Safety, immunogenicity and protective effectiveness of heterologous boost with a recombinant COVID-19 vaccine (Sf9 cells) in adult recipients of inactivated vaccines.


Journal

Signal transduction and targeted therapy
ISSN: 2059-3635
Titre abrégé: Signal Transduct Target Ther
Pays: England
ID NLM: 101676423

Informations de publication

Date de publication:
14 Feb 2024
Historique:
received: 05 06 2023
accepted: 23 01 2024
revised: 16 11 2023
medline: 15 2 2024
pubmed: 15 2 2024
entrez: 14 2 2024
Statut: epublish

Résumé

Vaccines have proven effective in protecting populations against COVID-19, including the recombinant COVID-19 vaccine (Sf9 cells), the first approved recombinant protein vaccine in China. In this positive-controlled trial with 85 adult participants (Sf9 cells group: n = 44; CoronaVac group: n = 41), we evaluated the safety, immunogenicity, and protective effectiveness of a heterologous boost with the Sf9 cells vaccine in adults who had been vaccinated with the inactivated vaccine, and found a post-booster adverse events rate of 20.45% in the Sf9 cells group and 31.71% in the CoronaVac group (p = 0.279), within 28 days after booster injection. Neither group reported any severe adverse events. Following the Sf9 cells vaccine booster, the geometric mean titer (GMT) of binding antibodies to the receptor-binding domain of prototype SARS-CoV-2 on day 28 post-booster was significantly higher than that induced by the CoronaVac vaccine booster (100,683.37 vs. 9,451.69, p < 0.001). In the Sf9 cells group, GMTs of neutralizing antibodies against pseudo SARS-CoV-2 viruses (prototype and diverse variants of concern [VOCs]) increased by 22.23-75.93 folds from baseline to day 28 post-booster, while the CoronaVac group showed increases of only 3.29-10.70 folds. Similarly, neutralizing antibodies against live SARS-CoV-2 viruses (prototype and diverse VOCs) increased by 68.18-192.67 folds on day 14 post-booster compared with the baseline level, significantly greater than the CoronaVac group (19.67-37.67 folds). A more robust Th1 cellular response was observed with the Sf9 cells booster on day 14 post-booster (mean IFN-γ+ spot-forming cells per 2 × 10

Identifiants

pubmed: 38355676
doi: 10.1038/s41392-024-01751-1
pii: 10.1038/s41392-024-01751-1
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

41

Subventions

Organisme : National Natural Science Foundation of China (National Science Foundation of China)
ID : 92159302
Organisme : National Natural Science Foundation of China (National Science Foundation of China)
ID : 92159302
Organisme : National Natural Science Foundation of China (National Science Foundation of China)
ID : 92159302
Organisme : National Natural Science Foundation of China (National Science Foundation of China)
ID : 92159302
Organisme : National Natural Science Foundation of China (National Science Foundation of China)
ID : 92159302
Organisme : National Natural Science Foundation of China (National Science Foundation of China)
ID : 92159302
Organisme : National Natural Science Foundation of China (National Science Foundation of China)
ID : 92159302
Organisme : National Natural Science Foundation of China (National Science Foundation of China)
ID : 92159302
Organisme : National Natural Science Foundation of China (National Science Foundation of China)
ID : 92159302
Organisme : National Natural Science Foundation of China (National Science Foundation of China)
ID : 92159302
Organisme : National Natural Science Foundation of China (National Science Foundation of China)
ID : 92159302
Organisme : National Natural Science Foundation of China (National Science Foundation of China)
ID : 92159302
Organisme : National Natural Science Foundation of China (National Science Foundation of China)
ID : 92159302
Organisme : National Natural Science Foundation of China (National Science Foundation of China)
ID : 92159302
Organisme : National Natural Science Foundation of China (National Science Foundation of China)
ID : 92159302
Organisme : National Natural Science Foundation of China (National Science Foundation of China)
ID : 92159302
Organisme : National Natural Science Foundation of China (National Science Foundation of China)
ID : 92159302
Organisme : National Natural Science Foundation of China (National Science Foundation of China)
ID : 92159302
Organisme : National Natural Science Foundation of China (National Science Foundation of China)
ID : 92159302
Organisme : National Natural Science Foundation of China (National Science Foundation of China)
ID : 92159302

Informations de copyright

© 2024. The Author(s).

Références

WHO World Health Organization. WHO coronavirus disease (COVID-19) dashboard. https://covid19.who.int/ .
WHO World Health Organization. https://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines .
Watson, O. J. et al. Global impact of the first year of COVID-19 vaccination: a mathematical modelling study. Lancet. Infect. Dis. 22, 1293–1302 (2022).
doi: 10.1016/S1473-3099(22)00320-6 pubmed: 35753318 pmcid: 9225255
National Medical Products Administration. https://www.nmpa.gov.cn/datasearch/search-result.html .
Corbett, K. S. et al. Evaluation of the mRNA-1273 Vaccine against SARS-CoV-2 in Nonhuman Primates. N. Engl. J. Med. 383, 1544–1555 (2020).
doi: 10.1056/NEJMoa2024671 pubmed: 32722908
Moreira, E. D. Jr. et al. Safety and Efficacy of a Third Dose of BNT162b2 Covid-19 Vaccine. N. Engl. J. Med. 386, 1910–1921 (2022).
doi: 10.1056/NEJMoa2200674 pubmed: 35320659
Mercado, N. B. et al. Single-shot Ad26 vaccine protects against SARS-CoV-2 in rhesus macaques. Nature 586, 583–588 (2020).
doi: 10.1038/s41586-020-2607-z pubmed: 32731257 pmcid: 7581548
Voysey, M. et al. Single-dose administration and the influence of the timing of the booster dose on immunogenicity and efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine: a pooled analysis of four randomised trials. Lancet 397, 881–891 (2021).
doi: 10.1016/S0140-6736(21)00432-3 pubmed: 33617777 pmcid: 7894131
Bravo, L. et al. Efficacy of the adjuvanted subunit protein COVID-19 vaccine, SCB-2019: a phase 2 and 3 multicentre, double-blind, randomised, placebo-controlled trial. Lancet 399, 461–472 (2022).
doi: 10.1016/S0140-6736(22)00055-1 pubmed: 35065705 pmcid: 8776284
Hager, K. J. et al. Efficacy and safety of a recombinant plant-based adjuvanted Covid-19 vaccine. N. Engl. J. Med. 386, 2084–2096 (2022).
doi: 10.1056/NEJMoa2201300 pubmed: 35507508
Hadj Hassine, I. Covid-19 vaccines and variants of concern: a review. Rev. Med. Virol. 32, e2313 (2022).
doi: 10.1002/rmv.2313 pubmed: 34755408
Krause, P. R. et al. Considerations in boosting COVID-19 vaccine immune responses. Lancet 398, 1377–1380 (2021).
doi: 10.1016/S0140-6736(21)02046-8 pubmed: 34534516 pmcid: 8437678
Cohn, B. A. et al. SARS-CoV-2 vaccine protection and deaths among US veterans during 2021. Science 375, 331–336 (2022).
doi: 10.1126/science.abm0620 pubmed: 34735261
COVID-19 vaccine tracker and landscape. Geneva: World Health Organization, March, 2022. https://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines .
Meng, F. Y. et al. Safety and immunogenicity of a recombinant COVID-19 vaccine (Sf9 cells) in healthy population aged 18 years or older: two single-center, randomised, double-blind, placebo-controlled, phase 1 and phase 2 trials. Signal. Transduct. Target. Ther. 6, 271 (2021).
doi: 10.1038/s41392-021-00692-3 pubmed: 34267185 pmcid: 8281021
Zhang, J. et al. Boosting with heterologous vaccines effectively improves protective immune responses of the inactivated SARS-CoV-2 vaccine. Emerg. Microbes. Infect. 10, 1598–1608 (2021).
doi: 10.1080/22221751.2021.1957401 pubmed: 34278956 pmcid: 8381941
WHO World Health Organization. https://www.who.int/publications/i/item/WHO-2019-nCoV-vaccines-SAGE-recommendation-heterologous-schedules .
Li, J. et al. Heterologous AD5-nCOV plus CoronaVac versus homologous CoronaVac vaccination: a randomized phase 4 trial. Nat. Med. 28, 401–409 (2022).
doi: 10.1038/s41591-021-01677-z pubmed: 35087233 pmcid: 8863573
Wu, J. D. et al. Safety, immunogenicity, and efficacy of the mRNA vaccine CS-2034 as a heterologous booster versus homologous booster with BBIBP-CorV in adults aged ≥18 years: a randomised, double-blind, phase 2b trial. Lancet. Infect. Dis. 23, 1020–1030 (2023).
doi: 10.1016/S1473-3099(23)00199-8 pubmed: 37216958
Nordström, P. et al. Effectiveness of heterologous ChAdOx1 nCoV-19 and mRNA prime-boost vaccination against symptomatic Covid-19 infection in Sweden: a nationwide cohort study. Lancet. Reg. Health. Eur 11, 100249 (2021).
doi: 10.1016/j.lanepe.2021.100249 pubmed: 34693387 pmcid: 8520818
Ledford, H. Could mixing COVID vaccines boost immune response? Nature 590, 375–376 (2021).
doi: 10.1038/d41586-021-00315-5 pubmed: 33547431
Robert, K. I. Mitteilung der STIKO zur COVID-19-Impfung. Impfabstand und heterologes Impfschema nach Erstimpfung mit Vaxzevria (1.7 .2021) (2021).
Lv, J. et al. Immunogenicity and safety of heterologous versus homologous prime-boost schedules with an adenoviral vectored and mRNA COVID-19 vaccine: a systematic review. Infect. Dis. Poverty. 11, 53 (2022).
doi: 10.1186/s40249-022-00977-x pubmed: 35562753 pmcid: 9100319
Costa Clemens, S. A. et al. Heterologous versus homologous COVID-19 booster vaccination in previous recipients of two doses of CoronaVac COVID-19 vaccine in Brazil (RHH-001): a phase 4, non-inferiority, single blind, randomised study. Lancet 399, 521–529 (2022).
doi: 10.1016/S0140-6736(22)00094-0 pubmed: 35074136 pmcid: 8782575
Sapkota, B. et al. Heterologous prime-boost strategies for COVID-19 vaccines. J. Travel. Med. 29, taab191 (2022).
pubmed: 34918097
Moorthy, V. et al. Heterologous prime-boost immunisation in Ebola vaccine development, testing and licensure. Report of a WHO Consultation 2014 (2021).
Arregocés-Castillo, L. et al. Effectiveness of COVID-19 vaccines in older adults in Colombia: a retrospective, population-based study of the ESPERANZA cohort. Lancet. Healthy. Longev. 3, e242–e252 (2022).
doi: 10.1016/S2666-7568(22)00035-6 pubmed: 35340743 pmcid: 8937302
Ai, J. et al. Cellular basis of enhanced humoral immunity to SARS-CoV-2 upon homologous or heterologous booster vaccination analyzed by single-cell immune profiling. Cell. Discov. 8, 114 (2022).
doi: 10.1038/s41421-022-00480-5 pubmed: 36270988 pmcid: 9587260
Geers, D. et al. SARS-CoV-2 variants of concern partially escape humoral but not T-cell responses in COVID-19 convalescent donors and vaccinees. Sci. Immunol. 6, eabj1750 (2021).
doi: 10.1126/sciimmunol.abj1750 pubmed: 34035118 pmcid: 9268159
Sattler, A. et al. SARS-CoV-2-specific T cell responses and correlations with COVID-19 patient predisposition. J. Clin. Invest. 130, 6477–6489 (2020).
doi: 10.1172/JCI140965 pubmed: 32833687 pmcid: 7685725
McMahan, K. et al. Correlates of protection against SARS-CoV-2 in rhesus macaques. Nature 590, 630–634 (2021).
doi: 10.1038/s41586-020-03041-6 pubmed: 33276369
Gazit, S. et al. Short term, relative effectiveness of four doses versus three doses of BNT162b2 vaccine in people aged 60 years and older in Israel: retrospective, test negative, case-control study. BMJ 377, e071113 (2022).
doi: 10.1136/bmj-2022-071113 pubmed: 35609888
Han, B. et al. Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine (CoronaVac) in healthy children and adolescents: a double-blind, randomised, controlled, phase 1/2 clinical trial. Lancet. Infect. Dis. 21, 1645–1653 (2021).
doi: 10.1016/S1473-3099(21)00319-4 pubmed: 34197764 pmcid: 8238449
Wu, Z. et al. Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine (CoronaVac) in healthy adults aged 60 years and older: a randomised, double-blind, placebo-controlled, phase 1/2 clinical trial. Lancet. Infect. Dis. 21, 803–812 (2021).
doi: 10.1016/S1473-3099(20)30987-7 pubmed: 33548194 pmcid: 7906628
National Medical Products Administration. https://www.nmpa.gov.cn/xxgk/ggtg/qtggtg/20191231111901460.html (2021).
Leung, K. et al. Estimating the transmission dynamics of SARS-CoV-2 Omicron BF.7 in Beijing after adjustment of the zero-COVID policy in November-December 2022. Nat. Med. 29, 579–582 (2023).
doi: 10.1038/s41591-023-02212-y pubmed: 36638825
WHO World Health Organization. https://extranet.who.int/pqweb/vitro-diagnostics/coronavirus-disease-covid-19-pandemic-%E2%80%94-emergency-use-listing-procedure-eul-open .

Auteurs

Wenxin Luo (W)

Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China.
Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.
Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China.
State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Chengdu, China.
Institute of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, China.

Jiadi Gan (J)

Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China.

Zhu Luo (Z)

Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China.
Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, China.

Shuangqing Li (S)

General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China.
Fangcao Community Health Service Center of Chengdu High-tech Zone, Chengdu, China.

Zhoufeng Wang (Z)

Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.
Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China.
State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Chengdu, China.

Jiaxuan Wu (J)

Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China.

Huohuo Zhang (H)

Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China.

Jinghong Xian (J)

Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China.
Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.
Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China.
State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Chengdu, China.
The Research Units of West China, Chinese Academy of Medical Sciences, West China Hospital, Chengdu, China.

Ruixin Cheng (R)

Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China.

Xiumei Tang (X)

Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China.
West China School of Nursing, Sichuan University, Chengdu, China.

Yi Liu (Y)

Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China.

Ling Yang (L)

Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, China.

Qianqian Mou (Q)

Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, China.
West China School of Nursing, Sichuan University, Chengdu, China.

Xue Zhang (X)

Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, China.
West China School of Nursing, Sichuan University, Chengdu, China.

Yi Chen (Y)

Department of Infection Control, West China Hospital, Sichuan University, Chengdu, China.

Weiwen Wang (W)

Department of Pathology, West China Hospital, Sichuan University, Chengdu, China.

Yantong Wang (Y)

Department of Infection Control, West China Hospital, Sichuan University, Chengdu, China.

Lin Bai (L)

Fangcao Community Health Service Center of Chengdu High-tech Zone, Chengdu, China.

Xuan Wei (X)

Fangcao Community Health Service Center of Chengdu High-tech Zone, Chengdu, China.

Rui Zhang (R)

General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China.

Lan Yang (L)

Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China.
Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.
Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China.
State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Chengdu, China.

Yaxin Chen (Y)

Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.

Li Yang (L)

Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.

Yalun Li (Y)

Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China.
Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.
Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China.
State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Chengdu, China.

Dan Liu (D)

Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China. liudan10965@wchscu.cn.
Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China. liudan10965@wchscu.cn.
Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China. liudan10965@wchscu.cn.
State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Chengdu, China. liudan10965@wchscu.cn.
Institute of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, China. liudan10965@wchscu.cn.

Weimin Li (W)

Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China. weimi003@scu.edu.cn.
Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China. weimi003@scu.edu.cn.
Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China. weimi003@scu.edu.cn.
State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Chengdu, China. weimi003@scu.edu.cn.
Institute of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, China. weimi003@scu.edu.cn.
The Research Units of West China, Chinese Academy of Medical Sciences, West China Hospital, Chengdu, China. weimi003@scu.edu.cn.

Lei Chen (L)

Department of Neurology, West China Hospital, Sichuan University, Chengdu, China. leilei_25@126.com.

Classifications MeSH