Proteomic and transcriptomic profiling of brainstem, cerebellum and olfactory tissues in early- and late-phase COVID-19.


Journal

Nature neuroscience
ISSN: 1546-1726
Titre abrégé: Nat Neurosci
Pays: United States
ID NLM: 9809671

Informations de publication

Date de publication:
16 Feb 2024
Historique:
received: 20 06 2023
accepted: 08 01 2024
medline: 17 2 2024
pubmed: 17 2 2024
entrez: 17 2 2024
Statut: aheadofprint

Résumé

Neurological symptoms, including cognitive impairment and fatigue, can occur in both the acute infection phase of coronavirus disease 2019 (COVID-19) and at later stages, yet the mechanisms that contribute to this remain unclear. Here we profiled single-nucleus transcriptomes and proteomes of brainstem tissue from deceased individuals at various stages of COVID-19. We detected an inflammatory type I interferon response in acute COVID-19 cases, which resolves in the late disease phase. Integrating single-nucleus RNA sequencing and spatial transcriptomics, we could localize two patterns of reaction to severe systemic inflammation, one neuronal with a direct focus on cranial nerve nuclei and a separate diffuse pattern affecting the whole brainstem. The latter reflects a bystander effect of the respiratory infection that spreads throughout the vascular unit and alters the transcriptional state of mainly oligodendrocytes, microglia and astrocytes, while alterations of the brainstem nuclei could reflect the connection of the immune system and the central nervous system via, for example, the vagus nerve. Our results indicate that even without persistence of severe acute respiratory syndrome coronavirus 2 in the central nervous system, local immune reactions are prevailing, potentially causing functional disturbances that contribute to neurological complications of COVID-19.

Identifiants

pubmed: 38366144
doi: 10.1038/s41593-024-01573-y
pii: 10.1038/s41593-024-01573-y
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : RA 2491/1
Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : CRC 130 TP17
Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : CRC130 TP17
Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : HA 5354/10-1
Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : EXC-2049-390688087
Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : SFB TRR 167
Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : HE 3130/6-1

Informations de copyright

© 2024. The Author(s), under exclusive licence to Springer Nature America, Inc.

Références

Mao, L. et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol. 77, 683–690 (2020).
pubmed: 32275288 doi: 10.1001/jamaneurol.2020.1127
Schweitzer, F. et al. Neuro-COVID-19 is more than anosmia: clinical presentation, neurodiagnostics, therapies, and prognosis. Curr. Opin. Neurol. 34, 423–431 (2021).
pubmed: 33709973 doi: 10.1097/WCO.0000000000000930
Romero-Sanchez, C. M. et al. Neurologic manifestations in hospitalized patients with COVID-19: the ALBACOVID registry. Neurology 95, e1060–e1070 (2020).
pubmed: 32482845 pmcid: 7668545 doi: 10.1212/WNL.0000000000009937
Lou, J. J. et al. Neuropathology of COVID-19 (neuro-COVID): clinicopathological update. Free Neuropathol. https://doi.org/10.17879/freeneuropathology-2021-2993 (2021).
Berlit, P. et al. Neurological manifestations of COVID-19—guideline of the German Society of Neurology. Neurol. Res. Pr. 2, 51 (2020).
doi: 10.1186/s42466-020-00097-7
Paterson, R. W. et al. The emerging spectrum of COVID-19 neurology: clinical, radiological and laboratory findings. Brain 143, 3104–3120 (2020).
pubmed: 32637987 pmcid: 7454352 doi: 10.1093/brain/awaa240
Aschman, T., Mothes, R., Heppner, F. L. & Radbruch, H. What SARS-CoV-2 does to our brains. Immunity 55, 1159–1172 (2022).
pubmed: 35777361 pmcid: 9212726 doi: 10.1016/j.immuni.2022.06.013
Delorey, T. M. et al. COVID-19 tissue atlases reveal SARS-CoV-2 pathology and cellular targets. Nature 595, 107–113 (2021).
pubmed: 33915569 pmcid: 8919505 doi: 10.1038/s41586-021-03570-8
Stein, S. R. et al. SARS-CoV-2 infection and persistence in the human body and brain at autopsy. Nature 612, 758–763 (2022).
pubmed: 36517603 pmcid: 9749650 doi: 10.1038/s41586-022-05542-y
Yang, A. C. et al. Dysregulation of brain and choroid plexus cell types in severe COVID-19. Nature 595, 565–571 (2021).
pubmed: 34153974 pmcid: 8400927 doi: 10.1038/s41586-021-03710-0
Krasemann, S. et al. Assessing and improving the validity of COVID-19 autopsy studies—a multicentre approach to establish essential standards for immunohistochemical and ultrastructural analyses. EBioMedicine 83, 104193 (2022).
pubmed: 35930888 pmcid: 9344879 doi: 10.1016/j.ebiom.2022.104193
Thakur, K. T. et al. COVID-19 neuropathology at Columbia University Irving Medical Center/New York Presbyterian Hospital. Brain 144, 2696–2708 (2021).
pubmed: 33856027 pmcid: 8083258 doi: 10.1093/brain/awab148
Soung, A. L. et al. COVID-19 induces CNS cytokine expression and loss of hippocampal neurogenesis. Brain 145, 4193–4201 (2022).
pubmed: 36004663 pmcid: 9452175 doi: 10.1093/brain/awac270
Gelpi, E. et al. Multifactorial white matter damage in the acute phase and pre-existing conditions may drive cognitive dysfunction after SARS-CoV-2 infection: neuropathology-based evidence. Viruses 15, 908 (2023).
pubmed: 37112888 pmcid: 10144140 doi: 10.3390/v15040908
Reinhold, D. et al. The brain reacting to COVID-19: analysis of the cerebrospinal fluid proteome, RNA and inflammation. J. Neuroinflammation 20, 30 (2023).
pubmed: 36759861 pmcid: 9909638 doi: 10.1186/s12974-023-02711-2
Deigendesch, N. et al. Correlates of critical illness-related encephalopathy predominate postmortem COVID-19 neuropathology. Acta Neuropathol. 140, 583–586 (2020).
pubmed: 32851506 pmcid: 7449525 doi: 10.1007/s00401-020-02213-y
Meinhardt, J. et al. Olfactory transmucosal SARS-CoV-2 invasion as a port of central nervous system entry in individuals with COVID-19. Nat. Neurosci. 24, 168–175 (2021).
pubmed: 33257876 doi: 10.1038/s41593-020-00758-5
Matschke, J. et al. Neuropathology of patients with COVID-19 in Germany: a post-mortem case series. Lancet Neurol. 19, 919–929 (2020).
pubmed: 33031735 pmcid: 7535629 doi: 10.1016/S1474-4422(20)30308-2
Schwabenland, M. et al. Deep spatial profiling of human COVID-19 brains reveals neuroinflammation with distinct microanatomical microglia–T-cell interactions. Immunity 54, 1594–1610 (2021).
Schulte-Schrepping, J. et al. Severe COVID-19 is marked by a dysregulated myeloid cell compartment. Cell 182, 1419–1440 (2020).
Mothes, R. et al. Distinct tissue niches direct lung immunopathology via CCL18 and CCL21 in severe COVID-19. Nat. Commun. 14, 791 (2023).
pubmed: 36774347 pmcid: 9922044 doi: 10.1038/s41467-023-36333-2
Witkowski, M. et al. Untimely TGF beta responses in COVID-19 limit antiviral functions of NK cells. Nature 600, 295–301 (2021).
pubmed: 34695836 doi: 10.1038/s41586-021-04142-6
Diao, B. et al. Reduction and functional exhaustion of T cells in patients with coronavirus disease 2019 (COVID-19). Front. Immunol. 11, 827 (2020).
pubmed: 32425950 pmcid: 7205903 doi: 10.3389/fimmu.2020.00827
Ramlall, V. et al. Immune complement and coagulation dysfunction in adverse outcomes of SARS-CoV-2 infection. Nat. Med. 26, 1609–1615 (2020).
pubmed: 32747830 pmcid: 7809634 doi: 10.1038/s41591-020-1021-2
Heming, M. et al. Neurological manifestations of COVID-19 feature T cell exhaustion and dedifferentiated monocytes in cerebrospinal fluid. Immunity 54, 164–175 (2021).
Hadjadj, J. et al. Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients. Science 369, 718–724 (2020).
pubmed: 32661059 pmcid: 7402632 doi: 10.1126/science.abc6027
Kaniusas, E. et al. Non-invasive auricular vagus nerve stimulation as a potential treatment for COVID-19-originated acute respiratory distress syndrome. Front. Physiol. 11, 890 (2020).
pubmed: 32848845 pmcid: 7399203 doi: 10.3389/fphys.2020.00890
Radke, J. et al. The central nervous system’s proteogenomic and spatial imprint upon systemic viral infection, like SARS-CoV-2 [Data set]. Zenodo https://doi.org/10.5281/zenodo.7381807 (2022).
Pepper, D. J. et al. Procalcitonin-guided antibiotic discontinuation and mortality in critically Ill adults: a systematic review and meta-analysis. Chest 155, 1109–1118 (2019).
pubmed: 30772386 pmcid: 6607427 doi: 10.1016/j.chest.2018.12.029
Tong-Minh, K. et al. High procalcitonin levels associated with increased intensive care unit admission and mortality in patients with a COVID-19 infection in the emergency department. BMC Infect. Dis. 22, 165 (2022).
pubmed: 35189826 pmcid: 8860271 doi: 10.1186/s12879-022-07144-5
Rusinova, I. et al. Interferome v2.0: an updated database of annotated interferon-regulated genes. Nucleic Acids Res. 41, D1040–D1046 (2013).
pubmed: 23203888 doi: 10.1093/nar/gks1215
Smyth, G. K. Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat. Appl. Genet. Mol. Biol. 3, 3 (2004).
Xydakis, M. S. et al. Post-viral effects of COVID-19 in the olfactory system and their implications. Lancet Neurol. 20, 753–761 (2021).
pubmed: 34339626 pmcid: 8324113 doi: 10.1016/S1474-4422(21)00182-4
Kespohl, M. et al. Protein modification with ISG15 blocks coxsackievirus pathology by antiviral and metabolic reprogramming. Sci. Adv. 6, eaay1109 (2020).
pubmed: 32195343 pmcid: 7065878 doi: 10.1126/sciadv.aay1109
Haller, O. & Kochs, G. Mx genes: host determinants controlling influenza virus infection and trans-species transmission. Hum. Genet 139, 695–705 (2020).
pubmed: 31773252 doi: 10.1007/s00439-019-02092-8
Piri, R. et al. Prevalence of respiratory viruses and antiviral MxA responses in children with febrile urinary tract infection. Eur. J. Clin. Microbiol Infect. Dis. 39, 1239–1244 (2020).
pubmed: 32048070 pmcid: 7088029 doi: 10.1007/s10096-020-03836-5
Sooryanarain, H. et al. ISG15 modulates type I interferon signaling and the antiviral response during hepatitis E virus replication. J. Virol. 91, e00621-17 (2017).
Kim, H. et al. Development of a validated interferon score using nanostring technology. J. Interferon Cytokine Res. 38, 171–185 (2018).
pubmed: 29638206 pmcid: 5963606 doi: 10.1089/jir.2017.0127
Koopmans, F. et al. SynGO: an evidence-based, expert-curated knowledge base for the synapse. Neuron 103, 217–234 (2019).
Johnson, K. R., Nicodemus-Johnson, J., Carnegie, G. K. & Danziger, R. S. Molecular evolution of A-kinase anchoring protein (AKAP)-7: implications in comparative PKA compartmentalization. BMC Evol. Biol. 12, 125 (2012).
pubmed: 22834419 pmcid: 3508976 doi: 10.1186/1471-2148-12-125
Jones, B. W. et al. Targeted deletion of AKAP7 in dentate granule cells impairs spatial discrimination. eLife 5, e20695 (2016).
pubmed: 27911261 pmcid: 5135391 doi: 10.7554/eLife.20695
Jockusch, W. J. et al. CAPS-1 and CAPS-2 are essential synaptic vesicle priming proteins. Cell 131, 796–808 (2007).
pubmed: 18022372 doi: 10.1016/j.cell.2007.11.002
Pavinato, L. et al. CAPRIN1 haploinsufficiency causes a neurodevelopmental disorder with language impairment, ADHD and ASD. Brain 146, 534–548 (2023).
pubmed: 35979925 doi: 10.1093/brain/awac278
Brendel, A., Renziehausen, J., Behl, C. & Hajieva, P. Downregulation of PMCA2 increases the vulnerability of midbrain neurons to mitochondrial complex I inhibition. Neurotoxicology 40, 43–51 (2014).
pubmed: 24269647 doi: 10.1016/j.neuro.2013.11.003
Maximova, O. A. et al. Virus infection of the CNS disrupts the immune–neural–synaptic axis via induction of pleiotropic gene regulation of host responses. eLife 10, e62273 (2021).
pubmed: 33599611 pmcid: 7891934 doi: 10.7554/eLife.62273
Lee, J. S. & Shin, E. C. The type I interferon response in COVID-19: implications for treatment. Nat. Rev. Immunol. 20, 585–586 (2020).
pubmed: 32788708 pmcid: 8824445 doi: 10.1038/s41577-020-00429-3
Galbraith, M. D. et al. Specialized interferon action in COVID-19. Proc. Natl Acad. Sci. USA 119, e2116730119 (2022).
pubmed: 35217532 pmcid: 8931386 doi: 10.1073/pnas.2116730119
Gofton, T. E. & Young, G. B. Sepsis-associated encephalopathy. Nat. Rev. Neurol. 8, 557–566 (2012).
pubmed: 22986430 doi: 10.1038/nrneurol.2012.183
Shatz, C. J. MHC class I: an unexpected role in neuronal plasticity. Neuron 64, 40–45 (2009).
pubmed: 19840547 pmcid: 2773547 doi: 10.1016/j.neuron.2009.09.044
DeDiego, M. L., Martinez-Sobrido, L. & Topham, D. J. Novel functions of IFI44L as a feedback regulator of host antiviral responses. J. Virol. 93, e01159–19 (2019).
pubmed: 31434731 pmcid: 6803278 doi: 10.1128/JVI.01159-19
DeDiego, M. L., Nogales, A., Martinez-Sobrido, L. & Topham, D. J. Interferon-induced protein 44 interacts with cellular FK506-binding protein 5, negatively regulates host antiviral responses, and supports virus replication. mBio 10, e01839–19 (2019).
pubmed: 31455651 pmcid: 6712396 doi: 10.1128/mBio.01839-19
Paolicelli, R. C. et al. Microglia states and nomenclature: a field at its crossroads. Neuron 110, 3458–3483 (2022).
pubmed: 36327895 pmcid: 9999291 doi: 10.1016/j.neuron.2022.10.020
Wolf, Y., Yona, S., Kim, K. W. & Jung, S. Microglia, seen from the CX3CR1 angle. Front. Cell Neurosci. 7, 26 (2013).
pubmed: 23507975 pmcid: 3600435 doi: 10.3389/fncel.2013.00026
Sankowski, R. et al. Mapping microglia states in the human brain through the integration of high-dimensional techniques. Nat. Neurosci. 22, 2098–2110 (2019).
pubmed: 31740814 doi: 10.1038/s41593-019-0532-y
Brose, N., Petrenko, A. G., Sudhof, T. C. & Jahn, R. Synaptotagmin: a calcium sensor on the synaptic vesicle surface. Science 256, 1021–1025 (1992).
pubmed: 1589771 doi: 10.1126/science.1589771
Cupertino, R. B. et al. SNARE complex in developmental psychiatry: neurotransmitter exocytosis and beyond. J. Neural Transm. 123, 867–883 (2016).
pubmed: 26856328 doi: 10.1007/s00702-016-1514-9
Barry, G. et al. The long non-coding RNA NEAT1 is responsive to neuronal activity and is associated with hyperexcitability states. Sci. Rep. 7, 40127 (2017).
pubmed: 28054653 pmcid: 5214838 doi: 10.1038/srep40127
Luo, F., Sclip, A., Merrill, S. & Sudhof, T. C. Neurexins regulate presynaptic GABAB-receptors at central synapses. Nat. Commun. 12, 2380 (2021).
pubmed: 33888718 pmcid: 8062527 doi: 10.1038/s41467-021-22753-5
Andreyeva, A. et al. CHL1 is a selective organizer of the presynaptic machinery chaperoning the SNARE complex. PLoS ONE 5, e12018 (2010).
pubmed: 20711454 pmcid: 2920317 doi: 10.1371/journal.pone.0012018
Krasemann, S. et al. The blood–brain barrier is dysregulated in COVID-19 and serves as a CNS entry route for SARS-CoV-2. Stem Cell Rep. 17, 307–320 (2022).
doi: 10.1016/j.stemcr.2021.12.011
Bonetto, V. et al. Markers of blood–brain barrier disruption increase early and persistently in COVID-19 patients with neurological manifestations. Front. Immunol. 13, 1070379 (2022).
pubmed: 36591311 pmcid: 9798841 doi: 10.3389/fimmu.2022.1070379
Pober, J. S. & Sessa, W. C. Evolving functions of endothelial cells in inflammation. Nat. Rev. Immunol. 7, 803–815 (2007).
pubmed: 17893694 doi: 10.1038/nri2171
Lastres, P. et al. Endoglin modulates cellular responses to TGF-β 1. J. Cell Biol. 133, 1109–1121 (1996).
pubmed: 8655583 doi: 10.1083/jcb.133.5.1109
Ihn, H. Pathogenesis of fibrosis: role of TGF-β and CTGF. Curr. Opin. Rheumatol. 14, 681–685 (2002).
pubmed: 12410091 doi: 10.1097/00002281-200211000-00009
Chen, Z. et al. Connective tissue growth factor: from molecular understandings to drug discovery. Front. Cell Dev. Biol. 8, 593269 (2020).
pubmed: 33195264 pmcid: 7658337 doi: 10.3389/fcell.2020.593269
Lu, M., Yan, X. F., Si, Y. & Chen, X. Z. CTGF triggers rat astrocyte activation and astrocyte-mediated inflammatory response in culture conditions. Inflammation 42, 1693–1704 (2019).
pubmed: 31183597 doi: 10.1007/s10753-019-01029-7
Smolders, J. et al. Tissue-resident memory T cells populate the human brain. Nat. Commun. 9, 4593 (2018).
pubmed: 30389931 pmcid: 6214977 doi: 10.1038/s41467-018-07053-9
Ferreira-Gomes, M. et al. SARS-CoV-2 in severe COVID-19 induces a TGF-β-dominated chronic immune response that does not target itself. Nat. Commun. 12, 1961 (2021).
pubmed: 33785765 pmcid: 8010106 doi: 10.1038/s41467-021-22210-3
Mothes, R. et al. Distinct tissue niches direct lung immunopathology via CCL18 and CCL21 in severe COVID-19. Nat. Commun. 14, 791 (2023).
Clenet, M. L., Gagnon, F., Moratalla, A. C., Viel, E. C. & Arbour, N. Peripheral human CD4
pubmed: 28912605 pmcid: 5599513 doi: 10.1038/s41598-017-11926-2
Fernandez-Castaneda, A. et al. Mild respiratory COVID can cause multi-lineage neural cell and myelin dysregulation. Cell 185, 2452–2468 (2022).
Girard, T. D., Dittus, R. S. & Ely, E. W. Critical illness brain injury. Annu. Rev. Med. 67, 497–513 (2016).
pubmed: 26768245 doi: 10.1146/annurev-med-050913-015722
Zrzavy, T. et al. Pro-inflammatory activation of microglia in the brain of patients with sepsis. Neuropathol. Appl. Neurobiol. 45, 278–290 (2019).
pubmed: 29804289 doi: 10.1111/nan.12502
Fullard, J. F. et al. Single-nucleus transcriptome analysis of human brain immune response in patients with severe COVID-19. Genome Med. 13, 118 (2021).
pubmed: 34281603 pmcid: 8287557 doi: 10.1186/s13073-021-00933-8
Mavrikaki, M., Lee, J. D., Solomon, I. H. & Slack, F. J. Severe COVID-19 is associated with molecular signatures of aging in the human brain. Nat. Aging 2, 1130–1137 (2022).
pubmed: 37118539 doi: 10.1038/s43587-022-00321-w
Jakel, S. et al. Altered human oligodendrocyte heterogeneity in multiple sclerosis. Nature 566, 543–547 (2019).
pubmed: 30747918 pmcid: 6544546 doi: 10.1038/s41586-019-0903-2
Golan, N. et al. Identification of Tmem10/Opalin as an oligodendrocyte enriched gene using expression profiling combined with genetic cell ablation. Glia 56, 1176–1186 (2008).
pubmed: 18571792 pmcid: 2830273 doi: 10.1002/glia.20688
Roy, E. R. et al. Concerted type I interferon signaling in microglia and neural cells promotes memory impairment associated with amyloid beta plaques. Immunity 55, 879–894 (2022).
Rybak-Wolf, A. et al. Modelling viral encephalitis caused by herpes simplex virus 1 infection in cerebral organoids. Nat. Microbiol. 8, 1252–1266 (2023).
Schimmel, L. et al. Endothelial cells are not productively infected by SARS-CoV-2. Clin. Transl. Immunol. 10, e1350 (2021).
doi: 10.1002/cti2.1350
McCracken, I. R. et al. Lack of evidence of angiotensin-converting enzyme 2 expression and replicative infection by SARS-CoV-2 in human endothelial cells. Circulation 143, 865–868 (2021).
pubmed: 33405941 pmcid: 7899720 doi: 10.1161/CIRCULATIONAHA.120.052824
Baeck, M., Hoton, D., Marot, L. & Herman, A. Chilblains and COVID-19: why SARS-CoV-2 endothelial infection is questioned. Br. J. Dermatol 183, 1152–1153 (2020).
pubmed: 32798309 pmcid: 7461534 doi: 10.1111/bjd.19489
Wenzel, J. et al. The SARS-CoV-2 main protease M(pro) causes microvascular brain pathology by cleaving NEMO in brain endothelial cells. Nat. Neurosci. 24, 1522–1533 (2021).
pubmed: 34675436 pmcid: 8553622 doi: 10.1038/s41593-021-00926-1
Varga, Z. et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet 395, 1417–1418 (2020).
pubmed: 32325026 pmcid: 7172722 doi: 10.1016/S0140-6736(20)30937-5
Napolitano, G. et al. Transforming growth factor-β1 down-regulation of major histocompatibility complex class I in thyrocytes: coordinate regulation of two separate elements by thyroid-specific as well as ubiquitous transcription factors. Mol. Endocrinol. 14, 486–505 (2000).
pubmed: 10770487
Lo, M. W., Kemper, C. & Woodruff, T. M. COVID-19: complement, coagulation, and collateral damage. J. Immunol. 205, 1488–1495 (2020).
pubmed: 32699160 doi: 10.4049/jimmunol.2000644
Kaya, T. et al. CD8
pubmed: 36280798 pmcid: 9630119 doi: 10.1038/s41593-022-01183-6
Goehler, L. E. et al. Vagal immune-to-brain communication: a visceral chemosensory pathway. Auton. Neurosci. 85, 49–59 (2000).
pubmed: 11189026 doi: 10.1016/S1566-0702(00)00219-8
Caravaca, A. S. et al. Vagus nerve stimulation promotes resolution of inflammation by a mechanism that involves Alox15 and requires the α7nAChR subunit. Proc. Natl Acad. Sci. USA 119, e2023285119 (2022).
pubmed: 35622894 pmcid: 9295760 doi: 10.1073/pnas.2023285119
Borovikova, L. V. et al. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 405, 458–462 (2000).
pubmed: 10839541 doi: 10.1038/35013070
Woo, M. S. et al. Vagus nerve inflammation contributes to dysautonomia in COVID-19. Acta Neuropathol. 146, 387–394 (2023).
pubmed: 37452829 pmcid: 10412500 doi: 10.1007/s00401-023-02612-x
Al-Dalahmah, O. et al. Neuronophagia and microglial nodules in a SARS-CoV-2 patient with cerebellar hemorrhage. Acta Neuropathol. Commun. 8, 147 (2020).
pubmed: 32847628 pmcid: 7447601 doi: 10.1186/s40478-020-01024-2
Marino Gammazza, A. et al. Molecular mimicry in the post-COVID-19 signs and symptoms of neurovegetative disorders? Lancet Microbe 2, e94 (2021).
pubmed: 35544159 doi: 10.1016/S2666-5247(21)00033-1
Velmeshev, D. et al. Single-cell genomics identifies cell type-specific molecular changes in autism. Science 364, 685–689 (2019).
pubmed: 31097668 pmcid: 7678724 doi: 10.1126/science.aav8130
Shaban, A. & Leira, E. C. Neurological complications in patients with systemic lupus erythematosus. Curr. Neurol. Neurosci. Rep. 19, 97 (2019).
pubmed: 31773306 doi: 10.1007/s11910-019-1012-1
Hofer, M. J. & Campbell, I. L. Type I interferon in neurological disease-the devil from within. Cytokine Growth Factor Rev. 24, 257–267 (2013).
pubmed: 23548179 doi: 10.1016/j.cytogfr.2013.03.006
Giordano, A. M. S. et al. DNA damage contributes to neurotoxic inflammation in Aicardi–Goutieres syndrome astrocytes. J. Exp. Med. 219, e20211121 (2022).
pubmed: 35262626 pmcid: 8916121 doi: 10.1084/jem.20211121
Akwa, Y. et al. Transgenic expression of IFN-α in the central nervous system of mice protects against lethal neurotropic viral infection but induces inflammation and neurodegeneration. J. Immunol. 161, 5016–5026 (1998).
pubmed: 9794439 doi: 10.4049/jimmunol.161.9.5016
Barrett, J. P. et al. Interferon-β plays a detrimental role in experimental traumatic brain injury by enhancing neuroinflammation that drives chronic neurodegeneration. J. Neurosci. 40, 2357–2370 (2020).
pubmed: 32029532 pmcid: 7083281 doi: 10.1523/JNEUROSCI.2516-19.2020
Deczkowska, A. et al. Mef2C restrains microglial inflammatory response and is lost in brain ageing in an IFN-I-dependent manner. Nat. Commun. 8, 717 (2017).
pubmed: 28959042 pmcid: 5620041 doi: 10.1038/s41467-017-00769-0
Muccioli, L. et al. Intravenous immunoglobulin therapy in COVID-19-related encephalopathy. J. Neurol. 268, 2671–2675 (2021).
pubmed: 33030607 doi: 10.1007/s00415-020-10248-0
Huo, S. et al. Intravenous immunoglobulins for treatment of severe COVID-19-related acute encephalopathy. J. Neurol. 269, 4013–4020 (2022).
pubmed: 35538168 pmcid: 9089297 doi: 10.1007/s00415-022-11152-5
Park-Min, K. H. et al. FcgammaRIII-dependent inhibition of interferon-γ responses mediates suppressive effects of intravenous immune globulin. Immunity 26, 67–78 (2007).
pubmed: 17239631 doi: 10.1016/j.immuni.2006.11.010
Ritchie, M. E. et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).
pubmed: 25605792 pmcid: 4402510 doi: 10.1093/nar/gkv007
Rice, G. I. et al. Assessment of type I interferon signaling in pediatric inflammatory disease. J. Clin. Immunol. 37, 123–132 (2017).
pubmed: 27943079 doi: 10.1007/s10875-016-0359-1
Gassen, N. C. et al. SARS-CoV-2-mediated dysregulation of metabolism and autophagy uncovers host-targeting antivirals. Nat. Commun. 12, 3818 (2021).
pubmed: 34155207 pmcid: 8217552 doi: 10.1038/s41467-021-24007-w
Tosti, L. et al. Single-nucleus and in situ RNA-sequencing reveal cell topographies in the human pancreas. Gastroenterology 160, 1330–1344 (2021).
Brann, D. H. et al. Non-neuronal expression of SARS-CoV-2 entry genes in the olfactory system suggests mechanisms underlying COVID-19-associated anosmia. Sci. Adv. 6, eabc5801 (2020).
pubmed: 32937591 pmcid: 10715684 doi: 10.1126/sciadv.abc5801
Durante, M. A. et al. Single-cell analysis of olfactory neurogenesis and differentiation in adult humans. Nat. Neurosci. 23, 323–326 (2020).
pubmed: 32066986 pmcid: 7065961 doi: 10.1038/s41593-020-0587-9
Khrameeva, E. et al. Single-cell-resolution transcriptome map of human, chimpanzee, bonobo, and macaque brains. Genome Res. 30, 776–789 (2020).
pubmed: 32424074 pmcid: 7263190 doi: 10.1101/gr.256958.119
Darmanis, S. et al. A survey of human brain transcriptome diversity at the single cell level. Proc. Natl Acad. Sci. USA 112, 7285–7290 (2015).
pubmed: 26060301 pmcid: 4466750 doi: 10.1073/pnas.1507125112
Chua, R. L. et al. COVID-19 severity correlates with airway epithelium-immune cell interactions identified by single-cell analysis. Nat. Biotechnol. 38, 970–979 (2020).
pubmed: 32591762 doi: 10.1038/s41587-020-0602-4
monocle3. GitHub https://github.com/cole-trapnell-lab/monocle3 (2022).
Cao, J. et al. The single-cell transcriptional landscape of mammalian organogenesis. Nature 566, 496–502 (2019).
pubmed: 30787437 pmcid: 6434952 doi: 10.1038/s41586-019-0969-x
Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587 (2021).
Muller, T. et al. Automated sample preparation with SP3 for low-input clinical proteomics. Mol. Syst. Biol. 16, e9111 (2020).
pubmed: 32129943 pmcid: 6966100 doi: 10.15252/msb.20199111
Scheltema, R. A. et al. The Q Exactive HF, a benchtop mass spectrometer with a pre-filter, high-performance quadrupole and an ultra-high-field Orbitrap analyzer. Mol. Cell Proteomics 13, 3698–3708 (2014).
pubmed: 25360005 pmcid: 4256516 doi: 10.1074/mcp.M114.043489
Reubsaet, L., Sweredoski, M. J. & Moradian, A. Data-independent acquisition for the Orbitrap Q Exactive HF: a tutorial. J. Proteome Res 18, 803–813 (2019).
pubmed: 30557026 doi: 10.1021/acs.jproteome.8b00845
Doellinger, J., Blumenscheit, C., Schneider, A. & Lasch, P. Increasing proteome depth while maintaining quantitative precision in short-gradient data-independent acquisition proteomics. J. Proteome. Res. 22, 2131–2140 (2023).
Demichev, V., Messner, C. B., Vernardis, S. I., Lilley, K. S. & Ralser, M. DIA-NN: neural networks and interference correction enable deep proteome coverage in high throughput. Nat. Methods 17, 41–44 (2020).
pubmed: 31768060 doi: 10.1038/s41592-019-0638-x
Jeong, K., Kim, S. & Bandeira, N. False discovery rates in spectral identification. BMC Bioinform. 13, S2 (2012).
doi: 10.1186/1471-2105-13-S16-S2
Dorl, S., Winkler, S., Mechtler, K. & Dorfer, V. MS Ana: improving sensitivity in peptide identification with spectral library search. J. Proteome Res. 22, 462–470 (2023).
pubmed: 36688604 pmcid: 9903325 doi: 10.1021/acs.jproteome.2c00658
Savitski, M. M., Wilhelm, M., Hahne, H., Kuster, B. & Bantscheff, M. A scalable approach for protein false discovery rate estimation in large proteomic data sets. Mol. Cell Proteomics 14, 2394–2404 (2015).
pubmed: 25987413 pmcid: 4563723 doi: 10.1074/mcp.M114.046995
Josse, J. & Husson, F. missMDA: a package for handling missing values in multivariate data analysis. J. Stat. Softw. 70, 1–31 (2016).
doi: 10.18637/jss.v070.i01
Huber, W., von Heydebreck, A., Sültmann, H., Poustka, A. & Vingron, M. Variance stabilization applied to microarray data calibration and to the quantification of differential expression. Bioinformatics 18, S96–S104 (2002).
pubmed: 12169536 doi: 10.1093/bioinformatics/18.suppl_1.S96
Cox, J. et al. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol. Cell Proteomics 13, 2513–2526 (2014).
pubmed: 24942700 pmcid: 4159666 doi: 10.1074/mcp.M113.031591
Pham, T. V., Henneman, A. A. & Jimenez, C. R. iq: an R package to estimate relative protein abundances from ion quantification in DIA-MS-based proteomics. Bioinformatics 36, 2611–2613 (2020).
pubmed: 31909781 pmcid: 7178409 doi: 10.1093/bioinformatics/btz961
Lê, S., Josse, J. & Husson, F. FactoMineR: an R package for multivariate analysis. J. Stat. Softw. 25, 1–18 (2008).
doi: 10.18637/jss.v025.i01
Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57, 289–300 (1995).
Yu, G., Wang, L. G., Han, Y. & He, Q. Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16, 284–287 (2012).
pubmed: 22455463 pmcid: 3339379 doi: 10.1089/omi.2011.0118
Wendisch, D. et al. SARS-CoV-2 infection triggers profibrotic macrophage responses and lung fibrosis. Cell 184, 6243–6261 (2021).
Perez-Riverol, Y. et al. The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 50, D543–D552 (2022).
pubmed: 34723319 doi: 10.1093/nar/gkab1038

Auteurs

Josefine Radke (J)

Institute of Pathology, Universitätsmedizin Greifswald, Greifswald, Germany. josefine.radke@med.uni-greifswald.de.
Department of Neuropathology, Charité - Universitätsmedizin Berlin, Berlin, Germany. josefine.radke@med.uni-greifswald.de.

Jenny Meinhardt (J)

Department of Neuropathology, Charité - Universitätsmedizin Berlin, Berlin, Germany.

Tom Aschman (T)

Department of Neuropathology, Charité - Universitätsmedizin Berlin, Berlin, Germany.

Robert Lorenz Chua (RL)

Center of Digital Health, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.

Vadim Farztdinov (V)

Core Facility High Throughput Mass Spectrometry, Charité - Universitätsmedizin Berlin, Berlin, Germany.

Sören Lukassen (S)

Center of Digital Health, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.

Foo Wei Ten (FW)

Center of Digital Health, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.

Ekaterina Friebel (E)

Department of Neuropathology, Charité - Universitätsmedizin Berlin, Berlin, Germany.

Naveed Ishaque (N)

Center of Digital Health, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.

Jonas Franz (J)

Department of Neuropathology, University Medical Center Göttingen, Göttingen, Germany.

Valerie Helena Huhle (VH)

Department of Neuropathology, Charité - Universitätsmedizin Berlin, Berlin, Germany.

Ronja Mothes (R)

Department of Neuropathology, Charité - Universitätsmedizin Berlin, Berlin, Germany.

Kristin Peters (K)

Institute of Pathology, Universitätsmedizin Greifswald, Greifswald, Germany.

Carolina Thomas (C)

Department of Neuropathology, University Medical Center Göttingen, Göttingen, Germany.

Shirin Schneeberger (S)

Department of Neuropathology, Charité - Universitätsmedizin Berlin, Berlin, Germany.

Elisa Schumann (E)

Department of Neuropathology, Charité - Universitätsmedizin Berlin, Berlin, Germany.

Leona Kawelke (L)

Department of Neuropathology, Charité - Universitätsmedizin Berlin, Berlin, Germany.

Julia Jünger (J)

Department of Neuropathology, Charité - Universitätsmedizin Berlin, Berlin, Germany.

Viktor Horst (V)

Department of Neuropathology, Charité - Universitätsmedizin Berlin, Berlin, Germany.

Simon Streit (S)

Department of Neuropathology, Charité - Universitätsmedizin Berlin, Berlin, Germany.

Regina von Manitius (R)

Department of Neuropathology, Charité - Universitätsmedizin Berlin, Berlin, Germany.

Péter Körtvélyessy (P)

Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany.

Stefan Vielhaber (S)

Department of Neurology, Otto von Guerike University Magdeburg, Magdeburg, Germany.

Dirk Reinhold (D)

Institute of Molecular and Clinical Immunology, Otto von Guerike University Magdeburg, Magdeburg, Germany.

Anja E Hauser (AE)

Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany.
Immune Dynamics, Deutsches Rheuma-Forschungszentrum, a Leibniz Institute, Berlin, Germany.

Anja Osterloh (A)

Department of Pathology, University Medical Center Ulm, Ulm, Germany.

Philipp Enghard (P)

Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, Berlin, Germany.

Jana Ihlow (J)

Department of Pathology, Charité - Universitätsmedizin Berlin, Berlin, Germany.

Sefer Elezkurtaj (S)

Department of Pathology, Charité - Universitätsmedizin Berlin, Berlin, Germany.

David Horst (D)

Department of Pathology, Charité - Universitätsmedizin Berlin, Berlin, Germany.

Florian Kurth (F)

Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany.

Marcel A Müller (MA)

Institute of Virology, Charité - Universitätsmedizin Berlin, Berlin, Germany.

Nils C Gassen (NC)

Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany.

Julia Melchert (J)

Institute of Virology, Charité - Universitätsmedizin Berlin, Berlin, Germany.

Katharina Jechow (K)

Center of Digital Health, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.

Bernd Timmermann (B)

Max Planck Institute for Molecular Genetics, Berlin, Germany.

Camila Fernandez-Zapata (C)

Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité - Universitätsmedizin Berlin, Berlin, Germany.

Chotima Böttcher (C)

Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité - Universitätsmedizin Berlin, Berlin, Germany.

Werner Stenzel (W)

Department of Neuropathology, Charité - Universitätsmedizin Berlin, Berlin, Germany.

Elke Krüger (E)

Institute of Medical Biochemistry and Molecular Biology, Universitätsmedizin Greifswald, Greifswald, Germany.

Markus Landthaler (M)

Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.
Institut für Biologie, Humboldt Universität, Berlin, Germany.

Emanuel Wyler (E)

Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.

Victor Corman (V)

Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany.
German Centre for Infection Research (DZIF), associated partner, Berlin, Germany.

Christine Stadelmann (C)

Department of Neuropathology, University Medical Center Göttingen, Göttingen, Germany.

Markus Ralser (M)

Core Facility High Throughput Mass Spectrometry, Charité - Universitätsmedizin Berlin, Berlin, Germany.

Roland Eils (R)

Center of Digital Health, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.

Frank L Heppner (FL)

Department of Neuropathology, Charité - Universitätsmedizin Berlin, Berlin, Germany.
German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany.
Cluster of Excellence NeuroCure, Berlin, Germany.
German Cancer Consortium (DKTK), Partner Site Charité - Universitätsmedizin Berlin, Berlin, Germany.

Michael Mülleder (M)

Core Facility High Throughput Mass Spectrometry, Charité - Universitätsmedizin Berlin, Berlin, Germany.

Christian Conrad (C)

Center of Digital Health, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.

Helena Radbruch (H)

Department of Neuropathology, Charité - Universitätsmedizin Berlin, Berlin, Germany. Helena.radbruch@charite.de.

Classifications MeSH