A Novel Heterozygous Variant in AICDA Impairs Ig Class Switching and Somatic Hypermutation in Human B Cells and is Associated with Autosomal Dominant HIGM2 Syndrome.

AICDA HIGM2 Human B cells Ig class switching Somatic hypermutation

Journal

Journal of clinical immunology
ISSN: 1573-2592
Titre abrégé: J Clin Immunol
Pays: Netherlands
ID NLM: 8102137

Informations de publication

Date de publication:
16 Feb 2024
Historique:
received: 24 09 2023
accepted: 21 01 2024
medline: 16 2 2024
pubmed: 16 2 2024
entrez: 16 2 2024
Statut: epublish

Résumé

B cells and their secreted antibodies are fundamental for host-defense against pathogens. The generation of high-affinity class switched antibodies results from both somatic hypermutation (SHM) of the immunoglobulin (Ig) variable region genes of the B-cell receptor and class switch recombination (CSR) which alters the Ig heavy chain constant region. Both of these processes are initiated by the enzyme activation-induced cytidine deaminase (AID), encoded by AICDA. Deleterious variants in AICDA are causal of hyper-IgM syndrome type 2 (HIGM2), a B-cell intrinsic primary immunodeficiency characterised by recurrent infections and low serum IgG and IgA levels. Biallelic variants affecting exons 2, 3 or 4 of AICDA have been identified that impair both CSR and SHM in patients with autosomal recessive HIGM2. Interestingly, B cells from patients with autosomal dominant HIGM2, caused by heterozygous variants (V186X, R190X) located in AICDA exon 5 encoding the nuclear export signal (NES) domain, show abolished CSR but variable SHM. We herein report the immunological and functional phenotype of two related patients presenting with common variable immunodeficiency who were found to have a novel heterozygous variant in AICDA (L189X). This variant led to a truncated AID protein lacking the last 10 amino acids of the NES at the C-terminal domain. Interestingly, patients' B cells carrying the L189X variant exhibited not only greatly impaired CSR but also SHM in vivo, as well as CSR and production of IgG and IgA in vitro. Our findings demonstrate that the NES domain of AID can be essential for SHM, as well as for CSR, thereby refining the correlation between AICDA genotype and SHM phenotype as well as broadening our understanding of the pathophysiology of HIGM disorders.

Identifiants

pubmed: 38363477
doi: 10.1007/s10875-024-01665-1
pii: 10.1007/s10875-024-01665-1
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

66

Subventions

Organisme : National Health and Medical Research Council
ID : 1042925
Organisme : National Health and Medical Research Council
ID : 2017463
Organisme : National Health and Medical Research Council
ID : 1113904

Informations de copyright

© 2024. The Author(s).

Références

LeBien TW, Tedder TF. B lymphocytes: how they develop and function. Blood. 2008;112(5):1570–80.
pubmed: 18725575 pmcid: 2518873 doi: 10.1182/blood-2008-02-078071
Banchereau J, Rousset F. Human B lymphocytes: phenotype, proliferation, and differentiation. Adv Immunol. 1992;52:125–262.
pubmed: 1442306 doi: 10.1016/S0065-2776(08)60876-7
Liu YJ, de Bouteiller O, Fugier-Vivier I. Mechanisms of selection and differentiation in germinal centers. Curr Opin Immunol. 1997;9(2):256–62.
pubmed: 9099789 doi: 10.1016/S0952-7915(97)80145-8
Goodnow CC, Vinuesa CG, Randall KL, Mackay F, Brink R. Control systems and decision making for antibody production. Nat Immunol. 2010;11(8):681–8.
pubmed: 20644574 doi: 10.1038/ni.1900
Stavnezer J, Guikema JE, Schrader CE. Mechanism and regulation of class switch recombination. Annu Rev Immunol. 2008;26:261–92.
pubmed: 18370922 pmcid: 2707252 doi: 10.1146/annurev.immunol.26.021607.090248
Bagnara D, Squillario M, Kipling D, Mora T, Walczak AM, Da Silva L, et al. A reassessment of IgM memory subsets in humans. J Immunol. 2015;195(8):3716–24.
pubmed: 26355154 doi: 10.4049/jimmunol.1500753
Weill JC, Weller S, Reynaud CA. B cell diversification in gut-associated lymphoid tissues: from birds to humans. J Exp Med. 2023;220(11):e20231501.
Bousfiha A, Moundir A, Tangye SG, Picard C, Jeddane L, Al-Herz W, et al. The 2022 Update of IUIS Phenotypical Classification for Human Inborn Errors of Immunity. J Clin Immunol. 2022;42(7):1508–20.
pubmed: 36198931 doi: 10.1007/s10875-022-01352-z
Tangye SG, Nguyen T, Deenick EK, Bryant VL, Ma CS. Inborn errors of human B cell development, differentiation, and function. J Exp Med. 2023;220(7):e20221105.
Della Mina E, Guérin A, Tangye SG. Molecular requirements for human lymphopoiesis as defined by inborn errors of immunity. Stem Cells. 2021;39(4):389–402.
pubmed: 33400834 doi: 10.1002/stem.3327
Durandy A, Kracker S. Immunoglobulin class-switch recombination deficiencies. Arthritis Res Ther. 2012;14(4):218.
pubmed: 22894609 pmcid: 3580555 doi: 10.1186/ar3904
Durandy A, Taubenheim N, Peron S, Fischer A. Pathophysiology of B-cell intrinsic immunoglobulin class switch recombination deficiencies. Adv Immunol. 2007;94:275–306.
pubmed: 17560278 doi: 10.1016/S0065-2776(06)94009-7
Yazdani R, Fekrvand S, Shahkarami S, Azizi G, Moazzami B, Abolhassani H, et al. The hyper IgM syndromes: epidemiology, pathogenesis, clinical manifestations, diagnosis and management. Clin Immunol. 2019;198:19–30.
pubmed: 30439505 doi: 10.1016/j.clim.2018.11.007
Rosen FS, Bougas JA. Acquired dysgammaglobulinemia: elevation of the 19s gamma globulin and deficiency of the 7s gamma globulin in a woman with chronic progressive bronchiectasis. N Engl J Med. 1963;269:1336–40.
pubmed: 14064316 doi: 10.1056/NEJM196312192692502
Notarangelo LD, Duse M, Ugazio AG. Immunodeficiency with hyper-IgM (HIM). Immunodefic Rev. 1992;3(2):101–21.
pubmed: 1554497
Ta VT, Nagaoka H, Catalan N, Durandy A, Fischer A, Imai K, et al. AID mutant analyses indicate requirement for class-switch-specific cofactors. Nat Immunol. 2003;4(9):843–8.
pubmed: 12910268 doi: 10.1038/ni964
Feng Y, Seija N, Di Noia JM, Martin A. AID in antibody diversification: there and back again. Trends Immunol. 2020;41(7):586–600.
pubmed: 32434680 pmcid: 7183997 doi: 10.1016/j.it.2020.04.009
Dickerson SK, Market E, Besmer E, Papavasiliou FN. AID mediates hypermutation by deaminating single stranded DNA. J Exp Med. 2003;197(10):1291–6.
pubmed: 12756266 pmcid: 2193777 doi: 10.1084/jem.20030481
Mondal S, Begum NA, Hu W, Honjo T. Functional requirements of AID’s higher order structures and their interaction with RNA-binding proteins. Proc Natl Acad Sci U S A. 2016;113(11):E1545–54.
pubmed: 26929374 pmcid: 4801308 doi: 10.1073/pnas.1601678113
Al Ismail A, Husain A, Kobayashi M, Honjo T, Begum NA. Depletion of recombination-specific cofactors by the C-terminal mutant of the activation-induced cytidine deaminase causes the dominant negative effect on class switch recombination. Int Immunol. 2017;29(11):525–37.
pubmed: 29136157 doi: 10.1093/intimm/dxx061
Muramatsu M, Kinoshita K, Fagarasan S, Yamada S, Shinkai Y, Honjo T. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell. 2000;102(5):553–63.
pubmed: 11007474 doi: 10.1016/S0092-8674(00)00078-7
Rogozin IB, Diaz M. Cutting edge: DGYW/WRCH is a better predictor of mutability at G: C bases in Ig hypermutation than the widely accepted RGYW/WRCY motif and probably reflects a two-step activation-induced cytidine deaminase-triggered process. J Immunol. 2004;172(6):3382–4.
pubmed: 15004135 doi: 10.4049/jimmunol.172.6.3382
Revy P, Muto T, Levy Y, Geissmann F, Plebani A, Sanal O, et al. Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the Hyper-IgM syndrome (HIGM2). Cell. 2000;102(5):565–75.
pubmed: 11007475 doi: 10.1016/S0092-8674(00)00079-9
Minegishi Y, Lavoie A, Cunningham-Rundles C, Bedard PM, Hebert J, Cote L, et al. Mutations in activation-induced cytidine deaminase in patients with hyper IgM syndrome. Clin Immunol. 2000;97(3):203–10.
pubmed: 11112359 doi: 10.1006/clim.2000.4956
Dirks J, Haase G, Cantaert T, Frey L, Klaas M, Rickert CH, et al. A novel AICDA splice-site mutation in two siblings with HIGM2 permits somatic hypermutation but abrogates mutational targeting. J Clin Immunol. 2022;42(4):771–82. https://doi.org/10.1007/s10875-022-01233-5
Erman B, Bilic I, Hirschmugl T, Salzer E, Boztug H, Sanal Ö, et al. Investigation of genetic defects in severe combined immunodeficiency patients from Turkey by targeted sequencing. Scand J Immunol. 2017;85(3):227–34.
pubmed: 28109013 doi: 10.1111/sji.12523
Cantaert T, Schickel JN, Bannock JM, Ng YS, Massad C, Delmotte FR, et al. Decreased somatic hypermutation induces an impaired peripheral B cell tolerance checkpoint. J Clin Invest. 2016;126(11):4289–302.
pubmed: 27701145 pmcid: 5096912 doi: 10.1172/JCI84645
Durandy A, Cantaert T, Kracker S, Meffre E. Potential roles of activation-induced cytidine deaminase in promotion or prevention of autoimmunity in humans. Autoimmunity. 2013;46(2):148–56.
pubmed: 23215867 pmcid: 4077434 doi: 10.3109/08916934.2012.750299
Kasahara Y, Kaneko H, Fukao T, Terada T, Asano T, Kasahara K, et al. Hyper-IgM syndrome with putative dominant negative mutation in activation-induced cytidine deaminase. J Allergy Clin Immunol. 2003;112(4):755–60.
pubmed: 14564357 doi: 10.1016/S0091-6749(03)01860-8
Imai K, Zhu Y, Revy P, Morio T, Mizutani S, Fischer A, et al. Analysis of class switch recombination and somatic hypermutation in patients affected with autosomal dominant hyper-IgM syndrome type 2. Clin Immunol. 2005;115(3):277–85.
pubmed: 15893695 doi: 10.1016/j.clim.2005.02.003
Fadlallah J, Chentout L, Boisson B, Pouliet A, Masson C, Morin F, et al. From dysgammaglobulinemia to autosomal-dominant activation-induced cytidine deaminase deficiency: unraveling an inherited immunodeficiency after 50 Years. J Pediatr. 2020;223(207–11): e1.
Zahn A, Eranki AK, Patenaude AM, Methot SP, Fifield H, Cortizas EM, et al. Activation induced deaminase C-terminal domain links DNA breaks to end protection and repair during class switch recombination. Proc Natl Acad Sci U S A. 2014;111(11):E988–97.
pubmed: 24591601 pmcid: 3964074 doi: 10.1073/pnas.1320486111
Durandy A, Peron S, Taubenheim N, Fischer A. Activation-induced cytidine deaminase: structure-function relationship as based on the study of mutants. Hum Mutat. 2006;27(12):1185–91.
pubmed: 16964591 doi: 10.1002/humu.20414
Payne K, Li W, Salomon R, Ma CS. OMIP-063: 28-color flow cytometry panel for broad human immunophenotyping. Cytometry A. 2020;97(8):777–81.
pubmed: 32298042 doi: 10.1002/cyto.a.24018
Avery DT, Deenick EK, Ma CS, Suryani S, Simpson N, Chew GY, et al. B cell-intrinsic signaling through IL-21 receptor and STAT3 is required for establishing long-lived antibody responses in humans. J Exp Med. 2010;207(1):155–71.
pubmed: 20048285 pmcid: 2812540 doi: 10.1084/jem.20091706
Hodgkin PD, Lee JH, Lyons AB. B cell differentiation and isotype switching is related to division cycle number. J Exp Med. 1996;184(1):277–81.
pubmed: 8691143 doi: 10.1084/jem.184.1.277
Avery DT, Ellyard JI, Mackay F, Corcoran LM, Hodgkin PD, Tangye SG. Increased expression of CD27 on activated human memory B cells correlates with their commitment to the plasma cell lineage. J Immunol. 2005;174(7):4034–42.
pubmed: 15778361 doi: 10.4049/jimmunol.174.7.4034
Zhang Z, Mateus J, Coelho CH, Dan JM, Moderbacher CR, Galvez RI, et al. Humoral and cellular immune memory to four COVID-19 vaccines. Cell. 2022;185(14):2434–51 e17.
Singh M, Jackson KJL, Wang JJ, Schofield P, Field MA, Koppstein D, et al. Lymphoma driver mutations in the pathogenic evolution of an iconic human autoantibody. Cell. 2020;180(5):878-94.e19.
pubmed: 32059783 doi: 10.1016/j.cell.2020.01.029
Magoč T, Salzberg SL. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics. 2011;27(21):2957–63.
pubmed: 21903629 pmcid: 3198573 doi: 10.1093/bioinformatics/btr507
Vander Heiden JA, Yaari G, Uduman M, Stern JNH, O’Connor KC, Hafler DA, et al. pRESTO: a toolkit for processing high-throughput sequencing raw reads of lymphocyte receptor repertoires. Bioinformatics. 2014;30(13):1930–2.
pubmed: 24618469 pmcid: 4071206 doi: 10.1093/bioinformatics/btu138
Lefranc M-P, Lefranc G. The immunoglobulin factsbook. San Diego: Academic Press; 2001. xiv, pp. 457.
Ye J, Ma N, Madden TL, Ostell JM. IgBLAST: an immunoglobulin variable domain sequence analysis tool. Nucleic Acids Res. 2013;41(W1):W34–40.
pubmed: 23671333 pmcid: 3692102 doi: 10.1093/nar/gkt382
Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics. 2012;28(23):3150–2.
pubmed: 23060610 pmcid: 3516142 doi: 10.1093/bioinformatics/bts565
Team RC. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2023.
team P. RStudio: integrated development environment for R. Boston: Posit Software, PBC; 2023.
Wickham HAM, Bryan J, Chang W, McGowan LD, François R, Grolemund G, Hayes A, Henry L, Hester J, Kuhn M, Pedersen TL, Miller E, Bache SM, Müller K, Ooms J, Robinson D, Seidel DP, Spinu V, Takahashi K, Vaughan D, Wilke C, Woo K, Yutani H. Welcome to the tidyverse. J Open Source Soft. 2019;4:1686.
doi: 10.21105/joss.01686
A K. _rstatix: Pipe-friendly framework for basic statistical tests_. . R package version 072. 2023. https://rpkgs.datanovia.com/rstatix/
Chen J, Cai Z, Bai M, Yu X, Zhang C, Cao C, et al. The RNA-binding protein ROD1/PTBP3 cotranscriptionally defines AID-loading sites to mediate antibody class switch in mammalian genomes. Cell Res. 2018;28(10):981–95.
pubmed: 30143796 pmcid: 6170407 doi: 10.1038/s41422-018-0076-9
Mu Y, Prochnow C, Pham P, Chen XS, Goodman MF. A structural basis for the biochemical behavior of activation-induced deoxycytidine deaminase class-switch recombination-defective hyper-IgM-2 mutants. J Biol Chem. 2012;287(33):28007–16.
pubmed: 22715099 pmcid: 3431652 doi: 10.1074/jbc.M112.370189
Kermode W, De Santis D, Truong L, Della Mina E, Salman S, Thompson G, et al. A novel targeted amplicon next-generation sequencing gene panel for the diagnosis of common variable immunodeficiency has a high diagnostic yield: results from the Perth CVID cohort study. J Mol Diagn. 2022;24(6):586–99.
pubmed: 35570134 doi: 10.1016/j.jmoldx.2022.02.007
Aan de Kerk DJ, Jansen MH, Jolles S, Warnatz K, Seneviratne SL, Ten Berge IJ, et al. Phenotypic and functional comparison of class switch recombination deficiencies with a subgroup of common variable immunodeficiencies. J Clin Immunol. 2016;36(7):656–66.
Lee WI, Torgerson TR, Schumacher MJ, Yel L, Zhu Q, Ochs HD. Molecular analysis of a large cohort of patients with the hyper immunoglobulin M (IgM) syndrome. Blood. 2005;105(5):1881–90.
pubmed: 15358621 doi: 10.1182/blood-2003-12-4420
Patenaude AM, Di Noia JM. The mechanisms regulating the subcellular localization of AID. Nucleus. 2010;1(4):325–31.
pubmed: 21327080 pmcid: 3027040 doi: 10.4161/nucl.1.4.12107
Pasqualucci L, Guglielmino R, Houldsworth J, Mohr J, Aoufouchi S, Polakiewicz R, et al. Expression of the AID protein in normal and neoplastic B cells. Blood. 2004;104(10):3318–25.
pubmed: 15304391 doi: 10.1182/blood-2004-04-1558
Ito S, Nagaoka H, Shinkura R, Begum N, Muramatsu M, Nakata M, et al. Activation-induced cytidine deaminase shuttles between nucleus and cytoplasm like apolipoprotein B mRNA editing catalytic polypeptide 1. Proc Natl Acad Sci U S A. 2004;101(7):1975–80.
pubmed: 14769937 pmcid: 357037 doi: 10.1073/pnas.0307335101
Muramatsu M, Sankaranand VS, Anant S, Sugai M, Kinoshita K, Davidson NO, et al. Specific expression of activation-induced cytidine deaminase (AID), a novel member of the RNA-editing deaminase family in germinal center B cells. J Biol Chem. 1999;274(26):18470–6.
pubmed: 10373455 doi: 10.1074/jbc.274.26.18470
Tangye SG, Liu YJ, Aversa G, Phillips JH, de Vries JE. Identification of functional human splenic memory B cells by expression of CD148 and CD27. J Exp Med. 1998;188(9):1691–703.
pubmed: 9802981 pmcid: 2212517 doi: 10.1084/jem.188.9.1691
Ma CS, Pittaluga S, Avery DT, Hare NJ, Maric I, Klion AD, et al. Selective generation of functional somatically mutated IgM+CD27+, but not Ig isotype-switched, memory B cells in X-linked lymphoproliferative disease. J Clin Investig. 2006;116(2):322–33.
pubmed: 16424938 pmcid: 1332028 doi: 10.1172/JCI25720
Deenick EK, Avery DT, Chan A, Berglund LJ, Ives ML, Moens L, et al. Naive and memory human B cells have distinct requirements for STAT3 activation to differentiate into antibody-secreting plasma cells. J Exp Med. 2013;210(12):2739–53.
pubmed: 24218138 pmcid: 3832925 doi: 10.1084/jem.20130323
Moens L, Tangye SG. Cytokine-mediated regulation of plasma cell generation: IL-21 takes center stage. Front Immunol. 2014;5:65.
pubmed: 24600453 pmcid: 3927127 doi: 10.3389/fimmu.2014.00065
Avery DT, Bryant VL, Ma CS, de Waal MR, Tangye SG. IL-21-induced isotype switching to IgG and IgA by human naive B cells is differentially regulated by IL-4. J Immunol. 2008;181(3):1767–79.
pubmed: 18641314 doi: 10.4049/jimmunol.181.3.1767
Honjo T, Kinoshita K, Muramatsu M. Molecular mechanism of class switch recombination: linkage with somatic hypermutation. Annu Rev Immunol. 2002;20:165–96.
pubmed: 11861601 doi: 10.1146/annurev.immunol.20.090501.112049
Matsuda T, Bebenek K, Masutani C, Rogozin IB, Hanaoka F, Kunkel TA. Error rate and specificity of human and murine DNA polymerase eta. J Mol Biol. 2001;312(2):335–46.
pubmed: 11554790 doi: 10.1006/jmbi.2001.4937
Berek C, Berger A, Apel M. Maturation of the immune response in germinal centers. Cell. 1991;67(6):1121–9.
pubmed: 1760840 doi: 10.1016/0092-8674(91)90289-B
Galson JD, Truck J, Fowler A, Clutterbuck EA, Munz M, Cerundolo V, et al. Analysis of B cell repertoire dynamics following hepatitis B vaccination in humans, and enrichment of vaccine-specific antibody sequences. EBioMedicine. 2015;2(12):2070–9.
pubmed: 26844287 pmcid: 4703725 doi: 10.1016/j.ebiom.2015.11.034
Cattoretti G, Büttner M, Shaknovich R, Kremmer E, Alobeid B, Niedobitek G. Nuclear and cytoplasmic AID in extrafollicular and germinal center B cells. Blood. 2006;107(10):3967–75.
pubmed: 16439679 doi: 10.1182/blood-2005-10-4170
Meffre E, Milili M, Blanco-Betancourt C, Antunes H, Nussenzweig MC, Schiff C. Immunoglobulin heavy chain expression shapes the B cell receptor repertoire in human B cell development. J Clin Invest. 2001;108(6):879–86.
pubmed: 11560957 pmcid: 200933 doi: 10.1172/JCI13051
Meyers G, Ng YS, Bannock JM, Lavoie A, Walter JE, Notarangelo LD, et al. Activation-induced cytidine deaminase (AID) is required for B-cell tolerance in humans. Proc Natl Acad Sci U S A. 2011;108(28):11554–9.
pubmed: 21700883 pmcid: 3136251 doi: 10.1073/pnas.1102600108

Auteurs

Erika Della Mina (ED)

Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW, 2010, Australia.
School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, Australia.

Katherine J L Jackson (KJL)

Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW, 2010, Australia.

Alexander J I Crawford (AJI)

Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW, 2010, Australia.

Megan L Faulks (ML)

Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW, 2010, Australia.

Karrnan Pathmanandavel (K)

Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW, 2010, Australia.
School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, Australia.

Nicolino Acquarola (N)

Department of Clinical Immunology and PathWest, Fiona Stanley Hospital, Murdoch, WA, Australia.

Michael O'Sullivan (M)

Department of Clinical Immunology and PathWest, Fiona Stanley Hospital, Murdoch, WA, Australia.
Department of Immunology, Perth Children's Hospital, Perth, WA, Australia.

Tessa Kerre (T)

Department of Hematology, Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.
Center for Primary Immunodeficiency Ghent (CPIG), Jeffrey Modell Diagnosis and Research Center, ERN Rita Network Center, Ghent University Hospital, Ghent, Belgium.

Leslie Naesens (L)

Center for Primary Immunodeficiency Ghent (CPIG), Jeffrey Modell Diagnosis and Research Center, ERN Rita Network Center, Ghent University Hospital, Ghent, Belgium.
Primary Immunodeficiency Research Lab, Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.

Karlien Claes (K)

Center for Primary Immunodeficiency Ghent (CPIG), Jeffrey Modell Diagnosis and Research Center, ERN Rita Network Center, Ghent University Hospital, Ghent, Belgium.
Primary Immunodeficiency Research Lab, Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.

Christopher C Goodnow (CC)

Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW, 2010, Australia.
School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, Australia.

Filomeen Haerynck (F)

Center for Primary Immunodeficiency Ghent (CPIG), Jeffrey Modell Diagnosis and Research Center, ERN Rita Network Center, Ghent University Hospital, Ghent, Belgium.
Primary Immunodeficiency Research Lab, Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.

Sven Kracker (S)

Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Imagine Institute, 75015, Paris, France.
Université Paris Cité, 75015, Paris, France.

Isabelle Meyts (I)

Inborn Errors of Immunity, Department of Microbiology, Immunology and Transplantation, KU Leuven, Louvain, Belgium.
Pediatric Immunodeficiency, Department of Pediatrics, University Hospitals Leuven, Louvain, Belgium.

Lloyd J D'Orsogna (LJ)

Department of Clinical Immunology and PathWest, Fiona Stanley Hospital, Murdoch, WA, Australia.
School of Medicine, University of Western Australia, Nedlands, WA, Australia.

Cindy S Ma (CS)

Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW, 2010, Australia.
School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, Australia.

Stuart G Tangye (SG)

Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW, 2010, Australia. s.tangye@garvan.org.au.
School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, Australia. s.tangye@garvan.org.au.

Classifications MeSH