty of Medicine and University Hospital Cologne, Department 2 for Internal Medicine, Cologne, Germany.

Jan Halbritter (J)

Department of Nephrology, Charité Universitätsmedizin Berlin, Berlin, Germany.

Alexander Paliege (A)

Department of Nephrology, Universitätsklinikum Carl Gustav Carus Dresden, Dresden, Germany.

Emilie Cornec-Le Gall (EC)

University Brest, Inserm, UMR 1078, GGB, Brest, 29609, France.
Service de Néphrologie, Hémodialyse et Transplantation Rénale, CHRU Brest, Brest, 29609, France.

Bertrand Knebelmann (B)

Department of Nephrology, Necker-Enfants Malades Hospital AP-HP, Paris, France.

Roser Torra (R)

Inherited Kidney Diseases, Nephrology Department, Fundació Puigvert, Institut d'Investigació Biomèdica Sant Pau (IIB-SANT PAU), Barcelona, Spain.

Albert C M Ong (ACM)

Academic Nephrology Unit, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK.

Fiona E Karet Frankl (FE)

Department of Medical Genetics and Division of Renal Medicine, University of Cambridge, Cambridge, UK.

Ron T Gansevoort (RT)

Department of Nephrology, University Medical Center Groningen, Groningen, The Netherlands. r.t.gansevoort@umcg.nl.
Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, PO Box 30.001, 9700, RB, Groningen, The Netherlands. r.t.gansevoort@umcg.nl.

Classifications MeSH