Tau accumulation is associated with dopamine deficiency in vivo in four-repeat tauopathies.
4R-Tau
DaT imaging
Motor reserve
[18F]PI-2620 tau-PET
Journal
European journal of nuclear medicine and molecular imaging
ISSN: 1619-7089
Titre abrégé: Eur J Nucl Med Mol Imaging
Pays: Germany
ID NLM: 101140988
Informations de publication
Date de publication:
17 Feb 2024
17 Feb 2024
Historique:
received:
11
07
2023
accepted:
04
02
2024
medline:
17
2
2024
pubmed:
17
2
2024
entrez:
17
2
2024
Statut:
aheadofprint
Résumé
We hypothesized that severe tau burden in brain regions involved in direct or indirect pathways of the basal ganglia correlate with more severe striatal dopamine deficiency in four-repeat (4R) tauopathies. Therefore, we correlated [ Thirty-eight patients with clinically diagnosed 4R-tauopathies (21 male; 69.0 ± 8.5 years) and 15 patients with clinically diagnosed α-synucleinopathies (8 male; 66.1 ± 10.3 years) who underwent [ In patients with 4R-tauopathies, [ Tau burden in brain regions involved in dopaminergic pathways is associated with aggravated dopaminergic dysfunction in patients with clinically diagnosed primary tauopathies. The ability to sustain dopamine transmission despite tau accumulation may preserve motor function.
Identifiants
pubmed: 38366196
doi: 10.1007/s00259-024-06637-6
pii: 10.1007/s00259-024-06637-6
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2024. The Author(s).
Références
Sergeant N, Wattez A, Delacourte A. Neurofibrillary degeneration in progressive supranuclear palsy and corticobasal degeneration. Tau pathologies with exclusively “Exon10” isoforms. J Neurochem. 1999;72:1243–9. https://doi.org/10.1046/j.1471-4159.1999.0721243.x .
doi: 10.1046/j.1471-4159.1999.0721243.x
pubmed: 10037497
Dickson DW. Neuropathologic differentiation of progressive supranuclear palsy and corticobasal degeneration. J Neurol. 1999;246:II6–15. https://doi.org/10.1007/BF03161076 .
doi: 10.1007/BF03161076
pubmed: 10525997
Buée L, Bussière T, Buée-Scherrer V, Delacourte A, Hof PR. Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Res Rev. 2000;33:95–130. https://doi.org/10.1016/S0165-0173(00)00019-9 .
doi: 10.1016/S0165-0173(00)00019-9
pubmed: 10967355
Williams DR, Holton JL, Strand C, Pittman A, de Silva R, Lees AJ, et al. Pathological tau burden and distribution distinguishes progressive supranuclear palsy-parkinsonism from Richardson’s syndrome. Brain. 2007;130:1566–76. https://doi.org/10.1093/brain/awm104 .
doi: 10.1093/brain/awm104
pubmed: 17525140
Kouri N, Murray ME, Hassan A, Rademakers R, Uitti RJ, Boeve BF, et al. Neuropathological features of corticobasal degeneration presenting as corticobasal syndrome or Richardson syndrome. Brain. 2011;134:3264–75. https://doi.org/10.1093/brain/awr234 .
doi: 10.1093/brain/awr234
pubmed: 21933807
pmcid: 3212714
Ling H, Kovacs GG, Vonsattel JPG, Davey K, Mok KY, Hardy J, et al. Astrogliopathy predominates the earliest stage of corticobasal degeneration pathology. Brain. 2016;139:3237–52. https://doi.org/10.1093/brain/aww256 .
doi: 10.1093/brain/aww256
pubmed: 27797812
Kovacs GG, Lukic MJ, Irwin DJ, Arzberger T, Respondek G, Lee EB, et al. Distribution patterns of tau pathology in progressive supranuclear palsy. Acta Neuropathol. 2020;140:99–119. https://doi.org/10.1007/s00401-020-02158-2 .
doi: 10.1007/s00401-020-02158-2
pubmed: 32383020
pmcid: 7360645
Polanco JC, Scicluna BJ, Hill AF, Götz J. Extracellular vesicles isolated from the brains of rTg4510 mice seed tau protein aggregation in a threshold-dependent manner. J Biol Chem. 2016;291:12445–66. https://doi.org/10.1074/jbc.M115.709485 .
doi: 10.1074/jbc.M115.709485
pubmed: 27030011
pmcid: 4933440
Wang Y, Balaji V, Kaniyappan S, Krüger L, Irsen S, Tepper K, et al. The release and trans-synaptic transmission of Tau via exosomes. Mol Neurodegeneration. 2017;12:5. https://doi.org/10.1186/s13024-016-0143-y .
doi: 10.1186/s13024-016-0143-y
Katsinelos T, Zeitler M, Dimou E, Karakatsani A, Müller H-M, Nachman E, et al. Unconventional secretion mediates the trans-cellular spreading of tau. Cell Rep. 2018;23:2039–55. https://doi.org/10.1016/j.celrep.2018.04.056 .
doi: 10.1016/j.celrep.2018.04.056
pubmed: 29768203
Ahmed Z, Cooper J, Murray TK, Garn K, McNaughton E, Clarke H, et al. A novel in vivo model of tau propagation with rapid and progressive neurofibrillary tangle pathology: the pattern of spread is determined by connectivity, not proximity. Acta Neuropathol. 2014;127:667–83. https://doi.org/10.1007/s00401-014-1254-6 .
doi: 10.1007/s00401-014-1254-6
pubmed: 24531916
pmcid: 4252866
Wu JW, Hussaini SA, Bastille IM, Rodriguez GA, Mrejeru A, Rilett K, et al. Neuronal activity enhances tau propagation and tau pathology in vivo. Nat Neurosci. 2016;19:1085–92. https://doi.org/10.1038/nn.4328 .
doi: 10.1038/nn.4328
pubmed: 27322420
pmcid: 4961585
Mueller A, Bullich S, Barret O, Madonia J, Berndt M, Papin C, et al. Tau PET imaging with 18 F-PI-2620 in patients with Alzheimer disease and healthy controls: a first-in-humans study. J Nucl Med. 2020;61:911–9. https://doi.org/10.2967/jnumed.119.236224 .
doi: 10.2967/jnumed.119.236224
pubmed: 31712323
pmcid: 7262222
Tagai K, Ono M, Kubota M, Kitamura S, Takahata K, Seki C, et al. High-contrast in vivo imaging of tau pathologies in Alzheimer’s and non-Alzheimer’s disease tauopathies. Neuron. 2021;109:42-58.e8. https://doi.org/10.1016/j.neuron.2020.09.042 .
doi: 10.1016/j.neuron.2020.09.042
pubmed: 33125873
Brendel M, Barthel H, van Eimeren T, Marek K, Beyer L, Song M, et al. Assessment of 18 F-PI-2620 as a biomarker in progressive supranuclear palsy. JAMA Neurol. 2020;77:1408. https://doi.org/10.1001/jamaneurol.2020.2526 .
doi: 10.1001/jamaneurol.2020.2526
pubmed: 33165511
Song M, Beyer L, Kaiser L, Barthel H, van Eimeren T, Marek K, et al. Binding characteristics of [18 F]PI-2620 distinguish the clinically predicted tau isoform in different tauopathies by PET. J Cereb Blood Flow Metab. 2021;41:2957–72. https://doi.org/10.1177/0271678X211018904 .
doi: 10.1177/0271678X211018904
pubmed: 34044665
pmcid: 8545042
Messerschmidt K, Barthel H, Brendel M, Scherlach C, Hoffmann K-T, Rauchmann B-S, et al. 18 F-PI-2620 Tau PET improves the imaging diagnosis of progressive supranuclear palsy. J Nucl Med. 2022;63:1754–1760. https://doi.org/10.2967/jnumed.121.262854 .
Palleis C, Brendel M, Finze A, Weidinger E, Botzel K, Danek A, et al. Cortical [(18) F]PI-2620 binding differentiates corticobasal syndrome subtypes. Mov Disord. 2021;36:2104–15. https://doi.org/10.1002/mds.28624 .
doi: 10.1002/mds.28624
pubmed: 33951244
Endo H, Tagai K, Ono M, Ikoma Y, Oyama A, Matsuoka K, et al. A machine learning–based approach to discrimination of tauopathies using [18F]PM-PBB3 PET images. Mov Disord. 2022;37:2236–46. https://doi.org/10.1002/mds.29173 .
doi: 10.1002/mds.29173
pubmed: 36054492
pmcid: 9805085
Liu F-T, Lu J-Y, Li X-Y, Liang X-N, Jiao F-Y, Ge J-J, et al. 18F-Florzolotau PET imaging captures the distribution patterns and regional vulnerability of tau pathology in progressive supranuclear palsy. Eur J Nucl Med Mol Imaging. 2023;50:1395–1405. https://doi.org/10.1007/s00259-022-06104-0 .
doi: 10.1007/s00259-022-06104-0
pubmed: 38150017
pmcid: 10317875
Booij J, Andringa G, Rijks LJM, Vermeulen RJ, De Bruin K, Boer GJ, et al. [123I]FP-CIT binds to the dopamine transporter as assessed by biodistribution studies in rats and SPECT studies in MPTP-lesioned monkeys. Synapse. 1997;27:183–90. https://doi.org/10.1002/(SICI)1098-2396(199711)27:3%3c183::AID-SYN4%3e3.0.CO;2-9 .
doi: 10.1002/(SICI)1098-2396(199711)27:3<183::AID-SYN4>3.0.CO;2-9
pubmed: 9329154
Booij J, Speelman JD, Horstink MWIM, Wolters EC. The clinical benefit of imaging striatal dopamine transporters with [123I]FP-CIT SPET in differentiating patients with presynaptic Parkinsonism from those with other forms of Parkinsonism. Eur J Nucl Med. 2001;28:266–72. https://doi.org/10.1007/s002590000460 .
doi: 10.1007/s002590000460
pubmed: 11315592
McKeith I, O’Brien J, Walker Z, Tatsch K, Booij J, Darcourt J, et al. Sensitivity and specificity of dopamine transporter imaging with 123I-FP-CIT SPECT in dementia with Lewy bodies: a phase III, multicentre study. The Lancet Neurology. 2007;6:305–13. https://doi.org/10.1016/S1474-4422(07)70057-1 .
doi: 10.1016/S1474-4422(07)70057-1
pubmed: 17362834
Höglinger GU, Respondek G, Stamelou M, Kurz C, Josephs KA, Lang AE, et al. Clinical diagnosis of progressive supranuclear palsy: the movement disorder society criteria: MDS Clinical Diagnostic Criteria for PSP. Mov Disord. 2017;32:853–64. https://doi.org/10.1002/mds.26987 .
doi: 10.1002/mds.26987
pubmed: 28467028
pmcid: 5516529
Song M, Scheifele M, Barthel H, van Eimeren T, Beyer L, Marek K, et al. Feasibility of short imaging protocols for [18F]PI-2620 tau-PET in progressive supranuclear palsy. Eur J Nucl Med Mol Imaging. 2021;48:3872–85. https://doi.org/10.1007/s00259-021-05391-3 .
doi: 10.1007/s00259-021-05391-3
pubmed: 34021393
pmcid: 8484138
Katzdobler S, Nitschmann A, Barthel H, Bischof G, Beyer L, Marek K, et al. Additive value of [18F]PI-2620 perfusion imaging in four-repeat tauopathies. Eur J Nucl Med Mol Imaging. 2023;50:423–434. https://doi.org/10.1007/s00259-022-05964-w .
Huber M, Beyer L, Prix C, Schönecker S, Palleis C, Rauchmann BS, et al. Metabolic correlates of dopaminergic loss in dementia with Lewy bodies. Mov Disord. 2020;35:595–605. https://doi.org/10.1002/mds.27945 .
doi: 10.1002/mds.27945
pubmed: 31840326
Armstrong MJ, Litvan I, Lang AE, Bak TH, Bhatia KP, Borroni B, et al. Criteria for the diagnosis of corticobasal degeneration. Neurology. 2013;80:496–503. https://doi.org/10.1212/WNL.0b013e31827f0fd1 .
doi: 10.1212/WNL.0b013e31827f0fd1
pubmed: 23359374
pmcid: 3590050
Respondek G, Stamelou M, Kurz C, Ferguson LW, Rajput A, Chiu WZ, et al. The phenotypic spectrum of progressive supranuclear palsy: a retrospective multicenter study of 100 definite cases: PSP diagnostic criteria. Mov Disord. 2014;29:1758–66. https://doi.org/10.1002/mds.26054 .
doi: 10.1002/mds.26054
pubmed: 25370486
McMillan CT, Irwin DJ, Nasrallah I, Phillips JS, Spindler M, Rascovsky K, et al. Multimodal evaluation demonstrates in vivo 18F-AV-1451 uptake in autopsy-confirmed corticobasal degeneration. Acta Neuropathol. 2016;132:935–7. https://doi.org/10.1007/s00401-016-1640-3 .
doi: 10.1007/s00401-016-1640-3
pubmed: 27815633
pmcid: 5154298
Josephs KA, Whitwell JL, Tacik P, Duffy JR, Senjem ML, Tosakulwong N, et al. [18F]AV-1451 tau-PET uptake does correlate with quantitatively measured 4R-tau burden in autopsy-confirmed corticobasal degeneration. Acta Neuropathol. 2016;132:931–3. https://doi.org/10.1007/s00401-016-1618-1 .
doi: 10.1007/s00401-016-1618-1
pubmed: 27645292
pmcid: 5107140
Ghirelli A, Tosakulwong N, Weigand SD, Clark HM, Ali F, Botha H, et al. Sensitivity–specificity of tau and amyloid β positron emission tomography in frontotemporal lobar degeneration. Ann Neurol. 2020;88:1009–22. https://doi.org/10.1002/ana.25893 .
doi: 10.1002/ana.25893
pubmed: 32869362
pmcid: 7861121
Malarte M-L, Gillberg P-G, Kumar A, Bogdanovic N, Lemoine L, Nordberg A. Discriminative binding of tau PET tracers PI2620, MK6240 and RO948 in Alzheimer’s disease, corticobasal degeneration and progressive supranuclear palsy brains. Mol Psychiatry. 2022. https://doi.org/10.1038/s41380-022-01875-2 .
doi: 10.1038/s41380-022-01875-2
pubmed: 36447011
pmcid: 10005967
Li J, Kumar A, Langstrom B, Nordberg A, Agren H. Insight into the binding of first- and second-generation PET tracers to 4R and 3R/4R tau protofibrils. ACS Chem Neurosci. 2023;14:3528–39. https://doi.org/10.1021/acschemneuro.3c00437 .
doi: 10.1021/acschemneuro.3c00437
pubmed: 37639522
Liu F-T, Li X-Y, Lu J-Y, Wu P, Li L, Liang X-N, et al. 18F-Florzolotau tau positron emission tomography imaging in patients with multiple system atrophy–Parkinsonian subtype. Mov Disord. 2022;37:1915–23. https://doi.org/10.1002/mds.29159 .
doi: 10.1002/mds.29159
pubmed: 35861378
Calafate S, Buist A, Miskiewicz K, Vijayan V, Daneels G, de Strooper B, et al. Synaptic contacts enhance cell-to-cell tau pathology propagation. Cell Rep. 2015;11:1176–83. https://doi.org/10.1016/j.celrep.2015.04.043 .
doi: 10.1016/j.celrep.2015.04.043
pubmed: 25981034
Boluda S, Iba M, Zhang B, Raible KM, Lee VMY, Trojanowski JQ. Differential induction and spread of tau pathology in young PS19 tau transgenic mice following intracerebral injections of pathological tau from Alzheimer’s disease or corticobasal degeneration brains. Acta Neuropathol. 2015;129:221–37. https://doi.org/10.1007/s00401-014-1373-0 .
doi: 10.1007/s00401-014-1373-0
pubmed: 25534024
Gibbons GS, Lee VMY, Trojanowski JQ. Mechanisms of cell-to-cell transmission of pathological tau: a review. JAMA Neurol. 2019;76:101. https://doi.org/10.1001/jamaneurol.2018.2505 .
doi: 10.1001/jamaneurol.2018.2505
pubmed: 30193298
pmcid: 6382549
Franzmeier N, Brendel M, Beyer L, Slemann L, Kovacs GG, Arzberger T, et al. Tau deposition patterns are associated with functional connectivity in primary tauopathies. Nat Commun. 2022;13:1362. https://doi.org/10.1038/s41467-022-28896-3 .
doi: 10.1038/s41467-022-28896-3
pubmed: 35292638
pmcid: 8924216
Whitwell JL, Lowe VJ, Tosakulwong N, Weigand SD, Senjem ML, Schwarz CG, et al. [18 F]AV-1451 tau positron emission tomography in progressive supranuclear palsy: Tau-pet in progressive supranuclear palsy. Mov Disord. 2017;32:124–33. https://doi.org/10.1002/mds.26834 .
doi: 10.1002/mds.26834
pubmed: 27787958
Brendel M, Schönecker S, Höglinger G, Lindner S, Havla J, Blautzik J, et al. [18F]-THK5351 PET Correlates with topology and symptom severity in progressive supranuclear palsy. Front Aging Neurosci. 2018;9:440. https://doi.org/10.3389/fnagi.2017.00440 .
doi: 10.3389/fnagi.2017.00440
pubmed: 29387005
pmcid: 5776329
Stern Y. Cognitive reserve in ageing and Alzheimer’s disease. The Lancet Neurology. 2012;11:1006–12. https://doi.org/10.1016/S1474-4422(12)70191-6 .
doi: 10.1016/S1474-4422(12)70191-6
pubmed: 23079557
pmcid: 3507991
Soldan A, Pettigrew C, Cai Q, Wang J, Wang M-C, Moghekar A, et al. Cognitive reserve and long-term change in cognition in aging and preclinical Alzheimer’s disease. Neurobiol Aging. 2017;60:164–72. https://doi.org/10.1016/j.neurobiolaging.2017.09.002 .
doi: 10.1016/j.neurobiolaging.2017.09.002
pubmed: 28968586
pmcid: 5679465
Stern Y, Arenaza-Urquijo EM, Bartrés-Faz D, Belleville S, Cantilon M, Chetelat G, et al. Whitepaper: defining and investigating cognitive reserve, brain reserve, and brain maintenance. Alzheimers Dement. 2020;16:1305–11. https://doi.org/10.1016/j.jalz.2018.07.219 .
doi: 10.1016/j.jalz.2018.07.219
pubmed: 30222945
Hoenig MC, Dzialas V, Drzezga A, van Eimeren T. The concept of motor reserve in Parkinson’s disease: new wine in old bottles? Mov Disord. 2022;38:16–20. https://doi.org/10.1002/mds.29266 .
Kaindlstorfer C, Jellinger KA, Eschlbock S, Stefanova N, Weiss G, Wenning GK. The relevance of iron in the pathogenesis of multiple system atrophy: a viewpoint. J Alzheimers Dis. 2018;61:1253–73. https://doi.org/10.3233/JAD-170601 .
doi: 10.3233/JAD-170601
pubmed: 29376857
pmcid: 5798525
Lee S, Martinez-Valbuena I, de Andrea CE, Villalba-Esparza M, Ilaalagan S, Couto B, et al. Cell-specific dysregulation of iron and oxygen homeostasis as a novel pathophysiology in PSP. Ann Neurol. 2023;93:431–45. https://doi.org/10.1002/ana.26540 .
doi: 10.1002/ana.26540
pubmed: 36309960
Ward RJ, Zucca FA, Duyn JH, Crichton RR, Zecca L. The role of iron in brain ageing and neurodegenerative disorders. Lancet Neurol. 2014;13:1045–60. https://doi.org/10.1016/S1474-4422(14)70117-6 .
doi: 10.1016/S1474-4422(14)70117-6
pubmed: 25231526
pmcid: 5672917
Dexter DT, Jenner P, Schapira AH, Marsden CD. Alterations in levels of iron, ferritin, and other trace metals in neurodegenerative diseases affecting the basal ganglia. The Royal Kings and Queens Parkinson’s Disease Research Group. Ann Neurol. 1992;32:94–100. https://doi.org/10.1002/ana.410320716 .
doi: 10.1002/ana.410320716
Lee JH, Lee MS. Brain iron accumulation in atypical Parkinsonian syndromes: in vivo MRI evidences for distinctive patterns. Front Neurol. 2019;10:74. https://doi.org/10.3389/fneur.2019.00074 .
doi: 10.3389/fneur.2019.00074
pubmed: 30809185
pmcid: 6379317
Lee SH, Lyoo CH, Ahn SJ, Rinne JO, Lee MS. Brain regional iron contents in progressive supranuclear palsy. Parkinsonism Relat Disord. 2017;45:28–32. https://doi.org/10.1016/j.parkreldis.2017.09.020 .
doi: 10.1016/j.parkreldis.2017.09.020
pubmed: 28982612
Duce JA, Wong BX, Durham H, Devedjian JC, Smith DP, Devos D. Post translational changes to alpha-synuclein control iron and dopamine trafficking; a concept for neuron vulnerability in Parkinson’s disease. Mol Neurodegener. 2017;12:45. https://doi.org/10.1186/s13024-017-0186-8 .
doi: 10.1186/s13024-017-0186-8
pubmed: 28592304
pmcid: 5463308
Han J, Fan Y, Wu P, Huang Z, Li X, Zhao L, et al. Parkinson’s disease dementia: synergistic effects of alpha-synuclein, tau, beta-amyloid, and iron. Front Aging Neurosci. 2021;13:743754. https://doi.org/10.3389/fnagi.2021.743754 .
doi: 10.3389/fnagi.2021.743754
pubmed: 34707492
pmcid: 8542689
Wise RM, Wagener A, Fietzek UM, Klopstock T, Mosharov EV, Zucca FA, et al. Interactions of dopamine, iron, and alpha-synuclein linked to dopaminergic neuron vulnerability in Parkinson’s disease and neurodegeneration with brain iron accumulation disorders. Neurobiol Dis. 2022;175:105920. https://doi.org/10.1016/j.nbd.2022.105920 .
doi: 10.1016/j.nbd.2022.105920
pubmed: 36351559
Saari L, Kivinen K, Gardberg M, Joutsa J, Noponen T, Kaasinen V. Dopamine transporter imaging does not predict the number of nigral neurons in Parkinson disease. Neurology. 2017;88:1461–7. https://doi.org/10.1212/WNL.0000000000003810 .
doi: 10.1212/WNL.0000000000003810
pubmed: 28283599
Colloby SJ, McParland S, O’Brien JT, Attems J. Neuropathological correlates of dopaminergic imaging in Alzheimer’s disease and Lewy body dementias. Brain. 2012;135:2798–808. https://doi.org/10.1093/brain/aws211 .
doi: 10.1093/brain/aws211
pubmed: 22961551
Kraemmer J, Kovacs GG, Perju-Dumbrava L, Pirker S, Traub-Weidinger T, Pirker W. Correlation of striatal dopamine transporter imaging with post mortem substantia nigra cell counts: correlation of DAT imaging with SN cell counts. Mov Disord. 2014;29:1767–73. https://doi.org/10.1002/mds.25975 .
doi: 10.1002/mds.25975
pubmed: 25048738
Choi JY, Cho H, Ahn SJ, Lee JH, Ryu YH, Lee MS, et al. Off-target (18)F-AV-1451 binding in the basal ganglia correlates with age-related iron accumulation. J Nucl Med. 2018;59:117–20. https://doi.org/10.2967/jnumed.117.195248 .
doi: 10.2967/jnumed.117.195248
pubmed: 28775201
Marquie M, Verwer EE, Meltzer AC, Kim SJW, Aguero C, Gonzalez J, et al. Lessons learned about [F-18]-AV-1451 off-target binding from an autopsy-confirmed Parkinson’s case. Acta Neuropathol Commun. 2017;5:75. https://doi.org/10.1186/s40478-017-0482-0 .
doi: 10.1186/s40478-017-0482-0
pubmed: 29047416
pmcid: 5648451
Brendel M, Barthel H, van Eimeren T, Marek K, Beyer L, Song M, et al. Assessment of 18F-PI-2620 as a biomarker in progressive supranuclear palsy. JAMA Neurol. 2020;77:1408–19. https://doi.org/10.1001/jamaneurol.2020.2526 .
doi: 10.1001/jamaneurol.2020.2526
pubmed: 33165511
Kroth H, Oden F, Molette J, Schieferstein H, Capotosti F, Mueller A, et al. Discovery and preclinical characterization of [(18)F]PI-2620, a next-generation tau PET tracer for the assessment of tau pathology in Alzheimer’s disease and other tauopathies. Eur J Nucl Med Mol Imaging. 2019;46:2178–89. https://doi.org/10.1007/s00259-019-04397-2 .
doi: 10.1007/s00259-019-04397-2
pubmed: 31264169
pmcid: 6667408
Groot C, Villeneuve S, Smith R, Hansson O, Ossenkoppele R. Tau PET imaging in neurodegenerative disorders. J Nucl Med. 2022;63:20S-S26. https://doi.org/10.2967/jnumed.121.263196 .
doi: 10.2967/jnumed.121.263196
pubmed: 35649647
Lemoine L, Leuzy A, Chiotis K, Rodriguez-Vieitez E, Nordberg A. Tau positron emission tomography imaging in tauopathies: the added hurdle of off-target binding. Alzheimers Dement (Amst). 2018;10:232–6. https://doi.org/10.1016/j.dadm.2018.01.007 .
doi: 10.1016/j.dadm.2018.01.007
pubmed: 29780868
Kroth H, Oden F, Serra AM, Molette J, Mueller A, Berndt M, et al. Structure-activity relationship around PI-2620 highlights the importance of the nitrogen atom position in the tricyclic core. Bioorg Med Chem. 2021;52:116528. https://doi.org/10.1016/j.bmc.2021.116528 .
doi: 10.1016/j.bmc.2021.116528
pubmed: 34839158
Kunze G, Kumpfel R, Rullmann M, Barthel H, Brendel M, Patt M, et al. Molecular simulations reveal distinct energetic and kinetic binding properties of [(18)F]PI-2620 on tau filaments from 3R/4R and 4R tauopathies. ACS Chem Neurosci. 2022;13:2222–34. https://doi.org/10.1021/acschemneuro.2c00291 .
doi: 10.1021/acschemneuro.2c00291
pubmed: 35762647
McFarland NR. Diagnostic approach to atypical Parkinsonian syndromes. Continuum (Minneap Minn). 2016;22:1117–42. https://doi.org/10.1212/CON.0000000000000348 .
doi: 10.1212/CON.0000000000000348
pubmed: 27495201