Compressive stress triggers fibroblasts spreading over cancer cells to generate carcinoma in situ organization.


Journal

Communications biology
ISSN: 2399-3642
Titre abrégé: Commun Biol
Pays: England
ID NLM: 101719179

Informations de publication

Date de publication:
15 Feb 2024
Historique:
received: 09 03 2022
accepted: 02 02 2024
medline: 16 2 2024
pubmed: 16 2 2024
entrez: 15 2 2024
Statut: epublish

Résumé

At the early stage of tumor progression, fibroblasts are located at the outer edges of the tumor, forming an encasing layer around it. In this work, we have developed a 3D in vitro model where fibroblasts' layout resembles the structure seen in carcinoma in situ. We use a microfluidic encapsulation technology to co-culture fibroblasts and cancer cells within hollow, permeable, and elastic alginate shells. We find that in the absence of spatial constraint, fibroblasts and cancer cells do not mix but segregate into distinct aggregates composed of individual cell types. However, upon confinement, fibroblasts enwrap cancer cell spheroid. Using a combination of biophysical methods and live imaging, we find that buildup of compressive stress is required to induce fibroblasts spreading over the aggregates of tumor cells. We propose that compressive stress generated by the tumor growth might be a mechanism that prompts fibroblasts to form a capsule around the tumor.

Identifiants

pubmed: 38360973
doi: 10.1038/s42003-024-05883-6
pii: 10.1038/s42003-024-05883-6
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

184

Subventions

Organisme : EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
ID : CoG 772487

Informations de copyright

© 2024. The Author(s).

Références

Kalluri, R. The biology and function of fibroblasts in cancer. Nat. Rev. Cancer 16, 582–598 (2016).
pubmed: 27550820 doi: 10.1038/nrc.2016.73
Sahai, E. et al. A framework for advancing our understanding of cancer-associated fibroblasts. Nat. Rev. Cancer 20, 174–186 (2020).
pubmed: 31980749 pmcid: 7046529 doi: 10.1038/s41568-019-0238-1
Labernadie, A. et al. A mechanically active heterotypic E-cadherin/N-cadherin adhesion enables fibroblasts to drive cancer cell invasion. Nat. Cell Biol. 19, 224–237 (2017).
pubmed: 28218910 pmcid: 5831988 doi: 10.1038/ncb3478
Attieh, Y. et al. Cancer-associated fibroblasts lead tumor invasion through integrin-beta 3-dependent fibronectin assembly. J. Cell Biol. 216, 3509–3520 (2017).
pubmed: 28931556 pmcid: 5674886 doi: 10.1083/jcb.201702033
Glentis, A. et al. Cancer-associated fibroblasts induce metalloprotease-independent cancer cell invasion of the basement membrane. Nat. Commun. 8, 13 (2017).
doi: 10.1038/s41467-017-00985-8
De Wever, O. et al. Tenascin-C and SF/HGF produced by myofibroblasts in vitro provide convergent pro-invasive signals to human colon cancer cells through RhoA and Rac. FASEB J. 18, 1016–1018 (2004).
pubmed: 15059978 doi: 10.1096/fj.03-1110fje
Gaggioli, C. et al. Fibroblast-led collective invasion of carcinoma cells with differing roles for RhoGTPases in leading and following cells. Nat. Cell Biol. 9, 1392–1400 (2007).
pubmed: 18037882 doi: 10.1038/ncb1658
Lenos, K. J. et al. Stem cell functionality is microenvironmentally defined during tumour expansion and therapy response in colon cancer. Nat. Cell Biol. 20, 1193–1202 (2018).
pubmed: 30177776 pmcid: 6163039 doi: 10.1038/s41556-018-0179-z
Attieh, Y. & Vignjevic, D. M. The hallmarks of CAFs in cancer invasion. Eur. J. Cell Biol. 95, 493–502 (2016).
pubmed: 27575401 doi: 10.1016/j.ejcb.2016.07.004
Barbazan, J. & Matic Vignjevic, D. Cancer associated fibroblasts: is the force the path to the dark side? Curr. Opin. Cell Biol. 56, 71–79 (2019).
pubmed: 30308331 doi: 10.1016/j.ceb.2018.09.002
Ozdemir, B. C. et al. Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival. Cancer Cell 25, 719–734 (2014).
pubmed: 24856586 pmcid: 4180632 doi: 10.1016/j.ccr.2014.04.005
Garcia-Vicien, G., Mezheyeuski, A., Banuls, M., Ruiz-Roig, N. & Mollevi, D. G. The tumor microenvironment in liver metastases from colorectal carcinoma in the context of the histologic growth patterns. Int. J. Mol. Sci. 22, 1544 (2021).
pubmed: 33546502 pmcid: 7913731 doi: 10.3390/ijms22041544
Staneva, R. et al. Cancer cells in the tumor core exhibit spatially coordinated migration patterns. J. Cell Sci. 132, jcs220277 (2019).
pubmed: 30765467 doi: 10.1242/jcs.220277
Barbazan J. et al. Cancer-associated fibroblasts actively compress cancer cells and modulate mechanotransduction. Nat Commun. 14, 6966 (2023).
Stylianopoulos, T. et al. Causes, consequences, and remedies for growth-induced solid stress in murine and human tumors. Proc. Natl Acad. Sci. USA 109, 15101–15108 (2012).
pubmed: 22932871 pmcid: 3458380 doi: 10.1073/pnas.1213353109
Alessandri, K. et al. Cellular capsules as a tool for multicellular spheroid production and for investigating the mechanics of tumor progression in vitro. Proc. Natl Acad. Sci. USA 110, 14843–14848 (2013).
pubmed: 23980147 pmcid: 3773746 doi: 10.1073/pnas.1309482110
Foty, R. A. & Steinberg, M. S. The differential adhesion hypothesis: a direct evaluation. Dev. Biol. 278, 255–263 (2005).
pubmed: 15649477 doi: 10.1016/j.ydbio.2004.11.012
Maitre, J. L. et al. Adhesion functions in cell sorting by mechanically coupling the cortices of adhering cells. Science 338, 253–256 (2012).
pubmed: 22923438 doi: 10.1126/science.1225399
Song, W. et al. Dynamic self-organization of microwell-aggregated cellular mixtures. Soft Matter 12, 5739–5746 (2016).
pubmed: 27275624 doi: 10.1039/C6SM00456C
de Gennes, P.-G., Brochard-Wyart, F. & Quere, D. Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves. (Springer 2003).
Douezan, S. & Brochard-Wyart, F. Dewetting of cellular monolayers. Eur. Phys. J. E 35, 1–6 (2012).
doi: 10.1140/epje/i2012-12034-9
Perez-Gonzalez, C. et al. Active wetting of epithelial tissues. Nat. Phys. 15, 79–88 (2019).
pubmed: 31537984 doi: 10.1038/s41567-018-0279-5
Liu, Y. J. et al. Confinement and low adhesion induce fast amoeboid migration of slow mesenchymal cells. Cell 160, 659–672 (2015).
pubmed: 25679760 doi: 10.1016/j.cell.2015.01.007
Tse, J. M. et al. Mechanical compression drives cancer cells toward invasive phenotype. Proc. Natl Acad. Sci. USA 109, 911–916 (2012).
pubmed: 22203958 doi: 10.1073/pnas.1118910109
Scarpa, E. et al. Cadherin switch during EMT in neural crest cells leads to contact inhibition of locomotion via repolarization of forces. Dev. Cell 34, 421–434 (2015).
pubmed: 26235046 pmcid: 4552721 doi: 10.1016/j.devcel.2015.06.012
Haeger, A., Krause, M., Wolf, K. & Friedl, P. Cell jamming: collective invasion of mesenchymal tumor cells imposed by tissue confinement. Biochim. Biophys. Acta 1840, 2386–2395 (2014).
pubmed: 24721714 doi: 10.1016/j.bbagen.2014.03.020
McMillen, P. & Holley, S. A. Integration of cell-cell and cell-ECM adhesion in vertebrate morphogenesis. Curr. Opin. Cell Biol. 36, 48–53 (2015).
pubmed: 26189063 pmcid: 4639458 doi: 10.1016/j.ceb.2015.07.002
Robinson, E. E., Foty, R. A. & Corbett, S. A. Fibronectin matrix assembly regulates alpha5beta1-mediated cell cohesion. Mol. Biol. Cell 15, 973–981 (2004).
pubmed: 14718567 pmcid: 363054 doi: 10.1091/mbc.e03-07-0528
Pankov, R., Momchilova, A., Stefanova, N. & Yamada, K. M. Characterization of stitch adhesions: fibronectin-containing cell-cell contacts formed by fibroblasts. Exp. Cell Res. 384, 111616 (2019).
pubmed: 31499058 pmcid: 6778521 doi: 10.1016/j.yexcr.2019.111616
Schotz, E. M. et al. Quantitative differences in tissue surface tension influence zebrafish germ layer positioning. HFSP J. 2, 42–56 (2008).
pubmed: 19404452 pmcid: 2640996 doi: 10.2976/1.2834817
Morita, H. et al. The physical basis of coordinated tissue spreading in zebrafish gastrulation. Dev. Cell 40, 354–366.e354 (2017).
pubmed: 28216382 pmcid: 5364273 doi: 10.1016/j.devcel.2017.01.010
Wallmeyer, B., Trinschek, S., Yigit, S., Thiele, U. & Betz, T. Collective cell migration in embryogenesis follows the laws of wetting. Biophys. J. 114, 213–222 (2018).
pubmed: 29320689 pmcid: 5773767 doi: 10.1016/j.bpj.2017.11.011
Guevorkian, K., Gonzalez-Rodriguez, D., Carlier, C., Dufour, S. & Brochard-Wyart, F. Mechanosensitive shivering of model tissues under controlled aspiration. Proc. Natl Acad. Sci. USA 108, 13387–13392 (2011).
pubmed: 21771735 pmcid: 3158194 doi: 10.1073/pnas.1105741108
Guevorkian, K. & Maitre, J. L. Micropipette aspiration: a unique tool for exploring cell and tissue mechanics in vivo. Methods Cell Biol. 139, 187–201 (2017).
pubmed: 28215336 doi: 10.1016/bs.mcb.2016.11.012
Krieg, M. et al. Tensile forces govern germ-layer organization in zebrafish. Nat. Cell Biol. 10, 429–436 (2008).
pubmed: 18364700 doi: 10.1038/ncb1705
Schliffka, M. F. et al. Multiscale analysis of single and double maternal-zygotic Myh9 and Myh10 mutants during mouse preimplantation development. Elife 10, e68536 (2021).
pubmed: 33871354 pmcid: 8096435 doi: 10.7554/eLife.68536
Guevorkian, K., Colbert, M. J., Durth, M., Dufour, S. & Brochard-Wyart, F. Aspiration of biological viscoelastic drops. Phys. Rev. Lett. 104, 218101 (2010).
pubmed: 20867138 doi: 10.1103/PhysRevLett.104.218101
Saffman, P. G. & Taylor, G. The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid. Proc. R. Soc. London 245, 312–329 (1958).
Biggins, J. S. & Mahadevan, L. Meniscus instabilities in thin elastic layers. Soft Matter 14, 7680–7689 (2018).
pubmed: 30229802 doi: 10.1039/C8SM01033A
Biggins, J. S., Saintyves, B., Wei, Z., Bouchaud, E. & Mahadevan, L. Digital instability of a confined elastic meniscus. Proc. Natl Acad. Sci. USA 110, 12545–12548 (2013).
pubmed: 23858433 pmcid: 3732922 doi: 10.1073/pnas.1302269110
Helmlinger, G., Netti, P. A., Lichtenbeld, H. C., Melder, R. J. & Jain, R. K. Solid stress inhibits the growth of multicellular tumor spheroids. Nat. Biotechnol. 15, 778–783 (1997).
pubmed: 9255794 doi: 10.1038/nbt0897-778
Montel, F. et al. Stress clamp experiments on multicellular tumor spheroids. Phys. Rev. Lett. 107, 188102 (2011).
pubmed: 22107677 doi: 10.1103/PhysRevLett.107.188102
Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).
pubmed: 22743772 doi: 10.1038/nmeth.2019
Desprat, N., Guiroy, A. & Asnacios, A. Microplates-based rheometer for a single living cell. Rev. Sci. Instrum. 77, 055111 (2006).
doi: 10.1063/1.2202921
Mgharbel, A., Delanoe-Ayari, H. & Rieu, J. P. Measuring accurately liquid and tissue surface tension with a compression plate tensiometer. HFSP J. 3, 213–221 (2009).
pubmed: 19949443 pmcid: 2714955 doi: 10.2976/1.3116822
Bufi, N., Durand-Smet, P. & Asnacios, A. Single-cell mechanics: the parallel plates technique. Methods Cell Biol. 125, 187–209 (2015).
pubmed: 25640430 doi: 10.1016/bs.mcb.2014.11.002

Auteurs

Fabien Bertillot (F)

Institut Curie, PSL Research University, CNRS UMR 144, F-75005, Paris, France.
Department of Cell and Tissue Dynamics, Max Planck Institute for Molecular Biomedicine, 48149, Münster, Germany.

Laetitia Andrique (L)

LP2N, Laboratoire Photonique Numérique et Nanosciences, Univ. Bordeaux, F-33400, Talence, France.
Institut d'Optique Graduate School & CNRS UMR 5298, F-33400, Talence, France.
VoxCell, TBM-Core, CNRS UMS 3427 & INSERM US 005, Univ. Bordeaux, F-33000, Bordeaux, France.

Carlos Ureña Martin (C)

Institut Curie, PSL Research University, CNRS UMR3666-INSERM U1143, F-75005, Paris, France.

Olivier Zajac (O)

Institut Curie, PSL Research University, CNRS UMR 144, F-75005, Paris, France.

Ludmilla de Plater (L)

Institut Curie, PSL Research University, U934/UMR3215, F-75005, Paris, France.

Michael M Norton (MM)

VoxCell, TBM-Core, CNRS UMS 3427 & INSERM US 005, Univ. Bordeaux, F-33000, Bordeaux, France.

Aurélien Richard (A)

LP2N, Laboratoire Photonique Numérique et Nanosciences, Univ. Bordeaux, F-33400, Talence, France.
Institut d'Optique Graduate School & CNRS UMR 5298, F-33400, Talence, France.
VoxCell, TBM-Core, CNRS UMS 3427 & INSERM US 005, Univ. Bordeaux, F-33000, Bordeaux, France.

Kevin Alessandri (K)

Institut Curie, PSL Research University, CNRS UMR 144, F-75005, Paris, France.

Basile G Gurchenkov (BG)

Institut Curie, PSL Research University, CNRS UMR 144, F-75005, Paris, France.

Florian Fage (F)

Laboratoire Matière et Systèmes Complexes, Université Paris Cité, CNRS UMR7057, F-75013, Paris, France.

Atef Asnacios (A)

Laboratoire Matière et Systèmes Complexes, Université Paris Cité, CNRS UMR7057, F-75013, Paris, France.

Christophe Lamaze (C)

Institut Curie, PSL Research University, CNRS UMR3666-INSERM U1143, F-75005, Paris, France.

Moumita Das (M)

Rochester Institute of Technology, Rochester, NY, USA.

Jean- Léon Maître (JL)

Institut Curie, PSL Research University, U934/UMR3215, F-75005, Paris, France.

Pierre Nassoy (P)

LP2N, Laboratoire Photonique Numérique et Nanosciences, Univ. Bordeaux, F-33400, Talence, France. pierre.nassoy@u-bordeaux.fr.
Institut d'Optique Graduate School & CNRS UMR 5298, F-33400, Talence, France. pierre.nassoy@u-bordeaux.fr.

Danijela Matic Vignjevic (D)

Institut Curie, PSL Research University, CNRS UMR 144, F-75005, Paris, France. danijela.vignjevic@curie.fr.

Classifications MeSH