Tissue-location-specific transcription programs drive tumor dependencies in colon cancer.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
15 Feb 2024
15 Feb 2024
Historique:
received:
16
05
2023
accepted:
30
01
2024
medline:
16
2
2024
pubmed:
16
2
2024
entrez:
15
2
2024
Statut:
epublish
Résumé
Cancers of the same tissue-type but in anatomically distinct locations exhibit different molecular dependencies for tumorigenesis. Proximal and distal colon cancers exemplify such characteristics, with BRAF
Identifiants
pubmed: 38360902
doi: 10.1038/s41467-024-45605-4
pii: 10.1038/s41467-024-45605-4
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1384Subventions
Organisme : U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)
ID : R01CA230995
Organisme : U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)
ID : R01CA229240
Organisme : U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
ID : U01AG066101
Informations de copyright
© 2024. The Author(s).
Références
Weisenberger, D. J. et al. CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nat. Genet. 38, 787–793 (2006).
pubmed: 16804544
doi: 10.1038/ng1834
Yamauchi, M. et al. Assessment of colorectal cancer molecular features along bowel subsites challenges the conception of distinct dichotomy of proximal versus distal colorectum. Gut 61, 847–854 (2012).
pubmed: 22427238
doi: 10.1136/gutjnl-2011-300865
Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature 487, 330–337 (2012).
doi: 10.1038/nature11252
Toyota, M. et al. CpG island methylator phenotype in colorectal cancer. Proc. Natl Acad. Sci. USA 96, 8681–8686 (1999).
pubmed: 10411935
pmcid: 17576
doi: 10.1073/pnas.96.15.8681
Huyghe, J. R. et al. Genetic architectures of proximal and distal colorectal cancer are partly distinct. Gut 70, 1325–1334 (2021).
pubmed: 33632709
doi: 10.1136/gutjnl-2020-321534
Lee, M. S., Menter, D. G. & Kopetz, S. Right versus left colon cancer biology: integrating the consensus molecular subtypes. J. Natl Compr. Cancer Netw. 15, 411–419 (2017).
doi: 10.6004/jnccn.2017.0038
Dejea, C. M. et al. Microbiota organization is a distinct feature of proximal colorectal cancers. Proc. Natl Acad. Sci. USA 111, 18321–18326 (2014).
pubmed: 25489084
pmcid: 4280621
doi: 10.1073/pnas.1406199111
Flemer, B. et al. Tumour-associated and non-tumour-associated microbiota in colorectal cancer. Gut 66, 633–643 (2017).
pubmed: 26992426
doi: 10.1136/gutjnl-2015-309595
Glebov, O. K. et al. Distinguishing right from left colon by the pattern of gene expression. Cancer Epidemiol. Biomark. Prev. 12, 755–762 (2003).
Carro, M. S. et al. The transcriptional network for mesenchymal transformation of brain tumours. Nature 463, 318–325 (2010).
pubmed: 20032975
doi: 10.1038/nature08712
Paull, E. O. et al. A modular master regulator landscape controls cancer transcriptional identity. Cell 184, 334–351.e20 (2021).
pubmed: 33434495
pmcid: 8103356
doi: 10.1016/j.cell.2020.11.045
Lo, Y.-H. et al. A CRISPR/Cas9-engineered ARID1A-deficient human gastric cancer organoid model reveals essential and nonessential modes of oncogenic transformation. Cancer Discov. 11, 1562–1581 (2021).
pubmed: 33451982
pmcid: 8346515
doi: 10.1158/2159-8290.CD-20-1109
Cramer, P. Organization and regulation of gene transcription. Nature 573, 45–54 (2019).
pubmed: 31462772
doi: 10.1038/s41586-019-1517-4
Lambert, S. A. et al. The human transcription factors. Cell 172, 650–665 (2018).
pubmed: 29425488
doi: 10.1016/j.cell.2018.01.029
Lee, T. I. & Young, R. A. Transcriptional regulation and its misregulation in disease. Cell 152, 1237–1251 (2013).
pubmed: 23498934
pmcid: 3640494
doi: 10.1016/j.cell.2013.02.014
Haigis, K. M., Cichowski, K. & Elledge, S. J. Tissue-specificity in cancer: the rule, not the exception. Science 363, 1150–1151 (2019).
pubmed: 30872507
doi: 10.1126/science.aaw3472
Schneider, G., Schmidt-Supprian, M., Rad, R. & Saur, D. Tissue-specific tumorigenesis: context matters. Nat. Rev. Cancer 17, 239–253 (2017).
pubmed: 28256574
pmcid: 5823237
doi: 10.1038/nrc.2017.5
Easwaran, H. et al. A DNA hypermethylation module for the stem/progenitor cell signature of cancer. Genome Res. 22, 837–849 (2012).
pubmed: 22391556
pmcid: 3337430
doi: 10.1101/gr.131169.111
Sakamoto, N. et al. BRAFV600E cooperates with CDX2 inactivation to promote serrated colorectal tumorigenesis. Elife 6, e20331 (2017).
pubmed: 28072391
pmcid: 5268782
doi: 10.7554/eLife.20331
Tao, Y. et al. Aging-like spontaneous epigenetic silencing facilitates Wnt activation, stemness, and BrafV600E-induced tumorigenesis. Cancer Cell 35, 315–328.e6 (2019).
pubmed: 30753828
pmcid: 6636642
doi: 10.1016/j.ccell.2019.01.005
Banerjee, K. K. et al. Enhancer, transcriptional, and cell fate plasticity precedes intestinal determination during endoderm development. Genes Dev. 32, 1430–1442 (2018).
pubmed: 30366903
pmcid: 6217732
doi: 10.1101/gad.318832.118
Francis, R. et al. Gastrointestinal transcription factors drive lineage-specific developmental programs in organ specification and cancer. Sci. Adv. 5, eaax8898 (2019).
pubmed: 31844668
pmcid: 6905862
doi: 10.1126/sciadv.aax8898
Gao, N., White, P. & Kaestner, K. H. Establishment of intestinal identity and epithelial-mesenchymal signaling by Cdx2. Dev. Cell 16, 588–599 (2009).
pubmed: 19386267
pmcid: 2673200
doi: 10.1016/j.devcel.2009.02.010
Grainger, S., Savory, J. G. A. & Lohnes, D. Cdx2 regulates patterning of the intestinal epithelium. Dev. Biol. 339, 155–165 (2010).
pubmed: 20043902
doi: 10.1016/j.ydbio.2009.12.025
Kumar, N. et al. The lineage-specific transcription factor CDX2 navigates dynamic chromatin to control distinct stages of intestine development. Development 146, dev172189 (2019).
pubmed: 30745430
pmcid: 6432663
doi: 10.1242/dev.172189
Miura, S. & Suzuki, A. Generation of mouse and human organoid-forming intestinal progenitor cells by direct lineage reprogramming. Cell Stem Cell 21, 456–471.e5 (2017).
pubmed: 28943029
doi: 10.1016/j.stem.2017.08.020
San Roman, A. K., Aronson, B. E., Krasinski, S. D., Shivdasani, R. A. & Verzi, M. P. Transcription factors GATA4 and HNF4A control distinct aspects of intestinal homeostasis in conjunction with transcription factor CDX2. J. Biol. Chem. 290, 1850–1860 (2015).
pubmed: 25488664
doi: 10.1074/jbc.M114.620211
Verzi, M. P., Shin, H., San Roman, A. K., Liu, X. S. & Shivdasani, R. A. Intestinal master transcription factor CDX2 controls chromatin access for partner transcription factor binding. Mol. Cell Biol. 33, 281–292 (2013).
pubmed: 23129810
pmcid: 3554120
doi: 10.1128/MCB.01185-12
Dankort, D. et al. A new mouse model to explore the initiation, progression, and therapy of BRAFV600E-induced lung tumors. Genes Dev. 21, 379–384 (2007).
pubmed: 17299132
pmcid: 1804325
doi: 10.1101/gad.1516407
Sato, T. et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459, 262–265 (2009).
pubmed: 19329995
doi: 10.1038/nature07935
Lüchtenborg, M. et al. Mutations in APC, CTNNB1 and K-ras genes and expression of hMLH1 in sporadic colorectal carcinomas from the Netherlands Cohort Study. BMC Cancer 5, 160 (2005).
pubmed: 16356174
pmcid: 1334229
doi: 10.1186/1471-2407-5-160
Sparks, A. B., Morin, P. J., Vogelstein, B. & Kinzler, K. W. Mutational analysis of the APC/beta-catenin/Tcf pathway in colorectal cancer. Cancer Res. 58, 1130–1134 (1998).
pubmed: 9515795
Drost, J. et al. Sequential cancer mutations in cultured human intestinal stem cells. Nature 521, 43–47 (2015).
pubmed: 25924068
doi: 10.1038/nature14415
Li, X. et al. Oncogenic transformation of diverse gastrointestinal tissues in primary organoid culture. Nat. Med. 20, 769–777 (2014).
pubmed: 24859528
pmcid: 4087144
doi: 10.1038/nm.3585
Chawengsaksophak, K., James, R., Hammond, V. E., Köntgen, F. & Beck, F. Homeosis and intestinal tumours in Cdx2 mutant mice. Nature 386, 84–87 (1997).
pubmed: 9052785
doi: 10.1038/386084a0
Beck, F., Chawengsaksophak, K., Waring, P., Playford, R. J. & Furness, J. B. Reprogramming of intestinal differentiation and intercalary regeneration in Cdx2 mutant mice. Proc. Natl Acad. Sci. USA 96, 7318–7323 (1999).
pubmed: 10377412
pmcid: 22083
doi: 10.1073/pnas.96.13.7318
Jung, P. et al. Isolation and in vitro expansion of human colonic stem cells. Nat. Med. 17, 1225–1227 (2011).
pubmed: 21892181
doi: 10.1038/nm.2470
Zetsche, B. et al. Multiplex gene editing by CRISPR-Cpf1 using a single crRNA array. Nat. Biotechnol. 35, 31–34 (2017).
pubmed: 27918548
doi: 10.1038/nbt.3737
Sena, P. et al. Subcellular localization of beta-catenin and APC proteins in colorectal preneoplastic and neoplastic lesions. Cancer Lett. 241, 203–212 (2006).
pubmed: 16298038
doi: 10.1016/j.canlet.2005.10.011
Liberzon, A. et al. The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst. 1, 417–425 (2015).
pubmed: 26771021
pmcid: 4707969
doi: 10.1016/j.cels.2015.12.004
Kosinski, C. et al. Gene expression patterns of human colon tops and basal crypts and BMP antagonists as intestinal stem cell niche factors. Proc. Natl Acad. Sci. USA 104, 15418–15423 (2007).
pubmed: 17881565
pmcid: 2000506
doi: 10.1073/pnas.0707210104
Parikh, K. et al. Colonic epithelial cell diversity in health and inflammatory bowel disease. Nature 567, 49–55 (2019).
pubmed: 30814735
doi: 10.1038/s41586-019-0992-y
Merenda, A., Fenderico, N. & Maurice, M. M. Wnt signaling in 3D: recent advances in the applications of intestinal organoids. Trends Cell Biol. 30, 60–73 (2020).
pubmed: 31718893
doi: 10.1016/j.tcb.2019.10.003
Garrison, W. D. et al. Hepatocyte nuclear factor 4alpha is essential for embryonic development of the mouse colon. Gastroenterology 130, 1207–1220 (2006).
pubmed: 16618389
doi: 10.1053/j.gastro.2006.01.003
Tetteh, P. W. et al. Generation of an inducible colon-specific Cre enzyme mouse line for colon cancer research. Proc. Natl Acad. Sci. USA 113, 11859–11864 (2016).
pubmed: 27708166
pmcid: 5081651
doi: 10.1073/pnas.1614057113
Bae, J. M., Lee, T. H., Cho, N.-Y., Kim, T.-Y. & Kang, G. H. Loss of CDX2 expression is associated with poor prognosis in colorectal cancer patients. World J. Gastroenterol. 21, 1457–1467 (2015).
pubmed: 25663765
pmcid: 4316088
doi: 10.3748/wjg.v21.i5.1457
Missiaglia, E. et al. Distal and proximal colon cancers differ in terms of molecular, pathological, and clinical features. Ann. Oncol. 25, 1995–2001 (2014).
pubmed: 25057166
doi: 10.1093/annonc/mdu275
San Roman, A. K., Tovaglieri, A., Breault, D. T. & Shivdasani, R. A. Distinct processes and transcriptional targets underlie CDX2 requirements in intestinal stem cells and differentiated villus cells. Stem Cell Rep. 5, 673–681 (2015).
doi: 10.1016/j.stemcr.2015.09.006
Verzi, M. P., Shin, H., Ho, L.-L., Liu, X. S. & Shivdasani, R. A. Essential and redundant functions of caudal family proteins in activating adult intestinal genes. Mol. Cell Biol. 31, 2026–2039 (2011).
pubmed: 21402776
pmcid: 3133364
doi: 10.1128/MCB.01250-10
James, R., Erler, T. & Kazenwadel, J. Structure of the murine homeobox gene cdx-2. Expression in embryonic and adult intestinal epithelium. J. Biol. Chem. 269, 15229–15237 (1994).
pubmed: 7910823
doi: 10.1016/S0021-9258(17)36596-1
Yamamoto, E. et al. Molecular dissection of premalignant colorectal lesions reveals early onset of the CpG island methylator phenotype. Am. J. Pathol. 181, 1847–1861 (2012).
pubmed: 22995252
doi: 10.1016/j.ajpath.2012.08.007
DeStefano Shields, C. E. et al. Bacterial-driven inflammation and mutant BRAF expression combine to promote murine colon tumorigenesis that is sensitive to immune checkpoint therapy. Cancer Discov. 11, 1792–1807 (2021).
pubmed: 33632774
pmcid: 8295175
doi: 10.1158/2159-8290.CD-20-0770
Weiss, J. M. et al. Anatomic position determines oncogenic specificity in melanoma. Nature 604, 354–361 (2022).
pubmed: 35355015
pmcid: 9355078
doi: 10.1038/s41586-022-04584-6
Weeber, F. et al. Preserved genetic diversity in organoids cultured from biopsies of human colorectal cancer metastases. Proc. Natl Acad. Sci. USA 112, 13308–13311 (2015).
pubmed: 26460009
pmcid: 4629330
doi: 10.1073/pnas.1516689112
Merlos-Suárez, A. et al. The intestinal stem cell signature identifies colorectal cancer stem cells and predicts disease relapse. Cell Stem Cell 8, 511–524 (2011).
pubmed: 21419747
doi: 10.1016/j.stem.2011.02.020
Murata, K. et al. Ascl2-dependent cell dedifferentiation drives regeneration of ablated intestinal stem cells. Cell Stem Cell 26, 377–390.e6 (2020).
pubmed: 32084390
pmcid: 7147146
doi: 10.1016/j.stem.2019.12.011
Walker, E. M., Thompson, C. A., Kohlnhofer, B. M., Faber, M. L. & Battle, M. A. Characterization of the developing small intestine in the absence of either GATA4 or GATA6. BMC Res. Notes 7, 902, https://doi.org/10.1186/1756-0500-7-902 (2014).
doi: 10.1186/1756-0500-7-902
pubmed: 25495347
pmcid: 4307969
Smathers, R. L. & Petersen, D. R. The human fatty acid-binding protein family: evolutionary divergences and functions. Hum. Genom. 5, 170–191 (2011).
doi: 10.1186/1479-7364-5-3-170
Chan, C. W. M. et al. Gastrointestinal differentiation marker Cytokeratin 20 is regulated by homeobox gene CDX1. Proc. Natl Acad. Sci. USA 106, 1936–1941 (2009).
pubmed: 19188603
pmcid: 2644142
doi: 10.1073/pnas.0812904106
Johansson, M. E. V., Larsson, J. M. H. & Hansson, G. C. The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host-microbial interactions. Proc. Natl Acad. Sci. USA 108(Suppl. 1), 4659–4665 (2011).
pubmed: 20615996
doi: 10.1073/pnas.1006451107
Schmidl, C., Rendeiro, A. F., Sheffield, N. C. & Bock, C. ChIPmentation: fast, robust, low-input ChIP-seq for histones and transcription factors. Nat. Methods 12, 963–965 (2015).
pubmed: 26280331
pmcid: 4589892
doi: 10.1038/nmeth.3542
Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 14, 417–419 (2017).
pubmed: 28263959
pmcid: 5600148
doi: 10.1038/nmeth.4197
Soneson, C., Love, M. I. & Robinson, M. D. Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. F1000Research 4, 1521 (2015).
pubmed: 26925227
doi: 10.12688/f1000research.7563.1
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
pubmed: 25516281
pmcid: 4302049
doi: 10.1186/s13059-014-0550-8
Yu, G., Wang, L.-G., Han, Y. & He, Q.-Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16, 284–287 (2012).
pubmed: 22455463
pmcid: 3339379
doi: 10.1089/omi.2011.0118
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
pubmed: 24695404
pmcid: 4103590
doi: 10.1093/bioinformatics/btu170
Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).
pubmed: 22388286
pmcid: 3322381
doi: 10.1038/nmeth.1923
Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
pubmed: 19505943
pmcid: 2723002
doi: 10.1093/bioinformatics/btp352
Feng, J., Liu, T., Qin, B., Zhang, Y. & Liu, X. S. Identifying ChIP-seq enrichment using MACS. Nat. Protoc. 7, 1728–1740 (2012).
pubmed: 22936215
doi: 10.1038/nprot.2012.101
Yu, G., Wang, L.-G. & He, Q.-Y. ChIPseeker: an R/Bioconductor package for ChIP peak annotation, comparison and visualization. Bioinformatics 31, 2382–2383 (2015).
pubmed: 25765347
doi: 10.1093/bioinformatics/btv145
Ross-Innes, C. S. et al. Differential oestrogen receptor binding is associated with clinical outcome in breast cancer. Nature 481, 389–393 (2012).
pubmed: 22217937
pmcid: 3272464
doi: 10.1038/nature10730
Marisa, L. et al. Gene expression classification of colon cancer into molecular subtypes: characterization, validation, and prognostic value. PLoS Med. 10, e1001453 (2013).
pubmed: 23700391
pmcid: 3660251
doi: 10.1371/journal.pmed.1001453
Dalerba, P. et al. CDX2 as a prognostic biomarker in stage II and stage III colon cancer. N. Engl. J. Med. 374, 211–222 (2016).
pubmed: 26789870
pmcid: 4784450
doi: 10.1056/NEJMoa1506597
Bialkowska, A. B., Ghaleb, A. M., Nandan, M. O. & Yang, V. W. Improved Swiss-rolling technique for intestinal tissue preparation for immunohistochemical and immunofluorescent analyses. J. Vis. Exp. https://doi.org/10.3791/54161 (2016).
Yang, L. et al. Tissue-location specific transcription programs drive tumor dependencies in colon cancer. https://doi.org/10.5281/zenodo.10309481 .