A simple and reliable method for claustrum localization across age in mice.

Anterior cingulate cortex Claustrum Clautrocortical Nr2f2 Nurr1 Open field Retrosplenial cortex Tle4 c-Fos

Journal

Molecular brain
ISSN: 1756-6606
Titre abrégé: Mol Brain
Pays: England
ID NLM: 101468876

Informations de publication

Date de publication:
17 Feb 2024
Historique:
received: 09 11 2023
accepted: 11 02 2024
medline: 18 2 2024
pubmed: 18 2 2024
entrez: 17 2 2024
Statut: epublish

Résumé

The anatomical organization of the rodent claustrum remains obscure due to lack of clear borders that distinguish it from neighboring forebrain structures. Defining what constitutes the claustrum is imperative for elucidating its functions. Methods based on gene/protein expression or transgenic mice have been used to spatially outline the claustrum but often report incomplete labeling and/or lack of specificity during certain neurodevelopmental timepoints. To reliably identify claustrum projection cells in mice, we propose a simple immunolabelling method that juxtaposes the expression pattern of claustrum-enriched and cortical-enriched markers. We determined that claustrum cells immunoreactive for the claustrum-enriched markers Nurr1 and Nr2f2 are devoid of the cortical marker Tle4, which allowed us to differentiate the claustrum from adjoining cortical cells. Using retrograde tracing, we verified that nearly all claustrum projection neurons lack Tle4 but expressed Nurr1/Nr2f2 markers to different degrees. At neonatal stages between 7 and 21 days, claustrum projection neurons were identified by their Nurr1-postive/Tle4-negative expression profile, a time-period when other immunolabelling techniques used to localize the claustrum in adult mice are ineffective. Finally, exposure to environmental novelty enhanced the expression of the neuronal activation marker c-Fos in the claustrum region. Notably, c-Fos labeling was mainly restricted to Nurr1-positive cells and nearly absent from Tle4-positive cells, thus corroborating previous work reporting novelty-induced claustrum activation. Taken together, this method will aid in studying the claustrum during postnatal development and may improve histological and functional studies where other approaches are not amenable.

Identifiants

pubmed: 38368400
doi: 10.1186/s13041-024-01082-w
pii: 10.1186/s13041-024-01082-w
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

10

Subventions

Organisme : CIHR
ID : 426485

Informations de copyright

© 2024. The Author(s).

Références

Edelstein LR, Denaro FJ. The claustrum: a historical review of its anatomy, physiology, cytochemistry and functional significance. Cell Mol Biol. 2004;50(6):675–702.
pubmed: 15643691
Goll Y, Atlan G, Citri A. Attention: the claustrum. Trends Neurosci. 2015;38(8):486–95.
pubmed: 26116988 doi: 10.1016/j.tins.2015.05.006
Wang Q, Ng L, Harris JA, Feng D, Li Y, Royall JJ, et al. Organization of the connections between claustrum and cortex in the mouse. J Comp Neurol. 2017;525(6):1317–46.
pubmed: 27223051 doi: 10.1002/cne.24047
Bruguier H, Suarez R, Manger P, Hoerder-Suabedissen A, Shelton AM, Oliver DK, et al. In search of common developmental and evolutionary origin of the claustrum and subplate. J Comp Neurol. 2020;528(17):2956–77.
pubmed: 32266722 doi: 10.1002/cne.24922
Jackson J, Smith JB, Lee AK. The anatomy and physiology of claustrum-cortex interactions. Annu Rev Neurosci. 2020;8(43):231–47.
doi: 10.1146/annurev-neuro-092519-101637
Madden MB, Stewart BW, White MG, Krimmel SR, Qadir H, Barrett FS, et al. A role for the claustrum in cognitive control. Trends Cogn Sci. 2022;26(12):1133–52.
pubmed: 36192309 pmcid: 9669149 doi: 10.1016/j.tics.2022.09.006
Smith JB, Radhakrishnan H, Alloway KD. Rat claustrum coordinates but does not integrate somatosensory and motor cortical information. J Neurosci. 2012;32(25):8583–8.
pubmed: 22723699 pmcid: 3390683 doi: 10.1523/JNEUROSCI.1524-12.2012
Smith JB, Alloway KD, Hof PR, Orman R, Reser DH, Watakabe A, et al. The relationship between the claustrum and endopiriform nucleus: a perspective towards consensus on cross-species homology. J Comp Neurol. 2019;527(2):476–99.
pubmed: 30225888 doi: 10.1002/cne.24537
Wang Q, Wang Y, Kuo HC, Xie P, Kuang X, Hirokawa KE, et al. Regional and cell-type-specific afferent and efferent projections of the mouse claustrum. Cell Rep. 2023;42(2):112118.
pubmed: 36774552 pmcid: 10415534 doi: 10.1016/j.celrep.2023.112118
Binks D, Watson C, Puelles L. A re-evaluation of the anatomy of the claustrum in rodents and primates-analyzing the effect of pallial expansion. Front Neuroanat. 2019;13:34.
pubmed: 30971901 pmcid: 6443842 doi: 10.3389/fnana.2019.00034
Watson C, Puelles L. Developmental gene expression in the mouse clarifies the organization of the claustrum and related endopiriform nuclei. J Comp Neurol. 2017;525(6):1499–508.
pubmed: 27159785 doi: 10.1002/cne.24034
Grimstvedt JS, Shelton AM, Hoerder-Suabedissen A, Oliver DK, Berndtsson CH, Blankvoort S, et al. A multifaceted architectural framework of the mouse claustrum complex. J Comp Neurol. 2023;531(17):1772–95.
pubmed: 37782702 doi: 10.1002/cne.25539
Fang C, Wang H, Naumann RK. Developmental patterning and neurogenetic gradients of nurr1 positive neurons in the rat claustrum and lateral cortex. Front Neuroanat. 2021;15:786329.
pubmed: 34924965 pmcid: 8675902 doi: 10.3389/fnana.2021.786329
Atlan G, Terem A, Peretz-Rivlin N, Groysman M, Citri A. Mapping synaptic cortico-claustral connectivity in the mouse. J Comp Neurol. 2017;525(6):1381–402.
pubmed: 26973027 doi: 10.1002/cne.23997
Marriott BA, Do AD, Zahacy R, Jackson J. Topographic gradients define the projection patterns of the claustrum core and shell in mice. J Comp Neurol. 2021;529(7):1607–27.
pubmed: 32975316 doi: 10.1002/cne.25043
Ham GX, Augustine GJ. Topologically organized networks in the claustrum reflect functional modularization. Front Neuroanat. 2022;16:901807.
pubmed: 35815332 pmcid: 9259979 doi: 10.3389/fnana.2022.901807
White MG, Cody PA, Bubser M, Wang HD, Deutch AY, Mathur BN. Cortical hierarchy governs rat claustrocortical circuit organization. J Comp Neurol. 2017;525(6):1347–62.
pubmed: 26801010 doi: 10.1002/cne.23970
Druga R, Chen S, Bentivoglio M. Parvalbumin and calbindin in the rat claustrum: an immunocytochemical study combined with retrograde tracing frontoparietal cortex. J Chem Neuroanat. 1993;6(6):399–406.
pubmed: 8142075 doi: 10.1016/0891-0618(93)90014-U
White MG, Panicker M, Mu C, Carter AM, Roberts BM, Dharmasri PA, et al. Anterior cingulate cortex input to the claustrum is required for top-down action control. Cell Rep. 2018;22(1):84–95.
pubmed: 29298436 pmcid: 5779631 doi: 10.1016/j.celrep.2017.12.023
Hoerder-Suabedissen A, Ocana-Santero G, Draper TH, Scott SA, Kimani JG, Shelton AM, et al. Temporal origin of mouse claustrum and development of its cortical projections. Cereb Cortex. 2022;152:bhac318.
Watakabe A. In situ hybridization analyses of claustrum-enriched genes in marmosets. J Comp Neurol. 2017;525(6):1442–58.
pubmed: 27098836 doi: 10.1002/cne.24021
Ibrahim C, Le Foll B, French L. Transcriptomic characterization of the human insular cortex and claustrum. Front Neuroanat. 2019;13:94.
pubmed: 31827426 pmcid: 6890825 doi: 10.3389/fnana.2019.00094
Norimoto H, Fenk LA, Li HH, Tosches MA, Gallego-Flores T, Hain D, et al. A claustrum in reptiles and its role in slow-wave sleep. Nature. 2020;578(7795):413–8.
pubmed: 32051589 doi: 10.1038/s41586-020-1993-6
Fodoulian L, Gschwend O, Huber C, Mutel S, Salazar RF, Leone R, et al. The claustrum-medial prefrontal cortex network controls attentional set-shifting. bioRxiv. 2020. https://doi.org/10.1101/2020.10.14.339259v1 .
doi: 10.1101/2020.10.14.339259v1
Erwin SR, Bristow BN, Sullivan KE, Kendrick RM, Marriott B, Wang L, et al. Spatially patterned excitatory neuron subtypes and projections of the claustrum. Elife. 2021;16(10): e68967.
doi: 10.7554/eLife.68967
Badiani A, Oates MM, Day HE, Watson SJ, Akil H, Robinson TE. Amphetamine-induced behavior, dopamine release, and c-fos mRNA expression: modulation by environmental novelty. J Neurosci. 1998;18(24):10579–93.
pubmed: 9852594 pmcid: 6793358 doi: 10.1523/JNEUROSCI.18-24-10579.1998
Kitanishi T, Matsuo N. Organization of the claustrum-to-entorhinal cortical connection in mice. J Neurosci. 2017;37(2):269–80.
pubmed: 28077707 pmcid: 6596572 doi: 10.1523/JNEUROSCI.1360-16.2016
Arruda-Carvalho M, Wu WC, Cummings KA, Clem RL. Optogenetic examination of prefrontal-amygdala synaptic development. J Neurosci. 2017;37(11):2976–85.
pubmed: 28193691 pmcid: 5354336 doi: 10.1523/JNEUROSCI.3097-16.2017
Thompson CL, Ng L, Menon V, Martinez S, Lee CK, Glattfelder K, et al. A high-resolution spatiotemporal atlas of gene expression of the developing mouse brain. Neuron. 2014;83(2):309–23.
pubmed: 24952961 pmcid: 4319559 doi: 10.1016/j.neuron.2014.05.033
Zingg B, Dong HW, Tao HW, Zhang LI. Input-output organization of the mouse claustrum. J Comp Neurol. 2018;526(15):2428–43.
pubmed: 30252130 pmcid: 6196111 doi: 10.1002/cne.24502
Wang WZ, Oeschger FM, Montiel JF, García-Moreno F, Hoerder-Suabedissen A, Krubitzer L, et al. Comparative aspects of subplate zone studied with gene expression in sauropsids and mammals. Cereb Cortex. 2011;21(10):2187–203.
pubmed: 21368089 doi: 10.1093/cercor/bhq278
Hevner RF. Layer-specific markers as probes for neuron type identity in human neocortex and malformations of cortical development. J Neuropathol Exp Neurol. 2007;66(2):101–9.
pubmed: 17278994 doi: 10.1097/nen.0b013e3180301c06
Zahr SK, Yang G, Kazan H, Borrett MJ, Yuzwa SA, Voronova A, et al. A translational repression complex in developing mammalian neural stem cells that regulates neuronal specification. Neuron. 2018;97(3):520-537.e6.
pubmed: 29395907 doi: 10.1016/j.neuron.2017.12.045
Ypsilanti AR, Pattabiraman K, Catta-Preta R, Golonzhka O, Lindtner S, Tang K, et al. Transcriptional network orchestrating regional patterning of cortical progenitors. Proc Natl Acad Sci USA. 2021;118(51): e2024795118.
pubmed: 34921112 pmcid: 8713794 doi: 10.1073/pnas.2024795118
Witter MP, Room P, Groenewegen HJ, Lohman AH. Reciprocal connections of the insular and piriform claustrum with limbic cortex: an anatomical study in the cat. Neuroscience. 1988;24(2):519–39.
pubmed: 3362351 doi: 10.1016/0306-4522(88)90347-8
Graf M, Nair A, Wong KLL, Tang Y, Augustine GJ. Identification of mouse claustral neuron types based on their intrinsic electrical properties. eNeuro. 2020;7(4):ENEURO.0216-20.2020.
pubmed: 32527746 pmcid: 7405070 doi: 10.1523/ENEURO.0216-20.2020
Takahashi M, Kobayashi T, Mizuma H, Yamauchi K, Okamoto S, Okamoto K, et al. Preferential arborization of dendrites and axons of parvalbumin- and somatostatin-positive GABAergic neurons within subregions of the mouse claustrum. Neurosci Res. 2023;190:92–106.
pubmed: 36574563 doi: 10.1016/j.neures.2022.11.008
Kim J, Matney CJ, Roth RH, Brown SP. Synaptic organization of the neuronal circuits of the claustrum. J Neurosci. 2016;36(3):773–84.
pubmed: 26791208 pmcid: 4719014 doi: 10.1523/JNEUROSCI.3643-15.2016
Terem A, Fatal Y, Peretz-Rivlin N, Turm H, Koren SS, Kitsberg D, et al. Claustral neurons projecting to frontal cortex restrict opioid consumption. Curr Biol. 2023;33(13):2761-2773.e8.
pubmed: 37379841 pmcid: 10357322 doi: 10.1016/j.cub.2023.05.065
Xu QY, Zhang HL, Du H, Li YC, Ji FH, Li R, et al. Identification of a glutamatergic claustrum-anterior cingulate cortex circuit for visceral pain processing. J Neurosci. 2022;42(43):8154–68.
pubmed: 36100399 pmcid: 9637003 doi: 10.1523/JNEUROSCI.0779-22.2022
Sagar SM, Sharp FR, Curran T. Expression of c-fos protein in brain: metabolic mapping at the cellular level. Science. 1988;240(4857):1328–31.
pubmed: 3131879 doi: 10.1126/science.3131879
Seibenhener ML, Wooten MC. Use of the Open Field Maze to measure locomotor and anxiety-like behavior in mice. J Vis Exp. 2015;96: e52434.
Qadir H, Stewart BW, VanRyzin JW, Wu Q, Chen S, Seminowicz DA, et al. The mouse claustrum synaptically connects cortical network motifs. Cell Rep. 2022;41(12):111860.
pubmed: 36543121 pmcid: 9838879 doi: 10.1016/j.celrep.2022.111860
Galazo MJ, Sweetser DA, Macklis JD. Tle4 controls both developmental acquisition and early post-natal maturation of corticothalamic projection neuron identity. Cell Rep. 2023;42(8):112957.
pubmed: 37561632 pmcid: 10542749 doi: 10.1016/j.celrep.2023.112957
Molnár Z, Luhmann HJ, Kanold PO. Transient cortical circuits match spontaneous and sensory-driven activity during development. Science. 2020;370(6514):eaab2153.
doi: 10.1126/science.abb2153

Auteurs

Tarek Shaker (T)

Department of Physiology, University of Alberta, 7-22 Medical Sciences Building, Edmonton, AB, T6G 2H7, Canada.

Gwyneth J Dagpa (GJ)

Department of Physiology, University of Alberta, 7-22 Medical Sciences Building, Edmonton, AB, T6G 2H7, Canada.

Vanessa Cattaud (V)

Department of Physiology, University of Alberta, 7-22 Medical Sciences Building, Edmonton, AB, T6G 2H7, Canada.

Brian A Marriott (BA)

Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada.

Mariam Sultan (M)

Department of Physiology, University of Alberta, 7-22 Medical Sciences Building, Edmonton, AB, T6G 2H7, Canada.

Mohammed Almokdad (M)

Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada.

Jesse Jackson (J)

Department of Physiology, University of Alberta, 7-22 Medical Sciences Building, Edmonton, AB, T6G 2H7, Canada. jackson4@ualberta.ca.
Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada. jackson4@ualberta.ca.

Classifications MeSH