Reconstitution of early paclitaxel biosynthetic network.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
15 Feb 2024
Historique:
received: 05 10 2023
accepted: 25 01 2024
medline: 16 2 2024
pubmed: 16 2 2024
entrez: 15 2 2024
Statut: epublish

Résumé

Paclitaxel is an anticancer therapeutic produced by the yew tree. Over the last two decades, a significant bottleneck in the reconstitution of early paclitaxel biosynthesis has been the propensity of heterologously expressed pathway cytochromes P450, including taxadiene 5α-hydroxylase (T5αH), to form multiple products. Here, we structurally characterize four new products of T5αH, many of which appear to be over-oxidation of the primary mono-oxidized products. By tuning the promoter strength for T5αH expression in Nicotiana plants, we observe decreased levels of these proposed byproducts with a concomitant increase in the accumulation of taxadien-5α-ol, the paclitaxel precursor, by three-fold. This enables the reconstitution of a six step biosynthetic pathway, which we further show may function as a metabolic network. Our result demonstrates that six previously characterized Taxus genes can coordinatively produce key paclitaxel intermediates and serves as a crucial platform for the discovery of the remaining biosynthetic genes.

Identifiants

pubmed: 38360800
doi: 10.1038/s41467-024-45574-8
pii: 10.1038/s41467-024-45574-8
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1419

Subventions

Organisme : U.S. Department of Health & Human Services | NIH | National Center for Complementary and Integrative Health (NCCIH)
ID : AT010593

Informations de copyright

© 2024. The Author(s).

Références

Gallego-Jara, J., Lozano-Terol, G., Sola-Martínez, R. A., Cánovas-Díaz, M. & de Diego Puente, T. A compressive review about Taxol®: history and future challenges. Molecules 25, 5986 (2020).
pubmed: 33348838 pmcid: 7767101 doi: 10.3390/molecules25245986
Wani, M. C. & Horwitz, S. B. Nature as a remarkable chemist: a personal story of the discovery and development of Taxol. Anticancer Drugs 25, 482–487 (2014).
pubmed: 24413390 pmcid: 3980006 doi: 10.1097/CAD.0000000000000063
Wall, M. E. & Wani, M. C. Camptothecin and taxol: from discovery to clinic. J. Ethnopharmacol. 51, 239–253 (1996). discussion 253–4.
pubmed: 9213622 doi: 10.1016/0378-8741(95)01367-9
Wang, Y.-F. et al. Natural taxanes: developments since 1828. Chem. Rev. 111, 7652–7709 (2011).
pubmed: 21970550 doi: 10.1021/cr100147u
Liu, W. C., Gong, T. & Zhu, P. Advances in exploring alternative Taxol sources. RSC Adv. 6, 48800–48809 (2016).
doi: 10.1039/C6RA06640B
Ro, D.-K. et al. Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440, 940–943 (2006).
pubmed: 16612385 doi: 10.1038/nature04640
Srinivasan, P. & Smolke, C. D. Biosynthesis of medicinal tropane alkaloids in yeast. Nature 585, 614–619 (2020).
pubmed: 32879484 pmcid: 7529995 doi: 10.1038/s41586-020-2650-9
Mutanda, I., Li, J., Xu, F. & Wang, Y. Recent advances in metabolic engineering, protein engineering, and transcriptome-guided insights toward synthetic production of Taxol. Front. Bioeng. Biotechnol. 9, 632269 (2021).
pubmed: 33614616 pmcid: 7892896 doi: 10.3389/fbioe.2021.632269
Ajikumar, P. K. et al. Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli. Science 330, 70–74 (2010).
pubmed: 20929806 pmcid: 3034138 doi: 10.1126/science.1191652
Yadav, V. G. Unraveling the multispecificity and catalytic promiscuity of taxadiene monooxygenase. J. Mol. Catal. B Enzym. 110, 154–164 (2014).
doi: 10.1016/j.molcatb.2014.10.004
Sagwan-Barkdoll, L. & Anterola, A. M. Taxadiene-5α-ol is a minor product of CYP725A4 when expressed in Escherichia coli. Biotechnol. Appl. Biochem. 65, 294–305 (2018).
pubmed: 28876471 doi: 10.1002/bab.1606
Nowrouzi, B., Lungang, L. & Rios-Solis, L. Exploring optimal Taxol® CYP725A4 activity in Saccharomyces cerevisiae. Microb. Cell Fact. 21, 197 (2022).
pubmed: 36123694 pmcid: 9484169 doi: 10.1186/s12934-022-01922-1
Walls, L. E. et al. Optimizing the biosynthesis of oxygenated and acetylated Taxol precursors in Saccharomyces cerevisiae using advanced bioprocessing strategies. Biotechnol. Bioeng. 118, 279–293 (2021).
pubmed: 32936453 doi: 10.1002/bit.27569
Li, J. et al. Chloroplastic metabolic engineering coupled with isoprenoid pool enhancement for committed taxanes biosynthesis in Nicotiana benthamiana. Nat. Commun. 10, 4850 (2019).
pubmed: 31649252 pmcid: 6813417 doi: 10.1038/s41467-019-12879-y
Rontein, D. et al. CYP725A4 from yew catalyzes complex structural rearrangement of taxa-4 (5), 11 (12)-diene into the cyclic ether 5 (12)-oxa-3 (11)-cyclotaxane. J. Biol. Chem. 283, 6067–6075 (2008).
pubmed: 18167342 doi: 10.1074/jbc.M708950200
Barton, N. A. et al. Accessing low-oxidation state taxanes: is taxadiene-4(5)-epoxide on the taxol biosynthetic pathway? Chem. Sci. 7, 3102–3107 (2016).
pubmed: 29997802 pmcid: 6005263 doi: 10.1039/C5SC03463A
Zhou, K., Qiao, K., Edgar, S. & Stephanopoulos, G. Distributing a metabolic pathway among a microbial consortium enhances production of natural products. Nat. Biotechnol. 33, 377–383 (2015).
pubmed: 25558867 pmcid: 4867547 doi: 10.1038/nbt.3095
Biggs, B. W. et al. Orthogonal assays clarify the oxidative biochemistry of taxol P450 CYP725A4. ACS Chem. Biol. 11, 1445–1451 (2016).
pubmed: 26930136 doi: 10.1021/acschembio.5b00968
Edgar, S. et al. Mechanistic insights into taxadiene epoxidation by taxadiene-5α-hydroxylase. ACS Chem. Biol. 11, 460–469 (2016).
pubmed: 26677870 doi: 10.1021/acschembio.5b00767
Wheeler, A. L. et al. Taxol biosynthesis: differential transformations of taxadien-5 alpha-ol and its acetate ester by cytochrome P450 hydroxylases from Taxus suspension cells. Arch. Biochem. Biophys. 390, 265–278 (2001).
pubmed: 11396929 doi: 10.1006/abbi.2001.2377
Biggs, B. W. et al. Overcoming heterologous protein interdependency to optimize P450-mediated Taxol precursor synthesis in Escherichia coli. Proc. Natl Acad. Sci. USA 113, 3209–3214 (2016).
pubmed: 26951651 pmcid: 4812725 doi: 10.1073/pnas.1515826113
Walker, K., Schoendorf, A. & Croteau, R. Molecular cloning of a taxa-4(20),11(12)-dien-5α-ol-O-acetyl transferase cDNA from Taxus and functional expression in Escherichia coli. Arch. Biochem. Biophys. 374, 371–380 (2000).
pubmed: 10666320 doi: 10.1006/abbi.1999.1609
Schoendorf, A., Rithner, C. D., Williams, R. M. & Croteau, R. B. Molecular cloning of a cytochrome P450 taxane 10β-hydroxylase cDNA from Taxus and functional expression in yeast. Proc. Natl Acad. Sci. USA 98, 1501–1506 (2001).
pubmed: 11171980 pmcid: 29286 doi: 10.1073/pnas.98.4.1501
Jennewein, S., Rithner, C. D., Williams, R. M. & Croteau, R. B. Taxol biosynthesis: taxane 13α-hydroxylase is a cytochrome P450-dependent monooxygenase. Proc. Natl Acad. Sci. USA 98, 13595–13600 (2001).
pubmed: 11707604 pmcid: 61086 doi: 10.1073/pnas.251539398
Walker, K. & Croteau, R. Molecular cloning of a 10-deacetylbaccatin III-10-O-acetyl transferase cDNA from Taxus and functional expression in Escherichia coli. Proc. Natl Acad. Sci. USA 97, 583–587 (2000).
pubmed: 10639122 pmcid: 15373 doi: 10.1073/pnas.97.2.583
Jonguitud Borrego, N. Production of novel taxane intermediates of anticancer drug Taxol using microbial consortia. [Doctoral dissertation, The University of Edinburgh] Edinburgh Research Archive. (2023).
Sainsbury, F., Thuenemann, E. C. & Lomonossoff, G. P. pEAQ: versatile expression vectors for easy and quick transient expression of heterologous proteins in plants. Plant Biotechnol. J. 7, 682–693 (2009).
pubmed: 19627561 doi: 10.1111/j.1467-7652.2009.00434.x
De La Peña, R. & Sattely, E. S. Rerouting plant terpene biosynthesis enables momilactone pathway elucidation. Nat. Chem. Biol. 17, 205–212 (2021).
pubmed: 33106662 doi: 10.1038/s41589-020-00669-3
Reider Apel, A. et al. A Cas9-based toolkit to program gene expression in Saccharomyces cerevisiae. Nucleic Acids Res. 45, 496–508 (2017).
pubmed: 27899650 doi: 10.1093/nar/gkw1023
Rubenstein, S. M., Vazquez, A., Sanz-Cervera, J. F. & Williams, R. M. Synthesis of stable and radioisotopomers of Taxa-4(5),11(12)-diene, Taxa-4(20), 11(12)-diene and Taxa-4(20), 11(12)-dien-5-α-ol, early intermediates in Taxol® biosynthesis. J. Label. Comp. Radiopharm. 43, 481–491 (2000).
doi: 10.1002/(SICI)1099-1344(200004)43:5<481::AID-JLCR334>3.0.CO;2-O
Chau, M., Walker, K., Long, R. & Croteau, R. Regioselectivity of taxoid-O-acetyltransferases: heterologous expression and characterization of a new taxadien-5α-ol-O-acetyltransferase. Arch. Biochem. Biophys. 430, 237–246 (2004).
pubmed: 15369823 doi: 10.1016/j.abb.2004.07.013
Edgar, S., Li, F. S., Qiao, K., Weng, J. K. & Stephanopoulos, G. Engineering of taxadiene synthase for improved selectivity and yield of a key Taxol biosynthetic intermediate. ACS Synth. Biol. 6, 201–205 (2017).
pubmed: 27794603 doi: 10.1021/acssynbio.6b00206
Lau, W. & Sattely, E. S. Six enzymes from mayapple that complete the biosynthetic pathway to the etoposide aglycone. Science 349, 1224–1228 (2015).
pubmed: 26359402 pmcid: 6861171 doi: 10.1126/science.aac7202
Sarrion-Perdigones, A. et al. GoldenBraid 2.0: a comprehensive DNA assembly framework for plant synthetic biology. Plant Physiol. 162, 1618–1631 (2013).
pubmed: 23669743 pmcid: 3707536 doi: 10.1104/pp.113.217661
Ahn, T., Guengerich, F. P. & Yun, C. H. Membrane insertion of cytochrome P450 1A2 promoted by anionic phospholipids. Biochemistry 37, 12860–12866 (1998).
pubmed: 9737864 doi: 10.1021/bi980804f
Laursen, T. et al. Characterization of a dynamic metabolon producing the defense compound dhurrin in sorghum. Science 354, 890–893 (2016).
pubmed: 27856908 doi: 10.1126/science.aag2347
Menhard, B. & Zenk, M. H. Purification and characterization of acetyl coenzyme A: 10-hydroxytaxane O-acetyltransferase from cell suspension cultures of Taxus chinensis. Phytochemistry 50, 763–774 (1999).
pubmed: 10192963 doi: 10.1016/S0031-9422(98)00674-8
Schultz, B. J., Kim, S. Y., Lau, W. & Sattely, E. S. Total biosynthesis for milligram-scale production of etoposide intermediates in a plant chassis. J. Am. Chem. Soc. 141, 19231–19235 (2019).
pubmed: 31755709 pmcid: 7380830 doi: 10.1021/jacs.9b10717
Luo, X. et al. Complete biosynthesis of cannabinoids and their unnatural analogues in yeast. Nature 567, 123–126 (2019).
pubmed: 30814733 doi: 10.1038/s41586-019-0978-9
Li, Z. et al. Engineering cytochrome P450 enzyme systems for biomedical and biotechnological applications. J. Biol. Chem. 295, 833–849 (2020).
pubmed: 31811088 doi: 10.1016/S0021-9258(17)49939-X
Hausjell, J., Halbwirth, H. & Spadiut, O. Recombinant production of eukaryotic cytochrome P450s in microbial cell factories. Biosci. Rep. 38, BSR20171290 (2018).
pubmed: 29436484 pmcid: 5835717 doi: 10.1042/BSR20171290
Shang, Y. & Huang, S. Engineering plant cytochrome P450s for enhanced synthesis of natural products: past achievements and future perspectives. Plant Commun. 1, 100012 (2020).
pubmed: 33404545 doi: 10.1016/j.xplc.2019.100012
McDaniel, R., Ebert-Khosla, S., Hopwood, D. A. & Khosla, C. Engineered biosynthesis of novel polyketides: actVII and actIV genes encode aromatase and cyclase enzymes, respectively. J. Am. Chem. Soc. 116, 10855–10859 (1994).
doi: 10.1021/ja00103a001
Paddon, C. J. et al. High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 496, 528–532 (2013).
pubmed: 23575629 doi: 10.1038/nature12051
Michener, J. K., Nielsen, J. & Smolke, C. D. Identification and treatment of heme depletion attributed to overexpression of a lineage of evolved P450 monooxygenases. Proc. Natl Acad. Sci. USA 109, 19504–19509 (2012).
pubmed: 23129650 pmcid: 3511110 doi: 10.1073/pnas.1212287109
Geisler, K., Jensen, N. B., Yuen, M. M. S., Madilao, L. & Bohlmann, J. Modularity of conifer diterpene resin acid biosynthesis: P450 enzymes of different CYP720B clades use alternative substrates and converge on the same products. Plant Physiol. 171, 152–164 (2016).
pubmed: 26936895 pmcid: 4854711 doi: 10.1104/pp.16.00180
Forman, V. et al. A gene cluster in Ginkgo biloba encodes unique multifunctional cytochrome P450s that initiate ginkgolide biosynthesis. Nat. Commun. 13, 5143 (2022).
pubmed: 36050299 pmcid: 9436924 doi: 10.1038/s41467-022-32879-9
Galanie, S., Thodey, K., Trenchard, I. J., Filsinger Interrante, M. & Smolke, C. D. Complete biosynthesis of opioids in yeast. Science 349, 1095–1100 (2015).
pubmed: 26272907 pmcid: 4924617 doi: 10.1126/science.aac9373
Huang, A. C. et al. A specialized metabolic network selectively modulates Arabidopsis root microbiota. Science 364, eaau6389 (2019).
pubmed: 31073042 doi: 10.1126/science.aau6389
De La Peña, R. et al. Complex scaffold remodeling in plant triterpene biosynthesis. Science 379, 361–368 (2023).
pubmed: 36701471 doi: 10.1126/science.adf1017
Pateraki, I. et al. Total biosynthesis of the cyclic AMP booster forskolin from Coleus forskohlii. Elife 6, e23001 (2017).
pubmed: 28290983 pmcid: 5388535 doi: 10.7554/eLife.23001
Lanier, E. R., Andersen, T. B. & Hamberger, B. Plant terpene specialized metabolism: complex networks or simple linear pathways? Plant J. 114, 1178–1201 (2023).
pubmed: 36891828 doi: 10.1111/tpj.16177
Kaspera, R. & Croteau, R. Cytochrome P450 oxygenases of Taxol biosynthesis. Phytochem. Rev. 5, 433–444 (2006).
pubmed: 20622990 pmcid: 2901147 doi: 10.1007/s11101-006-9006-4
Williams, D. C. et al. Heterologous expression and characterization of a ‘Pseudomature’ form of taxadiene synthase involved in paclitaxel (Taxol) biosynthesis and evaluation of a potential intermediate and inhibitors of the multistep diterpene cyclization reaction. Arch. Biochem. Biophys. 379, 137–146 (2000).
pubmed: 10864451 doi: 10.1006/abbi.2000.1865

Auteurs

Jack Chun-Ting Liu (JC)

Department of Chemistry, Stanford University, Stanford, CA, USA.

Ricardo De La Peña (R)

Department of Chemical Engineering, Stanford University, Stanford, CA, USA.

Christian Tocol (C)

Department of Chemical Engineering, Stanford University, Stanford, CA, USA.

Elizabeth S Sattely (ES)

Department of Chemical Engineering, Stanford University, Stanford, CA, USA. sattely@stanford.edu.
Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA. sattely@stanford.edu.

Classifications MeSH