Tissue distribution of metabolites in Cordyceps cicadae determined by DESI-MSI analysis.

Cordyceps cicadae Desorption electrospray ionization mass spectrometry imaging (DESI-MSI) Metabolites Spatial distribution

Journal

Analytical and bioanalytical chemistry
ISSN: 1618-2650
Titre abrégé: Anal Bioanal Chem
Pays: Germany
ID NLM: 101134327

Informations de publication

Date de publication:
17 Feb 2024
Historique:
received: 08 11 2023
accepted: 31 01 2024
revised: 18 01 2024
medline: 17 2 2024
pubmed: 17 2 2024
entrez: 17 2 2024
Statut: aheadofprint

Résumé

In this paper, we establish an in situ visualization analysis method to image the spatial distribution of metabolites in different parts (sclerotium, coremium) and different microregions of Cordyceps cicadae (C. cicadae) to achieve the in situ visual characterization of tissues for a variety of metabolites such as nucleosides, amino acids, polysaccharides, organic acids, fatty acids, and so on. The study included LC-MS chemical composition identification, preparation of C. cicadae tissue sections, DEDI-MSI analysis, DESI combined with Q-TOF/MS to obtain high-resolution imaging of mass-to-charge ratio and space, imaging of C. cicadae in positive-negative ion mode with a spatial resolution of 100 μm, and localizing and identifying its chemical compositions based on its precise mass. A total of 62 compounds were identified; nucleosides were mainly distributed in the coremium, L-threonine and DL-isoleucine, and other essential amino acids; peptides were mainly distributed in the sclerotium of C. cicadae; and the rest of the amino acids did not have a clear pattern; sugars and sugar alcohols were mainly distributed in the coremium of C. cicadae; organic acids and fatty acids were distributed in the nucleus of C. cicadae more than in the sclerotium, and the mass spectrometry imaging method is established in the research. The mass spectrometry imaging method established in this study is simple and fast and can visualize and analyse the spatial distribution of metabolites of C. cicadae, which is of great significance in characterizing the metabolic network of C. cicadae, and provides support for the quality evaluation of C. cicadae and the study of the temporal and spatial metabolic network of chemical compounds.

Identifiants

pubmed: 38367042
doi: 10.1007/s00216-024-05188-x
pii: 10.1007/s00216-024-05188-x
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature.

Références

Lei X. Theory of the artillery of Lei Gong (anonymous text). Shanghai: Shanghai College of Traditional Chinese Medicine Press; 1986.
Administration CFaD. Processing specification of traditional Chinese medicine decoction pieces in Chongqing. Chongqing: Chongqing Food and Drug Administration; 2006:34.
Administration SFaD. The standard for traditional Chinese medicines in Sichuan Province. Chengdu: Sichuan Science and Technology Press; 2010:659.
Feng Y, Gong X, Wei D, Liu Y, Zhao M, Yu X, et al. Antioxidant activity and preliminary structure analysis of polysaccharides from Cordyceps cicadas. Food Science. 2016;37(13):19–24.
Hualin W, Jing Z, Wai-Hung S, Jetty LC-Y, Man-Fan WJ. Cordyceps cicadae induces G2/M cell cycle arrest in MHCC97H human hepatocellular carcinoma cells: a proteomic study. Chin Med. 2014;9(1). https://doi.org/10.1186/1749-8546-9-15 .
Song J, Wang H, Luo J, Dan K, Li Y, Han A, et al. Effect of Cordyceps cicadae polysaccharides on immunologic function of mice. Journal of Nuclear Agricultural Sciences. 2018;32(10):1977–83.
Wen P, Chen S, Zheng B, Liang H, Wang T, Bai L, et al. Protective effect and mechanism of polysaccharides from Cordyceps cicadae on acute liver injury induced by D-GlaN in mice. Chin J Exp Tradit Med Formulae. 2018;24(06):108–13.
Yang J, Jin L, Lv J, Yuan Q, Jin J. The experimental study of paecilomyces cicadicae polysaccharides on anti-aging. Chin J Gerontol. 2004;04:343–4.
Ge Q, Wan J, Zhu Y, Wang Y, He X, Wei Y, et al. Qualitative and quantitative analysis of nucleoside components in Cordyceps cicadae by LC-MS and HPLC. Natural Product Research and Development. 2019;31(11):1857–63+927 [in Chinese].
Li L, Liang H, Wu Z, Zhang Z, Zhang L, Wang Y, et al. HPLC fingerprint of Cordyceps cicadae from different parts by cluster analysis and principal component analysis. Lishizhen Medicine and Materia Medica Research. 2017;28(07):1537–41.
He Y, Peng F, Zhao C, Fu B, Huang B, Hu F. Metabolomic differences among different parts of Isaria cicadae cultured on Antheraea pernyi. Microbiology China. 2021;48(02):480–92.
Sun C, Liu W, Guo L, Wang X. Analysis of the tissue distribution of metabolites in lotus seeds based on MALDI mass spectrometry imaging. Journal of Instrumental Analysis. 2021;40(01):86–91.
Ren Z, Zhang H, Yang L, Chen X, Zhang S, Chen S, et al. Spatial distribution and comparative analysis of Aconitum alkaloids in Fuzi using DESI-MSI and UHPLC-QTOF-MS. Analyst. 2023;148(7):1603–10.
pubmed: 36912125 doi: 10.1039/D2AN02051C
Srimany A, Ifa DR, Naik HR, Bhat V, Cooks RG, Pradeep T. Direct analysis of camptothecin from Nothapodytes nimmoniana by desorption electrospray ionization mass spectrometry (DESI-MS). Analyst. 2011;136(15):3066–8.
pubmed: 21695306 doi: 10.1039/c1an15339k
Yang Y, Yang Y, Qiu H, Ju Z, Shi Y, Wang Z, et al. Localization of constituents for determining the age and parts of ginseng through ultraperfomance liquid chromatography quadrupole/time of flight-mass spectrometry combined with desorption electrospray ionization mass spectrometry imaging. J Pharm Biomed Anal. 2021;193: 113722.
pubmed: 33171337 doi: 10.1016/j.jpba.2020.113722
Mohana Kumara P, Uma Shaanker R, Pradeep T. UPLC and ESI-MS analysis of metabolites of Rauvolfia tetraphylla L. and their spatial localization using desorption electrospray ionization (DESI) mass spectrometric imaging. Phytochemistry. 2019;159:20–9.
pubmed: 30562679 doi: 10.1016/j.phytochem.2018.11.009
Jackson AU, Tata A, Wu C, Perry RH, Haas G, West L, et al. Direct analysis of Stevia leaves for diterpene glycosides by desorption electrospray ionization mass spectrometry. Analyst. 2009;134(5):867–74.
pubmed: 19381377 doi: 10.1039/b823511b
Xu B, Chen L, Lv F, Pan Y, Fu X, Pei Z. Visualization of metabolites identified in the spatial metabolome of traditional Chinese medicine using DESI-MSI. J Vis Exp. 2022;190. https://doi.org/10.3791/64912 .
Li B, Neumann EK, Ge J, Gao W, Yang H, Li P, et al. Interrogation of spatial metabolome of Ginkgo biloba with high-resolution matrix-assisted laser desorption/ionization and laser desorption/ionization mass spectrometry imaging. Plant Cell Environ. 2018;41(11):2693–703.
pubmed: 29966033 doi: 10.1111/pce.13395
Administration SFaD. Sichuan provincial standards for Chinese medicinal materials,. Edition). Chengdu: Sichuan Science and Technology Press; 2010. p. 2011.
Schymanski EL, Jeon J, Gulde R, Fenner K, Ruff M, Singer HP, et al. Identifying small molecules via high resolution mass spectrometry: communicating confidence. Environ Sci Technol. 2014;48(4):2097–8.
pubmed: 24476540 doi: 10.1021/es5002105
Ding X, Xiong L, Zhou Q, Ye Q, Guo L, Liu F. Advances in studies on chemical structure and pharmacological activities of natural nucleosides Journal of Chengdu University of Traditional Chinese Medicine. 2018;41(02):102–8.
Wang R. Advances in pyrimidine. Lett Biotechnol. 2007;18(03):539–42 [in Chinese].
Busse-Wicher M, Gomes TC, Tryfona T, Nikolovski N, Stott K, Grantham NJ, et al. The pattern of xylan acetylation suggests xylan may interact with cellulose microfibrils as a twofold helical screw in the secondary plant cell wall of Arabidopsis thaliana. Plant J. 2014;79(3):492–506.
pubmed: 24889696 pmcid: 4140553 doi: 10.1111/tpj.12575
Tang H, Han Y, Liu X. Research progress on the pharmacological effects of Cordyceps militaris polysaccharide and adenosine Biological Chemical Engineering. 2022;8(01):164–7.
Zhang G, Liu X, Ma C, Li W, Wang X. Spatial distribution characteristics of metabolities in rhizome of Paris polyphylla var. yunnanensis:based on MALDI-MSI. China Journal of Chinese Materia Medica. 2022;47(05):1222–9.
pubmed: 35343148
Huang Y, Wang H, Zhu Y, Huang X, Li S, Wu X, et al. THP9 enhances seed protein content and nitrogen-use efficiency in maize. Nature. 2022;612(7939):292–300.
pubmed: 36385527 doi: 10.1038/s41586-022-05441-2
Yang D, Zhu H, Zhao Y, Liu W. Research progress on regulation of citrulline metabolism in vegetable crops. China Cucurbits And Vegetables. 2023;36(02):1–10.
Amobonye A, Bhagwat P, Pandey A, Singh S, Pillai S. Biotechnological potential of Beauveria bassiana as a source of novel biocatalysts and metabolites. Crit Rev Biotechnol. 2020;40(7):1019–34.
pubmed: 32772728 doi: 10.1080/07388551.2020.1805403
Zhou X, Li Y, Hong W, Wang Y, Ye B. Effect of maculosin on fibrotic gene expression in lung fibroblasts. Journal of China Pharmaceutical University. 2014;45(04):491–5.
Wu Q, Li J, Zhu J, Sun X, He D, Li J, et al. Gamma-glutamyl-leucine levels are causally associated with elevated cardio-metabolic risks. Front Nutr. 2022;9: 936220.
pubmed: 36505257 pmcid: 9729530 doi: 10.3389/fnut.2022.936220
Maeda H, Dudareva N. The shikimate pathway and aromatic amino acid biosynthesis in plants. Annu Rev Plant Biol. 2012;63:73–105.
pubmed: 22554242 doi: 10.1146/annurev-arplant-042811-105439
Darwish AG, Das PR, Ismail A, Gajjar P, Balasubramani SP, Sheikh MB, et al. Untargeted metabolomics and antioxidant capacities of muscadine grape genotypes during berry development. Antioxidants (Basel). 2021;10(6):914. https://doi.org/10.1016/j.foodchem.2021.131632 .
doi: 10.1016/j.foodchem.2021.131632 pubmed: 34200012
Michael TP, Mockler TC, Breton G, McEntee C, Byer A, Trout JD, et al. Network discovery pipeline elucidates conserved time-of-day-specific cis-regulatory modules. PLoS Genet. 2008;4(2): e14.
pubmed: 18248097 pmcid: 2222925 doi: 10.1371/journal.pgen.0040014
Tarkowski ŁP, Signorelli S, Höfte M. γ-Aminobutyric acid and related amino acids in plant immune responses: emerging mechanisms of action. Plant Cell Environ. 2020;43(5):1103–16.
pubmed: 31997381 doi: 10.1111/pce.13734
Han M, Zhang C, Suglo P, Sun S, Wang M, Su T. l-Aspartate: an essential metabolite for plant growth and stress acclimation. Molecules. 2021;26(7):1887. https://doi.org/10.3390/molecules26071887 .
doi: 10.3390/molecules26071887 pubmed: 33810495 pmcid: 8037285
Noctor G, Foyer CH. Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol. 1998;49:249–79.
pubmed: 15012235 doi: 10.1146/annurev.arplant.49.1.249
Carrari F, Fernie AR. Metabolic regulation underlying tomato fruit development. J Exp Bot. 2006;57(9):1883–97.
pubmed: 16449380 doi: 10.1093/jxb/erj020
Lea PJ, Miflin BJ. Alternative route for nitrogen assimilation in higher plants. Nature. 1974;251:614–6.
pubmed: 4423889 doi: 10.1038/251614a0
Jander G, Joshi V. Aspartate-derived amino acid biosynthesis in Arabidopsis thaliana. Arabidopsis Book. 2009;7: e0121.
pubmed: 22303247 pmcid: 3243338 doi: 10.1199/tab.0121
He Y, Li X, Xie Y. Gamma-glutamyl-leucine levels are causally associated with elevated cardio-metabolic risks. Front Nutr. 2016;52(03):241–9.
Tang L, Xu J, Hou Y, Wu S, Xiong K, He L, et al. Transcriptome analysis of Samsoniella hepiali induced by salicylic acid and crucial genes digging for metabolic pathways of cordycepic acid. Acta Microbiologica Sinica. 2022;62(10):3751–67.
Lastdrager J, Hanson J, Smeekens S. Sugar signals and the control of plant growth and development. J Exp Bot. 2014;65(3):799–807.
pubmed: 24453229 doi: 10.1093/jxb/ert474
Chen S, Peng Y, Zhou H, Yu B, Dong Y, Teng S. Advances in plant alglucan metabolism and alglucose-6-phosphate signaling. Plant Physiol J. 2014;50(03):233–42.
Zhang Y. The role of seaweed sugar in resistance to high temperature stress and the effect of phytohormones on the reproductive development of A. longifolia [master's degree]: Ningbo University;2021[in Chinese].
Geigenberger P. Regulation of starch biosynthesis in response to a fluctuating environment. Plant Physiol. 2011;155(4):1566–77.
pubmed: 21378102 pmcid: 3091114 doi: 10.1104/pp.110.170399
Li Z, Peng Y, Yin S, Han L. Effects of exogenous mannose application on drought tolerance, sugars, and sugar alcohol accumulation in white clover Acta Prataculturae Sinica. 2019;28(12):85–93.
Aoki M, Fujii K, Kitayama K. Environmental control of root exudation of low-molecular weight organic acids in tropical rainforests. Ecosystems. 2012;15(7):1194–203.
doi: 10.1007/s10021-012-9575-6
Araújo W, Nunes-Nesi A, Nikoloski Z, Sweetlove LJ, Fernie AR. Metabolic control and regulation of the tricarboxylic acid cycle in photosynthetic and heterotrophic plant tissues. Plant, Cell Environ. 2011;35(1):1–21.
pubmed: 21477125 doi: 10.1111/j.1365-3040.2011.02332.x
Wang H, Zhang S, Li H, Wang X, Huang L, Zhang S. Advances in the study of plant azelaic acid. Plant Physiology Journal. 2022;58(03):483–91.
Yu JQ, Matsui Y. Phytotoxic substances in root exudates of cucumber (Cucumis sativus L.). J Chem Ecol. 1994;20(1):21–31.
pubmed: 24241696 doi: 10.1007/BF02065988
Foyer CH, Noctor G. Redox signaling in plants. Antioxid Redox Signal. 2013;18(16):2087–90.
pubmed: 23442120 doi: 10.1089/ars.2013.5278
Mendiondo GM, Gibbs DJ, Szurman-Zubrzycka M, Korn A, Marquez J, Szarejko I, et al. Enhanced waterlogging tolerance in barley by manipulation of expression of the N-end rule pathway E3 ligase PROTEOLYSIS6. Plant Biotechnol J. 2016;14(1):40–50.
pubmed: 25657015 doi: 10.1111/pbi.12334
Farmer EE, Ryan CA. Octadecanoid precursors of jasmonic acid activate the synthesis of wound-inducible proteinase inhibitors. Plant Cell. 1992;4(2):129–34.
pubmed: 12297644 pmcid: 160114 doi: 10.2307/3869566
Li X, Zhou B, Liu N, Fu Y. Effect of different concentration dibutyl phthalate(DBP) on the germination and seedlings growth of three vegetable seeds Acta Agriculturae Boreali-Occidentalis Sinica. 2009;18(2):217–20,24 [in Chinese].
Hannun YA, Obeid LM. Sphingolipids and their metabolism in physiology and disease. Nat Rev Mol Cell Biol. 2017;19(3):175–91. https://doi.org/10.1038/nrm.2017.107 .
doi: 10.1038/nrm.2017.107 pubmed: 29165427 pmcid: 5902181
Zhao X. Study on the accumulation of betaine synthesis during fruit growth and development of Lycium barbarum [master's degree]: Ningxia University; 2022 [in Chinese].

Auteurs

Mayijie Cao (M)

Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, Sichuan, China.

Jie Wu (J)

Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, Sichuan, China.

Xiaoli Zhu (X)

Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, Sichuan, China.

Zhuolin Jia (Z)

Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, Sichuan, China.

Ye Zhou (Y)

Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, Sichuan, China.

Lingying Yu (L)

Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, Sichuan, China.

Changjiang Hu (C)

Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, Sichuan, China. 654460129@qq.com.

Yongxiang Gao (Y)

International Education College, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, Sichuan, China. drgaoyx@cdutcm.edu.cn.

Zhimin Chen (Z)

Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, Sichuan, China. chenzhimin@cdutcm.edu.cn.

Classifications MeSH