An animal study on the effectiveness of platelet-rich plasma as a direct pulp capping agent.

Carious pulp exposure Dentinogenic biomarkers Mineral trioxide aggregate Platelet rich plasma Reversible pulpitis Vital pulp therapy

Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
14 Feb 2024
Historique:
received: 26 11 2023
accepted: 09 02 2024
medline: 15 2 2024
pubmed: 15 2 2024
entrez: 15 2 2024
Statut: epublish

Résumé

Direct pulp capping (DPC) is a conservative approach for preserving tooth vitality without requiring more invasive procedures by enhancing pulp healing and mineralized tissue barrier formation. We investigated the effectiveness of Platelet Rich Plasma (PRP) vs. Mineral Trioxide Aggregate (MTA) as a DPC agent. Forty-two teeth from three mongrel dogs were divided into two equal groups. After three months, the animals were sacrificed to evaluate teeth radiographically using cone-beam computerized tomography, histopathologically, and real-time PCR for dentin sialophosphoprotein (DSPP), matrix extracellular phosphoglycoprotein (MEPE), and nestin (NES) mRNA expression. Radiographically, hard tissue formation was evident in both groups without significant differences (p = 0.440). Histopathologic findings confirmed the dentin bridge formation in both groups; however, such mineralized tissues were homogenous without cellular inclusions in the PRP group, while was osteodentin type in the MTA group. There was no significant difference in dentin bridge thickness between the PRP-capped and MTA-capped teeth (p = 0.732). The PRP group had significantly higher DSPP, MEPE, and NES mRNA gene expression than the MTA group (p < 0.05). In conclusion, PRP enables mineralized tissue formation following DPC similar to MTA, and could generate better cellular dentinogenic responses and restore dentin with homogenous architecture than MTA, making PRP a promising alternative DPC agent.

Identifiants

pubmed: 38355945
doi: 10.1038/s41598-024-54162-1
pii: 10.1038/s41598-024-54162-1
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

3699

Informations de copyright

© 2024. The Author(s).

Références

Frencken, J. E. et al. Minimal intervention dentistry for managing dental caries—a review: Report of a FDI task group. Int. Dent. J. 62, 223–243. https://doi.org/10.1111/idj.12007 (2012).
doi: 10.1111/idj.12007 pubmed: 23106836
Nie, E. et al. Effectiveness of direct pulp capping bioactive materials in dentin regeneration: A systematic review. Mater. Basel https://doi.org/10.3390/ma14226811 (2021).
doi: 10.3390/ma14226811
Sun, H. H., Jin, T., Yu, Q. & Chen, F. M. Biological approaches toward dental pulp regeneration by tissue engineering. J. Tissue Eng. Regen Med. 5, e1-16. https://doi.org/10.1002/term.369 (2011).
doi: 10.1002/term.369 pubmed: 21413154
Hanna, S. N., Alfayate, R. P. & Prichard, J. Vital pulp therapy an insight over the available literature and future expectations. Eur. Endod. J. 5(1), 46. https://doi.org/10.14744/eej.2019.44154 (2020).
doi: 10.14744/eej.2019.44154 pubmed: 32342038 pmcid: 7183799
Islam, R. et al. Direct pulp capping procedures—evidence and practice. Jpn. Dent. Sci. Rev. 59, 48–61. https://doi.org/10.1016/j.jdsr.2023.02.002 (2023).
doi: 10.1016/j.jdsr.2023.02.002 pubmed: 36880059 pmcid: 9985044
Okamoto, M. et al. Novel evaluation method of dentin repair by direct pulp capping using high-resolution micro-computed tomography. Clin. Oral. Investig. 22, 2879–2887. https://doi.org/10.1007/s00784-018-2374-5 (2018).
doi: 10.1007/s00784-018-2374-5 pubmed: 29435662
Orhan, E. O., Maden, M. & Senguuven, B. Odontoblast-like cell numbers and reparative dentine thickness after direct pulp capping with platelet-rich plasma and enamel matrix derivative: A histomorphometric evaluation. Int. Endod. J. 45, 317–325. https://doi.org/10.1111/j.1365-2591.2011.01977.x (2012).
doi: 10.1111/j.1365-2591.2011.01977.x pubmed: 22007726
Asgary, S., Parirokh, M., Eghbal, M. J. & Ghoddusi, J. SEM evaluation of pulp reaction to different pulp capping materials in dog’s teeth. Iran Endod. J. 1, 117–123 (2006).
pubmed: 24379876
Kassis, C. et al. Response of dental pulp capped with calcium-silicate based material, calcium hydroxide and adhesive resin in rabbit teeth. Braz. J. Oral Sci. 21, e223816 (2022).
doi: 10.20396/bjos.v21i00.8663816
Makarla, S. et al. Determining the best anti-microbial properties of dental cements used for pulp capping procedures using deep dentinal carious material. J. Oral Maxillofac. Pathol. 27, 239. https://doi.org/10.4103/jomfp.jomfp_109_21 (2023).
doi: 10.4103/jomfp.jomfp_109_21 pubmed: 37234309 pmcid: 10207218
Song, M. et al. Clinical and molecular perspectives of reparative dentin formation: Lessons learned from pulp-capping materials and the emerging roles of calcium. Dent. Clin. North Am. 61, 93–110. https://doi.org/10.1016/j.cden.2016.08.008 (2017).
doi: 10.1016/j.cden.2016.08.008 pubmed: 27912821 pmcid: 5137790
da Rosa, W. L. O. et al. Current trends and future perspectives of dental pulp capping materials: A systematic review. J. Biomed. Mater. Res. B Appl. Biomater. 106, 1358–1368. https://doi.org/10.1002/jbm.b.33934 (2018).
doi: 10.1002/jbm.b.33934 pubmed: 28561919
Islam, R. et al. Histological evaluation of a novel phosphorylated pullulan-based pulp capping material: An in vivo study on rat molars. Int. Endod. J. 54, 1902–1914. https://doi.org/10.1111/iej.13587 (2021).
doi: 10.1111/iej.13587 pubmed: 34096634
Pisanti, S. & Sciaky, I. Origin of calcium in the repair wall after pulp exposure in the dog. J. Dent Res. 43, 641–644. https://doi.org/10.1177/00220345640430050401 (1964).
doi: 10.1177/00220345640430050401 pubmed: 14197047
Lipski, M. et al. Factors affecting the outcomes of direct pulp capping using Biodentine. Clin. Oral. Investig. 22, 2021–2029. https://doi.org/10.1007/s00784-017-2296-7 (2018).
doi: 10.1007/s00784-017-2296-7 pubmed: 29234957
Tawil, P. Z., Duggan, D. J. & Galicia, J. C. Mineral trioxide aggregate (MTA): its history, composition, and clinical applications. Compend. Contin. Educ. Dent. 36(4), 15488578 (2015).
Marques, M. S., Wesselink, P. R. & Shemesh, H. Outcome of direct pulp capping with mineral trioxide aggregate: A prospective study. J. Endod. 41, 1026–1031. https://doi.org/10.1016/j.joen.2015.02.024 (2015).
doi: 10.1016/j.joen.2015.02.024 pubmed: 25841957
Nair, P. N., Duncan, H. F., Pitt Ford, T. R. & Luder, H. U. Histological, ultrastructural and quantitative investigations on the response of healthy human pulps to experimental capping with mineral trioxide aggregate: a randomized controlled trial. Int. Endod. J. 41(2), 128–150. https://doi.org/10.1111/j.1365-2591.2007.01329.x (2008).
doi: 10.1111/j.1365-2591.2007.01329.x pubmed: 17956562
Tomson, P. L. et al. Dissolution of bio-active dentine matrix components by mineral trioxide aggregate. J. Dent. 35, 636–642. https://doi.org/10.1016/j.jdent.2007.04.008 (2007).
doi: 10.1016/j.jdent.2007.04.008 pubmed: 17566626
Parirokh, M. & Torabinejad, M. Mineral trioxide aggregate: a comprehensive literature review–Part III: Clinical applications, drawbacks, and mechanism of action. J Endod 36, 400–413. https://doi.org/10.1016/j.joen.2009.09.009 (2010).
doi: 10.1016/j.joen.2009.09.009 pubmed: 20171353
Management of deep caries and the exposed pulp. European society of endodontology developed, b. et al. European society of Endodontology position statement. Int. Endod. J. 52, 923–934. https://doi.org/10.1111/iej.13080 (2019).
doi: 10.1111/iej.13080
Cervantes, J. et al. Effectiveness of platelet-rich plasma for androgenetic alopecia: A review of the literature. Skin Appendage Disord. 4, 1–11. https://doi.org/10.1159/000477671 (2018).
doi: 10.1159/000477671 pubmed: 29457005
Nurden, A. T. Platelets, inflammation and tissue regeneration. Thromb. Haemost. 105(Suppl 1), S13-33. https://doi.org/10.1160/THS10-11-0720 (2011).
doi: 10.1160/THS10-11-0720 pubmed: 21479340
Nurden, A. T., Nurden, P., Sanchez, M., Andia, I. & Anitua, E. Platelets and wound healing. Front Biosci. 13, 3532–3548. https://doi.org/10.2741/2947 (2008).
doi: 10.2741/2947 pubmed: 18508453
Xu, J., Gou, L., Zhang, P., Li, H. & Qiu, S. Platelet-rich plasma and regenerative dentistry. Aust. Dent. J. 65, 131–142. https://doi.org/10.1111/adj.12754 (2020).
doi: 10.1111/adj.12754 pubmed: 32145082 pmcid: 7384010
Marx, R. E. Platelet-rich plasma: Evidence to support its use. J. Oral Maxillofac. Surg. 62, 489–496. https://doi.org/10.1016/j.joms.2003.12.003 (2004).
doi: 10.1016/j.joms.2003.12.003 pubmed: 15085519
Kunert, M. & Lukomska-Szymanska, M. Bio-inductive materials in direct and indirect pulp capping-a review article. Mater. Basel https://doi.org/10.3390/ma13051204 (2020).
doi: 10.3390/ma13051204
Shaheen, S. D., Niazy, M. A., Jamil, W. E. & Abu-Seida, A. M. Pulp tissue response to platelets rich plasma, platelets rich fibrin and mineral trioxide aggregate as pulp capping materials. Al-Azhar Dental J. Girls 8, 561–570 (2021).
doi: 10.21608/adjg.2021.37107.1280
Moradi, S., Saghravanian, N., Moushekhian, S., Fatemi, S. & Forghani, M. Immunohistochemical evaluation of fibronectin and tenascin following direct pulp capping with mineral trioxide aggregate, platelet-rich plasma and propolis in dogs’ teeth. Iran Endod. J. 10, 188–192. https://doi.org/10.7508/iej.2015.03.009 (2015).
doi: 10.7508/iej.2015.03.009 pubmed: 26213542 pmcid: 4509128
Du Sert, N. P. et al. Reporting animal research: Explanation and elaboration for the ARRIVE guidelines 20. PLoS Biol. 18(7), e3000411. https://doi.org/10.1371/journal.pbio.3000411 (2020).
doi: 10.1371/journal.pbio.3000411
Care, I.O.L.A.R.C.O. & Animals, U.O.L. Guide for the care and use of laboratory animals. (US Department of Health and Human Services, Public Health Service, National …, 1986).
Faul, F., Erdfelder, E., Lang, A. G. & Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 39, 175–191. https://doi.org/10.3758/bf03193146 (2007).
doi: 10.3758/bf03193146 pubmed: 17695343
Farghali, H. A. et al. Corneal ulcer in dogs and cats: Novel clinical application of regenerative therapy using subconjunctival injection of autologous platelet-rich plasma. Front Vet. Sci. 8, 641265. https://doi.org/10.3389/fvets.2021.641265 (2021).
doi: 10.3389/fvets.2021.641265 pubmed: 33816586 pmcid: 8012907
McKelvey, D. & Hollingshead, K. W. Small animal anesthesia & analgesia. (Mosby, 2000).
Haydari, M. et al. Comparing the effect of 0.06%-, 0.12% and 0.2% Chlorhexidine on plaque, bleeding and side effects in an experimental gingivitis model: A parallel group, double masked randomized clinical trial. BMC Oral Health. 17, 1–8. https://doi.org/10.1186/s12903-017-0400-7 (2017).
doi: 10.1186/s12903-017-0400-7
Nowicka, A., Wilk, G., Lipski, M., Kolecki, J. & Buczkowska-Radlinska, J. Tomographic evaluation of reparative dentin formation after direct pulp capping with Ca(OH)2, MTA, Biodentine, and dentin bonding system in human teeth. J. Endod. 41, 1234–1240. https://doi.org/10.1016/j.joen.2015.03.017 (2015).
doi: 10.1016/j.joen.2015.03.017 pubmed: 26031301
De Rossi, A. et al. Comparison of pulpal responses to pulpotomy and pulp capping with biodentine and mineral trioxide aggregate in dogs. J. Endod. 40, 1362–1369. https://doi.org/10.1016/j.joen.2014.02.006 (2014).
doi: 10.1016/j.joen.2014.02.006 pubmed: 25146016
Akhavan, A., Arbabzadeh, F., Bouzari, M., Razavi, S. M. & Davoudi, A. Pulp response following direct pulp capping with dentin adhesives and mineral trioxide aggregate. An. Animal Study. Iran Endod. J. 12, 226–230. https://doi.org/10.22037/iej.2017.44 (2017).
doi: 10.22037/iej.2017.44 pubmed: 28512491
Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25, 402–408. https://doi.org/10.1006/meth.2001.1262 (2001).
doi: 10.1006/meth.2001.1262 pubmed: 11846609
Lin, L. M. & Rosenberg, P. A. Repair and regeneration in endodontics. Int. Endod. J. 44, 889–906. https://doi.org/10.1111/j.1365-2591.2011.01915.x (2011).
doi: 10.1111/j.1365-2591.2011.01915.x pubmed: 21718337
Nowicka, A. et al. Clinical and histological evaluation of direct pulp capping on human pulp tissue using a dentin adhesive system. Biomed. Res. Int. 2016, 2591273. https://doi.org/10.1155/2016/2591273 (2016).
doi: 10.1155/2016/2591273 pubmed: 27803922 pmcid: 5075585
Weber, M. T., Stratz, N., Fleiner, J., Schulze, D. & Hannig, C. Possibilities and limits of imaging endodontic structures with CBCT. Swiss Dent J 125, 293–311 (2015).
pubmed: 26168687
Patel, K., Mannocci, F. & Patel, S. The assessment and management of external cervical resorption with periapical radiographs and cone-beam computed tomography: A clinical study. J. Endod. 42, 1435–1440. https://doi.org/10.1016/j.joen.2016.06.014 (2016).
doi: 10.1016/j.joen.2016.06.014 pubmed: 27507628
Muruganandhan, J. et al. Comparison of four dental pulp-capping agents by cone-beam computed tomography and histological techniques—a split-mouth design ex vivo study. Appl. Sci. 11, 3045 (2021).
doi: 10.3390/app11073045
Ather, A., Patel, B., Gelfond, J. A. L. & Ruparel, N. B. Outcome of pulpotomy in permanent teeth with irreversible pulpitis: A systematic review and meta-analysis. Sci. Rep. 12, 19664. https://doi.org/10.1038/s41598-022-20918-w (2022).
doi: 10.1038/s41598-022-20918-w pubmed: 36385132 pmcid: 9669040
Holiel, A. A., Mahmoud, E. M. & Abdel-Fattah, W. M. Tomographic evaluation of direct pulp capping using a novel injectable treated dentin matrix hydrogel: A 2-year randomized controlled clinical trial. Clin. Oral Investig. 25, 4621–4634. https://doi.org/10.1007/s00784-021-03775-1 (2021).
doi: 10.1007/s00784-021-03775-1 pubmed: 33507394
Mehrvarzfar, P., Abbott, P. V., Mashhadiabbas, F., Vatanpour, M. & Tour, S. S. Clinical and histological responses of human dental pulp to MTA and combined MTA/treated dentin matrix in partial pulpotomy. Aust. Endod. J. 44(1), 46–53. https://doi.org/10.1111/aej.12217 (2018).
doi: 10.1111/aej.12217 pubmed: 28833942
Petrovic, V., Pejcic, N. & Cakic, S. The influence of different therapeutic modalities and platelet rich plasma on apexogenesis: A preliminary study in monkeys. Adv. Clin. Exp. Med. 22, 469–479 (2013).
pubmed: 23986206
Shobana, S., Kavitha, M. & Srinivasan, N. Efficacy of platelet rich plasma and platelet rich fibrin for direct pulp capping in adult patients with carious pulp exposure-a randomised controlled trial. Eur. Endod. J. 7, 114–121. https://doi.org/10.14744/eej.2021.04834 (2022).
doi: 10.14744/eej.2021.04834 pubmed: 35786576 pmcid: 9285992
Dammaschke, T., Nowicka, A., Lipski, M. & Ricucci, D. Histological evaluation of hard tissue formation after direct pulp capping with a fast-setting mineral trioxide aggregate (RetroMTA) in humans. Clin. Oral Investig. 23, 4289–4299. https://doi.org/10.1007/s00784-019-02876-2 (2019).
doi: 10.1007/s00784-019-02876-2 pubmed: 30864114
Tziafas, D., Pantelidou, O., Alvanou, A., Belibasakis, G. & Papadimitriou, S. The dentinogenic effect of mineral trioxide aggregate (MTA) in short-term capping experiments. Int. Endod. J. 35, 245–254. https://doi.org/10.1046/j.1365-2591.2002.00471.x (2002).
doi: 10.1046/j.1365-2591.2002.00471.x pubmed: 11985676
Yamada, M. et al. Mineral trioxide aggregate (MTA) upregulates the expression of DMP1 in direct pulp capping in the rat molar. Mater. Basel https://doi.org/10.3390/ma14164640 (2021).
doi: 10.3390/ma14164640
Smith, A. J. et al. Reactionary dentinogenesis. Int. J. Dev. Biol. 39, 273–280 (1995).
pubmed: 7626417
Ricucci, D., Loghin, S., Lin, L. M., Spangberg, L. S. & Tay, F. R. Is hard tissue formation in the dental pulp after the death of the primary odontoblasts a regenerative or a reparative process?. J. Dent. 42, 1156–1170. https://doi.org/10.1016/j.jdent.2014.06.012 (2014).
doi: 10.1016/j.jdent.2014.06.012 pubmed: 25008021
Fisher, L. W. & Fedarko, N. S. Six genes expressed in bones and teeth encode the current members of the SIBLING family of proteins. Connect Tissue Res. 44(Suppl 1), 33–40 (2003).
doi: 10.1080/03008200390152061 pubmed: 12952171
Gullard, A. et al. MEPE localization in the craniofacial complex and function in tooth dentin formation. J. Histochem. Cytochem. 64, 224–236. https://doi.org/10.1369/0022155416635569 (2016).
doi: 10.1369/0022155416635569 pubmed: 26927967 pmcid: 4817730
Yuan, G. et al. Dentin Sialoprotein is a Novel Substrate of Matrix Metalloproteinase 9 in vitro and in vivo. Sci. Rep. 7, 42449. https://doi.org/10.1038/srep42449 (2017).
doi: 10.1038/srep42449 pubmed: 28195206 pmcid: 5307955
Duverger, O. et al. Neural crest deletion of Dlx3 leads to major dentin defects through down-regulation of Dspp. J. Biol. Chem. 287, 12230–12240. https://doi.org/10.1074/jbc.M111.326900 (2012).
doi: 10.1074/jbc.M111.326900 pubmed: 22351765 pmcid: 3320974
Sejersen, T. & Lendahl, U. Transient expression of the intermediate filament nestin during skeletal muscle development. J. Cell Sci. 106(Pt 4), 1291–1300. https://doi.org/10.1242/jcs.106.4.1291 (1993).
doi: 10.1242/jcs.106.4.1291 pubmed: 8126108
About, I., Laurent-Maquin, D., Lendahl, U. & Mitsiadis, T. A. Nestin expression in embryonic and adult human teeth under normal and pathological conditions. Am. J. Pathol. 157, 287–295. https://doi.org/10.1016/S0002-9440(10)64539-7 (2000).
doi: 10.1016/S0002-9440(10)64539-7 pubmed: 10880398 pmcid: 1850197
Aryal, Y. P. et al. Facilitating reparative dentin formation using apigenin local delivery in the exposed pulp cavity. Front Physiol. 12, 773878. https://doi.org/10.3389/fphys.2021.773878 (2021).
doi: 10.3389/fphys.2021.773878 pubmed: 34955887 pmcid: 8703200
Sarkar, N. K., Caicedo, R., Ritwik, P., Moiseyeva, R. & Kawashima, I. Physicochemical basis of the biologic properties of mineral trioxide aggregate. J. Endod. 31, 97–100. https://doi.org/10.1097/01.don.0000133155.04468.41 (2005).
doi: 10.1097/01.don.0000133155.04468.41 pubmed: 15671817
Aeinehchi, M., Eslami, B., Ghanbariha, M. & Saffar, A. S. Mineral trioxide aggregate (MTA) and calcium hydroxide as pulp-capping agents in human teeth: a preliminary report. Int. Endod. J. 36, 225–231. https://doi.org/10.1046/j.1365-2591.2003.00652.x (2003).
doi: 10.1046/j.1365-2591.2003.00652.x pubmed: 12657149
Laurent, P., Camps, J. & About, I. Biodentine(TM) induces TGF-beta1 release from human pulp cells and early dental pulp mineralization. Int. Endod. J. 45, 439–448. https://doi.org/10.1111/j.1365-2591.2011.01995.x (2012).
doi: 10.1111/j.1365-2591.2011.01995.x pubmed: 22188368
Fridland, M. & Rosado, R. MTA solubility: A long term study. J. Endod. 31, 376–379. https://doi.org/10.1097/01.don.0000140566.97319.3e (2005).
doi: 10.1097/01.don.0000140566.97319.3e pubmed: 15851933
Accorinte, M. L. et al. Response of human dental pulp capped with MTA and calcium hydroxide powder. Oper. Dent 33, 488–495. https://doi.org/10.2341/07-143 (2008).
doi: 10.2341/07-143 pubmed: 18833854
Choi, H. M. et al. The cheapest and easiest way to make platelet-rich plasma preparation. Arch. Aesthet. Plast. Surg. 21, 12–17 (2015).
doi: 10.14730/aaps.2015.21.1.12
Kevy, S. V. & Jacobson, M. S. Comparison of methods for point of care preparation of autologous platelet gel. J. Extra Corpor. Technol. 36, 28–35 (2004).
doi: 10.1051/ject/200436128 pubmed: 15095838
Anila, S. & Nandakumar, K. Applications of platelet rich plasma for regenerative therapy in periodontics. Trends Biomater. Artif. Org. 20, 78–84 (2006).

Auteurs

Dina M Elkady (DM)

Conservative Dentistry Department, Faculty of Dentistry, Cairo University, Giza, Egypt.

Yara R Helaly (YR)

Oral and Maxillofacial Radiology Department, Faculty of Dentistry, Cairo University, Giza, Egypt.

Hala W El Fayoumy (HW)

Oral and Maxillofacial Radiology Department, Faculty of Dentistry, Cairo University, Giza, Egypt.

Huda O AbuBakr (HO)

Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.

Aya M Yassin (AM)

Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.

Naglaa A AbdElkader (NA)

Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.

Dina B E Farag (DBE)

Oral Biology Department, Faculty of Dentistry, Cairo University, Giza, Egypt.

Possy M Abd El Aziz (PMA)

Conservative Dentistry Department, Faculty of Dentistry, Cairo University, Giza, Egypt.
Faculty of Oral and Dental Medicine, Egyptian Russian University, Badr City, Cairo, Egypt.

Antonio Scarano (A)

Department of Innovative Technologies in Medicine and Dentistry, University of Chieti-Pescara, Chieti, Italy.

Ahmad G A Khater (AGA)

Faculty of Oral and Dental Medicine, Egyptian Russian University, Badr City, Cairo, Egypt. ahmed.g.a.khater@gmail.com.
Health Affairs Directorate, Egyptian Ministry of Health and Population, Banisuif, Egypt. ahmed.g.a.khater@gmail.com.

Classifications MeSH