Safety, immunogenicity and protective effectiveness of heterologous boost with a recombinant COVID-19 vaccine (Sf9 cells) in adult recipients of inactivated vaccines.
Journal
Signal transduction and targeted therapy
ISSN: 2059-3635
Titre abrégé: Signal Transduct Target Ther
Pays: England
ID NLM: 101676423
Informations de publication
Date de publication:
14 Feb 2024
14 Feb 2024
Historique:
received:
05
06
2023
accepted:
23
01
2024
revised:
16
11
2023
medline:
15
2
2024
pubmed:
15
2
2024
entrez:
14
2
2024
Statut:
epublish
Résumé
Vaccines have proven effective in protecting populations against COVID-19, including the recombinant COVID-19 vaccine (Sf9 cells), the first approved recombinant protein vaccine in China. In this positive-controlled trial with 85 adult participants (Sf9 cells group: n = 44; CoronaVac group: n = 41), we evaluated the safety, immunogenicity, and protective effectiveness of a heterologous boost with the Sf9 cells vaccine in adults who had been vaccinated with the inactivated vaccine, and found a post-booster adverse events rate of 20.45% in the Sf9 cells group and 31.71% in the CoronaVac group (p = 0.279), within 28 days after booster injection. Neither group reported any severe adverse events. Following the Sf9 cells vaccine booster, the geometric mean titer (GMT) of binding antibodies to the receptor-binding domain of prototype SARS-CoV-2 on day 28 post-booster was significantly higher than that induced by the CoronaVac vaccine booster (100,683.37 vs. 9,451.69, p < 0.001). In the Sf9 cells group, GMTs of neutralizing antibodies against pseudo SARS-CoV-2 viruses (prototype and diverse variants of concern [VOCs]) increased by 22.23-75.93 folds from baseline to day 28 post-booster, while the CoronaVac group showed increases of only 3.29-10.70 folds. Similarly, neutralizing antibodies against live SARS-CoV-2 viruses (prototype and diverse VOCs) increased by 68.18-192.67 folds on day 14 post-booster compared with the baseline level, significantly greater than the CoronaVac group (19.67-37.67 folds). A more robust Th1 cellular response was observed with the Sf9 cells booster on day 14 post-booster (mean IFN-γ+ spot-forming cells per 2 × 10
Identifiants
pubmed: 38355676
doi: 10.1038/s41392-024-01751-1
pii: 10.1038/s41392-024-01751-1
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
41Subventions
Organisme : National Natural Science Foundation of China (National Science Foundation of China)
ID : 92159302
Organisme : National Natural Science Foundation of China (National Science Foundation of China)
ID : 92159302
Organisme : National Natural Science Foundation of China (National Science Foundation of China)
ID : 92159302
Organisme : National Natural Science Foundation of China (National Science Foundation of China)
ID : 92159302
Organisme : National Natural Science Foundation of China (National Science Foundation of China)
ID : 92159302
Organisme : National Natural Science Foundation of China (National Science Foundation of China)
ID : 92159302
Organisme : National Natural Science Foundation of China (National Science Foundation of China)
ID : 92159302
Organisme : National Natural Science Foundation of China (National Science Foundation of China)
ID : 92159302
Organisme : National Natural Science Foundation of China (National Science Foundation of China)
ID : 92159302
Organisme : National Natural Science Foundation of China (National Science Foundation of China)
ID : 92159302
Organisme : National Natural Science Foundation of China (National Science Foundation of China)
ID : 92159302
Organisme : National Natural Science Foundation of China (National Science Foundation of China)
ID : 92159302
Organisme : National Natural Science Foundation of China (National Science Foundation of China)
ID : 92159302
Organisme : National Natural Science Foundation of China (National Science Foundation of China)
ID : 92159302
Organisme : National Natural Science Foundation of China (National Science Foundation of China)
ID : 92159302
Organisme : National Natural Science Foundation of China (National Science Foundation of China)
ID : 92159302
Organisme : National Natural Science Foundation of China (National Science Foundation of China)
ID : 92159302
Organisme : National Natural Science Foundation of China (National Science Foundation of China)
ID : 92159302
Organisme : National Natural Science Foundation of China (National Science Foundation of China)
ID : 92159302
Organisme : National Natural Science Foundation of China (National Science Foundation of China)
ID : 92159302
Informations de copyright
© 2024. The Author(s).
Références
WHO World Health Organization. WHO coronavirus disease (COVID-19) dashboard. https://covid19.who.int/ .
WHO World Health Organization. https://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines .
Watson, O. J. et al. Global impact of the first year of COVID-19 vaccination: a mathematical modelling study. Lancet. Infect. Dis. 22, 1293–1302 (2022).
doi: 10.1016/S1473-3099(22)00320-6
pubmed: 35753318
pmcid: 9225255
National Medical Products Administration. https://www.nmpa.gov.cn/datasearch/search-result.html .
Corbett, K. S. et al. Evaluation of the mRNA-1273 Vaccine against SARS-CoV-2 in Nonhuman Primates. N. Engl. J. Med. 383, 1544–1555 (2020).
doi: 10.1056/NEJMoa2024671
pubmed: 32722908
Moreira, E. D. Jr. et al. Safety and Efficacy of a Third Dose of BNT162b2 Covid-19 Vaccine. N. Engl. J. Med. 386, 1910–1921 (2022).
doi: 10.1056/NEJMoa2200674
pubmed: 35320659
Mercado, N. B. et al. Single-shot Ad26 vaccine protects against SARS-CoV-2 in rhesus macaques. Nature 586, 583–588 (2020).
doi: 10.1038/s41586-020-2607-z
pubmed: 32731257
pmcid: 7581548
Voysey, M. et al. Single-dose administration and the influence of the timing of the booster dose on immunogenicity and efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine: a pooled analysis of four randomised trials. Lancet 397, 881–891 (2021).
doi: 10.1016/S0140-6736(21)00432-3
pubmed: 33617777
pmcid: 7894131
Bravo, L. et al. Efficacy of the adjuvanted subunit protein COVID-19 vaccine, SCB-2019: a phase 2 and 3 multicentre, double-blind, randomised, placebo-controlled trial. Lancet 399, 461–472 (2022).
doi: 10.1016/S0140-6736(22)00055-1
pubmed: 35065705
pmcid: 8776284
Hager, K. J. et al. Efficacy and safety of a recombinant plant-based adjuvanted Covid-19 vaccine. N. Engl. J. Med. 386, 2084–2096 (2022).
doi: 10.1056/NEJMoa2201300
pubmed: 35507508
Hadj Hassine, I. Covid-19 vaccines and variants of concern: a review. Rev. Med. Virol. 32, e2313 (2022).
doi: 10.1002/rmv.2313
pubmed: 34755408
Krause, P. R. et al. Considerations in boosting COVID-19 vaccine immune responses. Lancet 398, 1377–1380 (2021).
doi: 10.1016/S0140-6736(21)02046-8
pubmed: 34534516
pmcid: 8437678
Cohn, B. A. et al. SARS-CoV-2 vaccine protection and deaths among US veterans during 2021. Science 375, 331–336 (2022).
doi: 10.1126/science.abm0620
pubmed: 34735261
COVID-19 vaccine tracker and landscape. Geneva: World Health Organization, March, 2022. https://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines .
Meng, F. Y. et al. Safety and immunogenicity of a recombinant COVID-19 vaccine (Sf9 cells) in healthy population aged 18 years or older: two single-center, randomised, double-blind, placebo-controlled, phase 1 and phase 2 trials. Signal. Transduct. Target. Ther. 6, 271 (2021).
doi: 10.1038/s41392-021-00692-3
pubmed: 34267185
pmcid: 8281021
Zhang, J. et al. Boosting with heterologous vaccines effectively improves protective immune responses of the inactivated SARS-CoV-2 vaccine. Emerg. Microbes. Infect. 10, 1598–1608 (2021).
doi: 10.1080/22221751.2021.1957401
pubmed: 34278956
pmcid: 8381941
WHO World Health Organization. https://www.who.int/publications/i/item/WHO-2019-nCoV-vaccines-SAGE-recommendation-heterologous-schedules .
Li, J. et al. Heterologous AD5-nCOV plus CoronaVac versus homologous CoronaVac vaccination: a randomized phase 4 trial. Nat. Med. 28, 401–409 (2022).
doi: 10.1038/s41591-021-01677-z
pubmed: 35087233
pmcid: 8863573
Wu, J. D. et al. Safety, immunogenicity, and efficacy of the mRNA vaccine CS-2034 as a heterologous booster versus homologous booster with BBIBP-CorV in adults aged ≥18 years: a randomised, double-blind, phase 2b trial. Lancet. Infect. Dis. 23, 1020–1030 (2023).
doi: 10.1016/S1473-3099(23)00199-8
pubmed: 37216958
Nordström, P. et al. Effectiveness of heterologous ChAdOx1 nCoV-19 and mRNA prime-boost vaccination against symptomatic Covid-19 infection in Sweden: a nationwide cohort study. Lancet. Reg. Health. Eur 11, 100249 (2021).
doi: 10.1016/j.lanepe.2021.100249
pubmed: 34693387
pmcid: 8520818
Ledford, H. Could mixing COVID vaccines boost immune response? Nature 590, 375–376 (2021).
doi: 10.1038/d41586-021-00315-5
pubmed: 33547431
Robert, K. I. Mitteilung der STIKO zur COVID-19-Impfung. Impfabstand und heterologes Impfschema nach Erstimpfung mit Vaxzevria (1.7 .2021) (2021).
Lv, J. et al. Immunogenicity and safety of heterologous versus homologous prime-boost schedules with an adenoviral vectored and mRNA COVID-19 vaccine: a systematic review. Infect. Dis. Poverty. 11, 53 (2022).
doi: 10.1186/s40249-022-00977-x
pubmed: 35562753
pmcid: 9100319
Costa Clemens, S. A. et al. Heterologous versus homologous COVID-19 booster vaccination in previous recipients of two doses of CoronaVac COVID-19 vaccine in Brazil (RHH-001): a phase 4, non-inferiority, single blind, randomised study. Lancet 399, 521–529 (2022).
doi: 10.1016/S0140-6736(22)00094-0
pubmed: 35074136
pmcid: 8782575
Sapkota, B. et al. Heterologous prime-boost strategies for COVID-19 vaccines. J. Travel. Med. 29, taab191 (2022).
pubmed: 34918097
Moorthy, V. et al. Heterologous prime-boost immunisation in Ebola vaccine development, testing and licensure. Report of a WHO Consultation 2014 (2021).
Arregocés-Castillo, L. et al. Effectiveness of COVID-19 vaccines in older adults in Colombia: a retrospective, population-based study of the ESPERANZA cohort. Lancet. Healthy. Longev. 3, e242–e252 (2022).
doi: 10.1016/S2666-7568(22)00035-6
pubmed: 35340743
pmcid: 8937302
Ai, J. et al. Cellular basis of enhanced humoral immunity to SARS-CoV-2 upon homologous or heterologous booster vaccination analyzed by single-cell immune profiling. Cell. Discov. 8, 114 (2022).
doi: 10.1038/s41421-022-00480-5
pubmed: 36270988
pmcid: 9587260
Geers, D. et al. SARS-CoV-2 variants of concern partially escape humoral but not T-cell responses in COVID-19 convalescent donors and vaccinees. Sci. Immunol. 6, eabj1750 (2021).
doi: 10.1126/sciimmunol.abj1750
pubmed: 34035118
pmcid: 9268159
Sattler, A. et al. SARS-CoV-2-specific T cell responses and correlations with COVID-19 patient predisposition. J. Clin. Invest. 130, 6477–6489 (2020).
doi: 10.1172/JCI140965
pubmed: 32833687
pmcid: 7685725
McMahan, K. et al. Correlates of protection against SARS-CoV-2 in rhesus macaques. Nature 590, 630–634 (2021).
doi: 10.1038/s41586-020-03041-6
pubmed: 33276369
Gazit, S. et al. Short term, relative effectiveness of four doses versus three doses of BNT162b2 vaccine in people aged 60 years and older in Israel: retrospective, test negative, case-control study. BMJ 377, e071113 (2022).
doi: 10.1136/bmj-2022-071113
pubmed: 35609888
Han, B. et al. Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine (CoronaVac) in healthy children and adolescents: a double-blind, randomised, controlled, phase 1/2 clinical trial. Lancet. Infect. Dis. 21, 1645–1653 (2021).
doi: 10.1016/S1473-3099(21)00319-4
pubmed: 34197764
pmcid: 8238449
Wu, Z. et al. Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine (CoronaVac) in healthy adults aged 60 years and older: a randomised, double-blind, placebo-controlled, phase 1/2 clinical trial. Lancet. Infect. Dis. 21, 803–812 (2021).
doi: 10.1016/S1473-3099(20)30987-7
pubmed: 33548194
pmcid: 7906628
National Medical Products Administration. https://www.nmpa.gov.cn/xxgk/ggtg/qtggtg/20191231111901460.html (2021).
Leung, K. et al. Estimating the transmission dynamics of SARS-CoV-2 Omicron BF.7 in Beijing after adjustment of the zero-COVID policy in November-December 2022. Nat. Med. 29, 579–582 (2023).
doi: 10.1038/s41591-023-02212-y
pubmed: 36638825
WHO World Health Organization. https://extranet.who.int/pqweb/vitro-diagnostics/coronavirus-disease-covid-19-pandemic-%E2%80%94-emergency-use-listing-procedure-eul-open .