Compressive stress triggers fibroblasts spreading over cancer cells to generate carcinoma in situ organization.
Journal
Communications biology
ISSN: 2399-3642
Titre abrégé: Commun Biol
Pays: England
ID NLM: 101719179
Informations de publication
Date de publication:
15 Feb 2024
15 Feb 2024
Historique:
received:
09
03
2022
accepted:
02
02
2024
medline:
16
2
2024
pubmed:
16
2
2024
entrez:
15
2
2024
Statut:
epublish
Résumé
At the early stage of tumor progression, fibroblasts are located at the outer edges of the tumor, forming an encasing layer around it. In this work, we have developed a 3D in vitro model where fibroblasts' layout resembles the structure seen in carcinoma in situ. We use a microfluidic encapsulation technology to co-culture fibroblasts and cancer cells within hollow, permeable, and elastic alginate shells. We find that in the absence of spatial constraint, fibroblasts and cancer cells do not mix but segregate into distinct aggregates composed of individual cell types. However, upon confinement, fibroblasts enwrap cancer cell spheroid. Using a combination of biophysical methods and live imaging, we find that buildup of compressive stress is required to induce fibroblasts spreading over the aggregates of tumor cells. We propose that compressive stress generated by the tumor growth might be a mechanism that prompts fibroblasts to form a capsule around the tumor.
Identifiants
pubmed: 38360973
doi: 10.1038/s42003-024-05883-6
pii: 10.1038/s42003-024-05883-6
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
184Subventions
Organisme : EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
ID : CoG 772487
Informations de copyright
© 2024. The Author(s).
Références
Kalluri, R. The biology and function of fibroblasts in cancer. Nat. Rev. Cancer 16, 582–598 (2016).
pubmed: 27550820
doi: 10.1038/nrc.2016.73
Sahai, E. et al. A framework for advancing our understanding of cancer-associated fibroblasts. Nat. Rev. Cancer 20, 174–186 (2020).
pubmed: 31980749
pmcid: 7046529
doi: 10.1038/s41568-019-0238-1
Labernadie, A. et al. A mechanically active heterotypic E-cadherin/N-cadherin adhesion enables fibroblasts to drive cancer cell invasion. Nat. Cell Biol. 19, 224–237 (2017).
pubmed: 28218910
pmcid: 5831988
doi: 10.1038/ncb3478
Attieh, Y. et al. Cancer-associated fibroblasts lead tumor invasion through integrin-beta 3-dependent fibronectin assembly. J. Cell Biol. 216, 3509–3520 (2017).
pubmed: 28931556
pmcid: 5674886
doi: 10.1083/jcb.201702033
Glentis, A. et al. Cancer-associated fibroblasts induce metalloprotease-independent cancer cell invasion of the basement membrane. Nat. Commun. 8, 13 (2017).
doi: 10.1038/s41467-017-00985-8
De Wever, O. et al. Tenascin-C and SF/HGF produced by myofibroblasts in vitro provide convergent pro-invasive signals to human colon cancer cells through RhoA and Rac. FASEB J. 18, 1016–1018 (2004).
pubmed: 15059978
doi: 10.1096/fj.03-1110fje
Gaggioli, C. et al. Fibroblast-led collective invasion of carcinoma cells with differing roles for RhoGTPases in leading and following cells. Nat. Cell Biol. 9, 1392–1400 (2007).
pubmed: 18037882
doi: 10.1038/ncb1658
Lenos, K. J. et al. Stem cell functionality is microenvironmentally defined during tumour expansion and therapy response in colon cancer. Nat. Cell Biol. 20, 1193–1202 (2018).
pubmed: 30177776
pmcid: 6163039
doi: 10.1038/s41556-018-0179-z
Attieh, Y. & Vignjevic, D. M. The hallmarks of CAFs in cancer invasion. Eur. J. Cell Biol. 95, 493–502 (2016).
pubmed: 27575401
doi: 10.1016/j.ejcb.2016.07.004
Barbazan, J. & Matic Vignjevic, D. Cancer associated fibroblasts: is the force the path to the dark side? Curr. Opin. Cell Biol. 56, 71–79 (2019).
pubmed: 30308331
doi: 10.1016/j.ceb.2018.09.002
Ozdemir, B. C. et al. Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival. Cancer Cell 25, 719–734 (2014).
pubmed: 24856586
pmcid: 4180632
doi: 10.1016/j.ccr.2014.04.005
Garcia-Vicien, G., Mezheyeuski, A., Banuls, M., Ruiz-Roig, N. & Mollevi, D. G. The tumor microenvironment in liver metastases from colorectal carcinoma in the context of the histologic growth patterns. Int. J. Mol. Sci. 22, 1544 (2021).
pubmed: 33546502
pmcid: 7913731
doi: 10.3390/ijms22041544
Staneva, R. et al. Cancer cells in the tumor core exhibit spatially coordinated migration patterns. J. Cell Sci. 132, jcs220277 (2019).
pubmed: 30765467
doi: 10.1242/jcs.220277
Barbazan J. et al. Cancer-associated fibroblasts actively compress cancer cells and modulate mechanotransduction. Nat Commun. 14, 6966 (2023).
Stylianopoulos, T. et al. Causes, consequences, and remedies for growth-induced solid stress in murine and human tumors. Proc. Natl Acad. Sci. USA 109, 15101–15108 (2012).
pubmed: 22932871
pmcid: 3458380
doi: 10.1073/pnas.1213353109
Alessandri, K. et al. Cellular capsules as a tool for multicellular spheroid production and for investigating the mechanics of tumor progression in vitro. Proc. Natl Acad. Sci. USA 110, 14843–14848 (2013).
pubmed: 23980147
pmcid: 3773746
doi: 10.1073/pnas.1309482110
Foty, R. A. & Steinberg, M. S. The differential adhesion hypothesis: a direct evaluation. Dev. Biol. 278, 255–263 (2005).
pubmed: 15649477
doi: 10.1016/j.ydbio.2004.11.012
Maitre, J. L. et al. Adhesion functions in cell sorting by mechanically coupling the cortices of adhering cells. Science 338, 253–256 (2012).
pubmed: 22923438
doi: 10.1126/science.1225399
Song, W. et al. Dynamic self-organization of microwell-aggregated cellular mixtures. Soft Matter 12, 5739–5746 (2016).
pubmed: 27275624
doi: 10.1039/C6SM00456C
de Gennes, P.-G., Brochard-Wyart, F. & Quere, D. Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves. (Springer 2003).
Douezan, S. & Brochard-Wyart, F. Dewetting of cellular monolayers. Eur. Phys. J. E 35, 1–6 (2012).
doi: 10.1140/epje/i2012-12034-9
Perez-Gonzalez, C. et al. Active wetting of epithelial tissues. Nat. Phys. 15, 79–88 (2019).
pubmed: 31537984
doi: 10.1038/s41567-018-0279-5
Liu, Y. J. et al. Confinement and low adhesion induce fast amoeboid migration of slow mesenchymal cells. Cell 160, 659–672 (2015).
pubmed: 25679760
doi: 10.1016/j.cell.2015.01.007
Tse, J. M. et al. Mechanical compression drives cancer cells toward invasive phenotype. Proc. Natl Acad. Sci. USA 109, 911–916 (2012).
pubmed: 22203958
doi: 10.1073/pnas.1118910109
Scarpa, E. et al. Cadherin switch during EMT in neural crest cells leads to contact inhibition of locomotion via repolarization of forces. Dev. Cell 34, 421–434 (2015).
pubmed: 26235046
pmcid: 4552721
doi: 10.1016/j.devcel.2015.06.012
Haeger, A., Krause, M., Wolf, K. & Friedl, P. Cell jamming: collective invasion of mesenchymal tumor cells imposed by tissue confinement. Biochim. Biophys. Acta 1840, 2386–2395 (2014).
pubmed: 24721714
doi: 10.1016/j.bbagen.2014.03.020
McMillen, P. & Holley, S. A. Integration of cell-cell and cell-ECM adhesion in vertebrate morphogenesis. Curr. Opin. Cell Biol. 36, 48–53 (2015).
pubmed: 26189063
pmcid: 4639458
doi: 10.1016/j.ceb.2015.07.002
Robinson, E. E., Foty, R. A. & Corbett, S. A. Fibronectin matrix assembly regulates alpha5beta1-mediated cell cohesion. Mol. Biol. Cell 15, 973–981 (2004).
pubmed: 14718567
pmcid: 363054
doi: 10.1091/mbc.e03-07-0528
Pankov, R., Momchilova, A., Stefanova, N. & Yamada, K. M. Characterization of stitch adhesions: fibronectin-containing cell-cell contacts formed by fibroblasts. Exp. Cell Res. 384, 111616 (2019).
pubmed: 31499058
pmcid: 6778521
doi: 10.1016/j.yexcr.2019.111616
Schotz, E. M. et al. Quantitative differences in tissue surface tension influence zebrafish germ layer positioning. HFSP J. 2, 42–56 (2008).
pubmed: 19404452
pmcid: 2640996
doi: 10.2976/1.2834817
Morita, H. et al. The physical basis of coordinated tissue spreading in zebrafish gastrulation. Dev. Cell 40, 354–366.e354 (2017).
pubmed: 28216382
pmcid: 5364273
doi: 10.1016/j.devcel.2017.01.010
Wallmeyer, B., Trinschek, S., Yigit, S., Thiele, U. & Betz, T. Collective cell migration in embryogenesis follows the laws of wetting. Biophys. J. 114, 213–222 (2018).
pubmed: 29320689
pmcid: 5773767
doi: 10.1016/j.bpj.2017.11.011
Guevorkian, K., Gonzalez-Rodriguez, D., Carlier, C., Dufour, S. & Brochard-Wyart, F. Mechanosensitive shivering of model tissues under controlled aspiration. Proc. Natl Acad. Sci. USA 108, 13387–13392 (2011).
pubmed: 21771735
pmcid: 3158194
doi: 10.1073/pnas.1105741108
Guevorkian, K. & Maitre, J. L. Micropipette aspiration: a unique tool for exploring cell and tissue mechanics in vivo. Methods Cell Biol. 139, 187–201 (2017).
pubmed: 28215336
doi: 10.1016/bs.mcb.2016.11.012
Krieg, M. et al. Tensile forces govern germ-layer organization in zebrafish. Nat. Cell Biol. 10, 429–436 (2008).
pubmed: 18364700
doi: 10.1038/ncb1705
Schliffka, M. F. et al. Multiscale analysis of single and double maternal-zygotic Myh9 and Myh10 mutants during mouse preimplantation development. Elife 10, e68536 (2021).
pubmed: 33871354
pmcid: 8096435
doi: 10.7554/eLife.68536
Guevorkian, K., Colbert, M. J., Durth, M., Dufour, S. & Brochard-Wyart, F. Aspiration of biological viscoelastic drops. Phys. Rev. Lett. 104, 218101 (2010).
pubmed: 20867138
doi: 10.1103/PhysRevLett.104.218101
Saffman, P. G. & Taylor, G. The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid. Proc. R. Soc. London 245, 312–329 (1958).
Biggins, J. S. & Mahadevan, L. Meniscus instabilities in thin elastic layers. Soft Matter 14, 7680–7689 (2018).
pubmed: 30229802
doi: 10.1039/C8SM01033A
Biggins, J. S., Saintyves, B., Wei, Z., Bouchaud, E. & Mahadevan, L. Digital instability of a confined elastic meniscus. Proc. Natl Acad. Sci. USA 110, 12545–12548 (2013).
pubmed: 23858433
pmcid: 3732922
doi: 10.1073/pnas.1302269110
Helmlinger, G., Netti, P. A., Lichtenbeld, H. C., Melder, R. J. & Jain, R. K. Solid stress inhibits the growth of multicellular tumor spheroids. Nat. Biotechnol. 15, 778–783 (1997).
pubmed: 9255794
doi: 10.1038/nbt0897-778
Montel, F. et al. Stress clamp experiments on multicellular tumor spheroids. Phys. Rev. Lett. 107, 188102 (2011).
pubmed: 22107677
doi: 10.1103/PhysRevLett.107.188102
Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).
pubmed: 22743772
doi: 10.1038/nmeth.2019
Desprat, N., Guiroy, A. & Asnacios, A. Microplates-based rheometer for a single living cell. Rev. Sci. Instrum. 77, 055111 (2006).
doi: 10.1063/1.2202921
Mgharbel, A., Delanoe-Ayari, H. & Rieu, J. P. Measuring accurately liquid and tissue surface tension with a compression plate tensiometer. HFSP J. 3, 213–221 (2009).
pubmed: 19949443
pmcid: 2714955
doi: 10.2976/1.3116822
Bufi, N., Durand-Smet, P. & Asnacios, A. Single-cell mechanics: the parallel plates technique. Methods Cell Biol. 125, 187–209 (2015).
pubmed: 25640430
doi: 10.1016/bs.mcb.2014.11.002