Regulatory T and B cells in pediatric Henoch-Schönlein purpura: friends or foes?

Cytokines IgA vasculitis Kidney disease Regulatory B cells Regulatory T cells T helper 3 cell

Journal

Arthritis research & therapy
ISSN: 1478-6362
Titre abrégé: Arthritis Res Ther
Pays: England
ID NLM: 101154438

Informations de publication

Date de publication:
16 Feb 2024
Historique:
received: 04 08 2023
accepted: 25 01 2024
medline: 17 2 2024
pubmed: 17 2 2024
entrez: 16 2 2024
Statut: epublish

Résumé

Henoch-Schönlein purpura (HSP) is the most common immunoglobulin A-mediated systemic vasculitis in childhood. We studied immune dysregulation in HSP by analyzing regulatory T (Treg), T helper 3 (Th3), and regulatory B cell (Breg) subpopulations that might intervene in immune activation, IgA production, and HSP clinical manifestations. This prospective study included 3 groups of children: 30 HSP on acute phase, 30 HSP on remission, and 40 healthy controls (HCs) matched on age. Treg, Breg, and Th3 were analyzed by flow cytometry. Serum immunoglobulin and cytokine levels were quantified by ELISA and Luminex. Treg frequencies were higher in acute HSP than in remitting HSP and HCs (6.53% [4.24; 9.21] vs. 4.33% [3.6; 5.66], p = 0.002, and vs. 4.45% [3.01; 6.6], p = 0.003, respectively). Activated Th3 cells (FoxP3 + Th3 cells) tend to be more abundant in HSP than in HCs (78.43% [50.62; 80.84] vs. 43.30% [40.20; 49.32], p = 0.135). Serum IgA, IL-17, and latency-associated peptide (a marker of the anti-inflammatory cytokine TGF-beta production) were significantly and inflammatory cytokines TNF-alpha, IL-1-beta, and IL-6 were non-significantly higher in HSP than HCs. Bregs were identical between the groups, but, in patients with renal impairment, Breg percentage was lower compared to those without. Treg removal in PBMC culture resulted in an increase in IgA production in HSP proving a negative regulatory role of Tregs on IgA production. In pediatric HSP, immune activation persists in spite of an increase in Th3 and Tregs. Th3 could be involved in IgA hyperproduction, inefficiently downregulated by Tregs. Lack of Bregs appears linked to renal impairment.

Sections du résumé

BACKGROUND AND OBJECTIVES OBJECTIVE
Henoch-Schönlein purpura (HSP) is the most common immunoglobulin A-mediated systemic vasculitis in childhood. We studied immune dysregulation in HSP by analyzing regulatory T (Treg), T helper 3 (Th3), and regulatory B cell (Breg) subpopulations that might intervene in immune activation, IgA production, and HSP clinical manifestations.
METHODS METHODS
This prospective study included 3 groups of children: 30 HSP on acute phase, 30 HSP on remission, and 40 healthy controls (HCs) matched on age. Treg, Breg, and Th3 were analyzed by flow cytometry. Serum immunoglobulin and cytokine levels were quantified by ELISA and Luminex.
RESULTS RESULTS
Treg frequencies were higher in acute HSP than in remitting HSP and HCs (6.53% [4.24; 9.21] vs. 4.33% [3.6; 5.66], p = 0.002, and vs. 4.45% [3.01; 6.6], p = 0.003, respectively). Activated Th3 cells (FoxP3 + Th3 cells) tend to be more abundant in HSP than in HCs (78.43% [50.62; 80.84] vs. 43.30% [40.20; 49.32], p = 0.135). Serum IgA, IL-17, and latency-associated peptide (a marker of the anti-inflammatory cytokine TGF-beta production) were significantly and inflammatory cytokines TNF-alpha, IL-1-beta, and IL-6 were non-significantly higher in HSP than HCs. Bregs were identical between the groups, but, in patients with renal impairment, Breg percentage was lower compared to those without. Treg removal in PBMC culture resulted in an increase in IgA production in HSP proving a negative regulatory role of Tregs on IgA production.
CONCLUSIONS CONCLUSIONS
In pediatric HSP, immune activation persists in spite of an increase in Th3 and Tregs. Th3 could be involved in IgA hyperproduction, inefficiently downregulated by Tregs. Lack of Bregs appears linked to renal impairment.

Identifiants

pubmed: 38365843
doi: 10.1186/s13075-024-03278-w
pii: 10.1186/s13075-024-03278-w
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

52

Informations de copyright

© 2024. The Author(s).

Références

Saulsbury FT. Henoch-Schonlein purpura in children. Report of 100 patients and review of the literature. Medicine (Baltimore) 1999. https://doi.org/10.1097/00005792-199911000-00005
Trapani S, Micheli A, Grisolia F, Resti M, Chiappini E, Falcini F et al. Henoch Schonlein purpura in childhood: epidemiological and clinical analysis of 150 cases over a 5-year period and review of literature. Semin Arthritis Rheum.2005. https://doi.org/10.1016/j.semarthrit.2005.08.007 .
Yang YH, Hung CF, Hsu CR, Wang LC, Chuang YH, Lin YT et al. A nationwide survey on epidemiological characteristics of childhood Henoch-Schonlein purpura in Taiwan.Rheumatology (Oxford). 2005. https://doi.org/10.1093/rheumatology/keh544 .
Gardner-Medwin JM, Dolezalova P, Cummins C, Southwood TR. Incidence of Henoch-Schonlein purpura, Kawasaki disease, and rare vasculitides in children of different ethnic origins. Lancet. 2002. https://doi.org/10.1016/S0140-6736(02)11279-7 .
Aalberse J, Dolman K, Ramnath G, Pereira RR, Davin JC. Henoch Schonlein purpura in children: an epidemiological study among Dutch paediatricians on incidence and diagnostic criteria. Ann Rheum Dis. 2007. https://doi.org/10.1136/ard.2006.069187 .
doi: 10.1136/ard.2006.069187 pubmed: 17472987 pmcid: 2095299
Yang YH, Yu HH, Chiang BL. The diagnosis and classification of Henoch-Schonlein purpura: an updated review. Autoimmun Rev. 2014. https://doi.org/10.1016/j.autrev.2014.01.031 .
doi: 10.1016/j.autrev.2014.01.031 pubmed: 24424188 pmcid: 3966954
Ozen S, Pistorio A, Iusan SM, Bakkaloglu A, Herlin T, Brik R et al. EULAR/PRINTO/PRES criteria for Henoch-Schonlein purpura, childhood polyarteritis nodosa, childhood Wegener granulomatosis and childhood Takayasu arteritis: Ankara 2008. Part II: Final classification criteria. Ann Rheum Dis 2010; doi: https://doi.org/10.1136/ard.2009.116657
Kawasaki Y. The pathogenesis and treatment of pediatric Henoch-Schonlein purpura nephritis. Clin Exp Nephrol. 2011. https://doi.org/10.1007/s10157-011-0478-1 .
doi: 10.1007/s10157-011-0478-1 pubmed: 21695413
Saulsbury FT. Clinical update: Henoch-Schonlein purpura. Lancet. 2007. https://doi.org/10.1016/S0140-6736(07)60474-7 .
doi: 10.1016/S0140-6736(07)60474-7 pubmed: 17382831
Davin JC, Coppo R. Henoch-Schonlein purpura nephritis in children. Nat Rev Nephrol. 2014. https://doi.org/10.1038/nrneph.2014.126 .
doi: 10.1038/nrneph.2014.126 pubmed: 25072122
Brendel-Muller K, Hahn A, Schneppenheim R, Santer R. Laboratory signs of activated coagulation are common in Henoch-Schonlein purpura. Pediatr Nephrol. 2001. https://doi.org/10.1007/s004670100033 .
doi: 10.1007/s004670100033 pubmed: 11793106
Sestan M, Kifer N, Sozeri B, Demir F, Ulu K, Silva CA, et al. Clinical features, treatment and outcome of pediatric patients with severe cutaneous manifestations in IgA vasculitis: multicenter international study. Semin Arthritis Rheum. 2023. https://doi.org/10.1016/j.semarthrit.2023.152209 .
doi: 10.1016/j.semarthrit.2023.152209 pubmed: 37126983
Vaahtovuo J, Munukka E, Korkeamaki M, Luukkainen R, Toivanen P. Fecal microbiota in early rheumatoid arthritis. J Rheumatol 2008;
Yeoh N, Burton JP, Suppiah P, Reid G, Stebbings S. The role of the microbiome in rheumatic diseases. Curr Rheumatol Rep. 2013. https://doi.org/10.1007/s11926-012-0314-y .
doi: 10.1007/s11926-012-0314-y pubmed: 23378145
Rigante D, Castellazzi L, Bosco A, Esposito S. Is there a crossroad between infections, genetics, and Henoch-Schonlein purpura? Autoimmun Rev. 2013. https://doi.org/10.1016/j.autrev.2013.04.003 .
doi: 10.1016/j.autrev.2013.04.003 pubmed: 24051103
Barzaghi F, Passerini L. IPEX syndrome: improved knowledge of immune pathogenesis empowers diagnosis. Front Pediatr. 2021. https://doi.org/10.3389/fped.2021.612760 .
doi: 10.3389/fped.2021.612760 pubmed: 34692603 pmcid: 8528001
Coffman RL, Lebman DA, Shrader B. Transforming growth factor beta specifically enhances IgA production by lipopolysaccharide-stimulated murine B lymphocytes. J Exp Med. 1989. https://doi.org/10.1084/jem.170.3.1039 .
doi: 10.1084/jem.170.3.1039 pubmed: 2788703
Sonoda E, Matsumoto R, Hitoshi Y, Ishii T, Sugimoto M, Araki S, et al. Transforming growth factor beta induces IgA production and acts additively with interleukin 5 for IgA production. J Exp Med. 1989. https://doi.org/10.1084/jem.170.4.1415 .
doi: 10.1084/jem.170.4.1415 pubmed: 2677210
van Vlasselaer P, Punnonen J, de Vries JE. Transforming growth factor-beta directs IgA switching in human B cells. J Immunol. 1992.
Yang YH, Huang MT, Lin SC, Lin YT, Tsai MJ, Chiang BL. Increased transforming growth factor-beta (TGF-beta)-secreting T cells and IgA anti-cardiolipin antibody levels during acute stage of childhood Henoch-Schonlein purpura. Clin Exp Immunol. 2000. https://doi.org/10.1046/j.1365-2249.2000.01361.x .
doi: 10.1046/j.1365-2249.2000.01361.x pubmed: 11122252 pmcid: 1905816
Anolik JH, Barnard J, Owen T, Zheng B, Kemshetti S, Looney RJ, et al. Delayed memory B cell recovery in peripheral blood and lymphoid tissue in systemic lupus erythematosus after B cell depletion therapy. Arthritis Rheum. 2007. https://doi.org/10.1002/art.22810 .
doi: 10.1002/art.22810 pubmed: 17763423
Mauri C, Gray D, Mushtaq N, Londei M. Prevention of arthritis by interleukin 10-producing B cells. J Exp Med. 2003. https://doi.org/10.1084/jem.20021293 .
doi: 10.1084/jem.20021293 pubmed: 12591906 pmcid: 2193864
Correale J, Farez M, Razzitte G. Helminth infections associated with multiple sclerosis induce regulatory B cells. Ann Neurol. 2008. https://doi.org/10.1002/ana.21438 .
doi: 10.1002/ana.21438 pubmed: 18655096
Hu X, Tai J, Qu Z, Zhao S, Zhang L, Li M, et al. A lower proportion of regulatory B cells in patients with Henoch-Schoenlein purpura nephritis. PLoS ONE. 2016. https://doi.org/10.1371/journal.pone.0152368 .
doi: 10.1371/journal.pone.0152368 pubmed: 28036386 pmcid: 5201240
Yang B, Tan X, Xiong X, Wu D, Zhang G, Wang M, et al. Effect of CD40/CD40L signaling on IL-10-producing regulatory B cells in Chinese children with Henoch-Schonlein purpura nephritis. Immunol Res. 2017. https://doi.org/10.1007/s12026-016-8877-8 .
doi: 10.1007/s12026-016-8877-8 pubmed: 28929317 pmcid: 5613054
Cong Y, Feng T, Fujihashi K, Schoeb TR, Elson CO. A dominant, coordinated T regulatory cell-IgA response to the intestinal microbiota. Proc Natl Acad Sci U S A. 2009. https://doi.org/10.1073/pnas.0812681106 .
doi: 10.1073/pnas.0812681106 pubmed: 19889972 pmcid: 2780781
Feng T, Elson CO, Cong Y. Treg cell-IgA axis in maintenance of host immune homeostasis with microbiota. Int Immunopharmacol. 2011. https://doi.org/10.1016/j.intimp.2010.11.016 .
doi: 10.1016/j.intimp.2010.11.016 pubmed: 22178196
Cerutti A, Rescigno M. The biology of intestinal immunoglobulin A responses. Immunity. 2008. https://doi.org/10.1016/j.immuni.2008.05.001 .
doi: 10.1016/j.immuni.2008.05.001 pubmed: 18549797 pmcid: 3057455
Li YY, Li CR, Wang GB, Yang J, Zu Y. Investigation of the change in CD4(+) T cell subset in children with Henoch-Schonlein purpura. Rheumatol Int. 2012. https://doi.org/10.1007/s00296-011-2266-3 .
doi: 10.1007/s00296-011-2266-3 pubmed: 23241923 pmcid: 3689906
Chen O, Zhu XB, Ren H, Wang YB, Sun R. The imbalance of Th17/Treg in Chinese children with Henoch-Schonlein purpura. Int Immunopharmacol. 2013. https://doi.org/10.1016/j.intimp.2013.03.027 .
doi: 10.1016/j.intimp.2013.03.027 pubmed: 24459685 pmcid: 7106058
Li B, Ren Q, Ling J, Tao Z, Yang X, Li Y. The change of Th17/Treg cells and IL-10/IL-17 in Chinese children with Henoch-Schonlein purpura: a PRISMA-compliant meta-analysis. Medicine (Baltimore). 2019. https://doi.org/10.1097/MD.0000000000013991 .
doi: 10.1097/MD.0000000000013991 pubmed: 31876761 pmcid: 6937734
Niu HQ, Zhao XC, Li W, Xie JF, Liu XQ, Luo J, et al. Characteristics and reference ranges of CD4(+)T cell subpopulations among healthy adult Han Chinese in Shanxi province. North China BMC Immunol. 2020. https://doi.org/10.1186/s12865-020-00374-9 .
doi: 10.1186/s12865-020-00374-9 pubmed: 32746780
Sorrenti V, Marenda B, Fortinguerra S, Cecchetto C, Quartesan R, Zorzi G, et al. Reference values for a panel of cytokinergic and regulatory lymphocyte subpopulations. Immune Netw. 2016. https://doi.org/10.4110/in.2016.16.6.344 .
doi: 10.4110/in.2016.16.6.344 pubmed: 28035210 pmcid: 5195844
Sakaguchi S, Miyara M, Costantino CM, Hafler DA. FOXP3+ regulatory T cells in the human immune system. Nat Rev Immunol. 2010. https://doi.org/10.1038/nri2785 .
doi: 10.1038/nri2785 pubmed: 20559327
Miyara M, Yoshioka Y, Kitoh A, Shima T, Wing K, Niwa A, et al. Functional delineation and differentiation dynamics of human CD4+ T cells expressing the FoxP3 transcription factor. Immunity. 2009. https://doi.org/10.1016/j.immuni.2009.03.019 .
doi: 10.1016/j.immuni.2009.03.019 pubmed: 19464196
Prais D, Amir J, Nussinovitch M. Recurrent Henoch-Schonlein purpura in children. J Clin Rheumatol. 2007. https://doi.org/10.1097/01.rhu.0000255692.46165.19 .
doi: 10.1097/01.rhu.0000255692.46165.19 pubmed: 17278945
Jen HY, Chuang YH, Lin SC, Chiang BL, Yang YH. Increased serum interleukin-17 and peripheral Th17 cells in children with acute Henoch-Schonlein purpura. Pediatr Allergy Immunol. 2011. https://doi.org/10.1111/j.1399-3038.2011.01198.x .
doi: 10.1111/j.1399-3038.2011.01198.x pubmed: 21929599
Cazac BB, Roes J. TGF-beta receptor controls B cell responsiveness and induction of IgA in vivo. Immunity. 2000. https://doi.org/10.1016/s1074-7613(00)00044-3 .
doi: 10.1016/s1074-7613(00)00044-3 pubmed: 11070163
Borsutzky S, Cazac BB, Roes J, Guzman CA. TGF-beta receptor signaling is critical for mucosal IgA responses. J Immunol. 2004. https://doi.org/10.4049/jimmunol.173.5.3305 .
doi: 10.4049/jimmunol.173.5.3305 pubmed: 15322193
Huang H, Peng Y, Long XD, Liu Z, Wen X, Jia M, et al. Tonsillar CD4+CD25+ regulatory T cells from IgA nephropathy patients have decreased immunosuppressive activity in experimental IgA nephropathy rats. Am J Nephrol. 2013. https://doi.org/10.1159/000350533 .
doi: 10.1159/000350533 pubmed: 24356340
Zhao SS, Hu JW, Wang J, Lou XJ, Zhou LL. Inverse correlation between CD4+ CD25high CD127low/- regulatory T-cells and serum immunoglobulin A in patients with new-onset ankylosing spondylitis. J Int Med Res. 2011. https://doi.org/10.1177/147323001103900543 .
doi: 10.1177/147323001103900543 pubmed: 22289561

Auteurs

Anne Filleron (A)

IRMB, Montpellier University, INSERM U1183, Montpellier, France.
Department of Pediatrics, Nîmes University Hospital, Montpellier University, Service de Pédiatrie, Place du Pr R. Debré, 30029, Nîmes Cedex 9, France.

Renaud Cezar (R)

IRMB, Montpellier University, INSERM U1183, Montpellier, France.
Department of Immunology, Nîmes University Hospital, Montpellier University, Nîmes, France.

Marc Fila (M)

Department of Pediatric Nephrology, Montpellier University Hospital, Montpellier University, Montpellier, France.

Nastassja Protsenko (N)

Department of Pediatrics, Nîmes University Hospital, Montpellier University, Service de Pédiatrie, Place du Pr R. Debré, 30029, Nîmes Cedex 9, France.

Kathleen Van Den Hende (K)

Department of Pediatrics, Nîmes University Hospital, Montpellier University, Service de Pédiatrie, Place du Pr R. Debré, 30029, Nîmes Cedex 9, France.

Eric Jeziorski (E)

Department of Pediatric Infectious Diseases, Montpellier University Hospital, Univ Montpellier, INSERM, EFS, Univ Antilles, Montpellier, France.

Bob Occean (B)

Department of Epidemiology, Medical Statistics and Public Health, Nîmes University Hospital, Montpellier University, Nîmes, France.

Thierry Chevallier (T)

Department of Epidemiology, Medical Statistics and Public Health, Nîmes University Hospital, Montpellier University, Nîmes, France.
UMR 1302 Desbrest Institute of Epidemiology and Public Health, INSERM, University of Montpellier, Montpellier, France.

Pierre Corbeau (P)

Department of Immunology, Nîmes University Hospital, Montpellier University, Nîmes, France.
Institute of Human Genetics, CNRS UMR9002, Montpellier University, Montpellier, France.

Tu Anh Tran (TA)

IRMB, Montpellier University, INSERM U1183, Montpellier, France. tu.anh.tran@chu-nimes.fr.
Department of Pediatrics, Nîmes University Hospital, Montpellier University, Service de Pédiatrie, Place du Pr R. Debré, 30029, Nîmes Cedex 9, France. tu.anh.tran@chu-nimes.fr.

Classifications MeSH