Vascular compactness of unruptured brain arteriovenous malformation predicts risk of hemorrhage after stereotactic radiosurgery.

Arteriovenous malformation morphology Automated segmentation Compactness index Post-SRS hemorrhage Stereotactic radiosurgery Vascular disorders

Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
18 Feb 2024
Historique:
received: 13 11 2023
accepted: 12 02 2024
medline: 19 2 2024
pubmed: 19 2 2024
entrez: 18 2 2024
Statut: epublish

Résumé

The aim of the study was to investigate whether morphology (i.e. compact/diffuse) of brain arteriovenous malformations (bAVMs) correlates with the incidence of hemorrhagic events in patients receiving Stereotactic Radiosurgery (SRS) for unruptured bAVMs. This retrospective study included 262 adult patients with unruptured bAVMs who underwent upfront SRS. Hemorrhagic events were defined as evidence of blood on CT or MRI. The morphology of bAVMs was evaluated using automated segmentation which calculated the proportion of vessel, brain tissue, and cerebrospinal fluid in bAVMs on T2-weighted MRI. Compactness index, defined as the ratio of vessel to brain tissue, categorized bAVMs into compact and diffuse types based on the optimal cutoff. Cox proportional hazard model was used to identify the independent factors for post-SRS hemorrhage. The median clinical follow-ups was 62.1 months. Post-SRS hemorrhage occurred in 13 (5.0%) patients and one of them had two bleeds, resulting in an annual bleeding rate of 0.8%. Multivariable analysis revealed bAVM morphology (compact versus diffuse), bAVM volume, and prescribed margin dose were significant predictors. The post-SRS hemorrhage rate increased with larger bAVM volume only among the diffuse nidi (1.7 versus 14.9 versus 30.6 hemorrhage per 1000 person-years in bAVM volume < 20 cm

Identifiants

pubmed: 38369533
doi: 10.1038/s41598-024-54369-2
pii: 10.1038/s41598-024-54369-2
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

4011

Subventions

Organisme : Ministry of Science and Technology, Taiwan
ID : 109-2314-B-075 -051 -MY2
Organisme : Ministry of Science and Technology, Taiwan
ID : 110-2314-B-075 -038 -MY2

Informations de copyright

© 2024. The Author(s).

Références

Gross, B. & Du, R. Natural history of cerebral arteriovenous malformations: A meta-analysis. J. Neurosurg. 118(2), 437–443 (2013).
pubmed: 23198804 doi: 10.3171/2012.10.JNS121280
da Costa, L. et al. The natural history and predictive features of hemorrhage from brain arteriovenous malformations. Stroke. 40(1), 100–105 (2009).
pubmed: 19008469 doi: 10.1161/STROKEAHA.108.524678
Ondra, S. L., Troupp, H., George, E. D. & Schwab, K. The natural history of symptomatic arteriovenous malformations of the brain: A 24-year follow-up assessment. J. Neurosurg. 73(3), 387–391 (1990).
pubmed: 2384776 doi: 10.3171/jns.1990.73.3.0387
Chen, C.-J. et al. Brain arteriovenous malformations: A review of natural history, pathobiology, and interventions. Neurology 95(20), 917 (2020).
pubmed: 33004601 doi: 10.1212/WNL.0000000000010968
Brown, R. D. Jr. et al. The natural history of unruptured intracranial arteriovenous malformations. J. Neurosurg. 68(3), 352–357 (1988).
pubmed: 3343606 doi: 10.3171/jns.1988.68.3.0352
Mohr, J. P. et al. Medical management with or without interventional therapy for unruptured brain arteriovenous malformations (ARUBA): A multicentre, non-blinded, randomised trial. Lancet. 383(9917), 614–621 (2014).
pubmed: 24268105 doi: 10.1016/S0140-6736(13)62302-8
Karlsson, B., Lindquist, C. & Steiner, L. Effect of Gamma Knife surgery on the risk of rupture prior to AVM obliteration. Minim. Invas. Neurosurg. 39(1), 21–27 (1996).
doi: 10.1055/s-2008-1052210
Karlsson, B., Lax, I. & Söderman, M. Risk for hemorrhage during the 2-year latency period following gamma knife radiosurgery for arteriovenous malformations. Int. J. Radiat. Oncol. Biol. Phys. 49(4), 1045–1051 (2001).
pubmed: 11240246 doi: 10.1016/S0360-3016(00)01432-2
Patibandla, M. R. et al. Stereotactic radiosurgery for Spetzler-Martin Grade IV and V arteriovenous malformations: An international multicenter study. J. Neurosurg. 129(2), 498–507 (2018).
pubmed: 28885118 doi: 10.3171/2017.3.JNS162635
Ding, D. et al. Risk of brain arteriovenous malformation hemorrhage before and after stereotactic radiosurgery. Stroke. 50(6), 1384–1391 (2019).
pubmed: 31043153 doi: 10.1161/STROKEAHA.118.024230
Peng, S. J. et al. Fully automated tissue segmentation of the prescription isodose region delineated through the Gamma knife plan for cerebral arteriovenous malformation (AVM) using fuzzy C-means (FCM) clustering. Neuroimage Clin. 21, 101608 (2019).
pubmed: 30497981 doi: 10.1016/j.nicl.2018.11.018
Lee, C.-C. et al. Intervening nidal brain parenchyma and risk of radiation-induced changes after radiosurgery for brain arteriovenous malformation: A study using an unsupervised machine learning algorithm. World Neurosurg. 125, e132–e138 (2019).
pubmed: 30677586 doi: 10.1016/j.wneu.2018.12.220
Huang, P.-W. et al. Compactness index: A radiosurgery outcome predictor for patients with unruptured brain arteriovenous malformations. J. Neurosurg. 2022, 1–10 (2022).
Pollock, B. E., Flickinger, J. C., Lunsford, L. D., Bissonette, D. J. & Kondziolka, D. Hemorrhage risk after stereotactic radiosurgery of cerebral arteriovenous malformations. Neurosurgery. 38(4), 652–659 (1996) (Discussion 659–661).
pubmed: 8692381 doi: 10.1227/00006123-199604000-00004
Pollock, B. E. et al. Repeat stereotactic radiosurgery of arteriovenous malformations: factors associated with incomplete obliteration. Neurosurgery. 38(2), 318–324 (1996).
pubmed: 8869059 doi: 10.1097/00006123-199602000-00016
Lo, E. H. et al. An experimental compartmental flow model for assessing the hemodynamic response of intracranial arteriovenous malformations to stereotactic radiosurgery. Neurosurgery. 28(2), 251–259 (1991).
pubmed: 1997894 doi: 10.1227/00006123-199102000-00012
Lo, E. H. A theoretical analysis of hemodynamic and biomechanical alterations in intracranial AVMs after radiosurgery. Int. J. Radiat. Oncol. Biol. Phys. 27(2), 353–361 (1993).
pubmed: 8407410 doi: 10.1016/0360-3016(93)90247-S
Massoud, T. F., Hademenos, G. J., Salles, A. A. F. D. & Solberg, T. D. Experimental radiosurgery simulations using a theoretical model of cerebral arteriovenous malformations. Stroke. 31(10), 2466–2477 (2000).
pubmed: 11022081 doi: 10.1161/01.STR.31.10.2466
Miyasaka, Y. et al. Draining vein pressure increases and hemorrhage in patients with arteriovenous malformation. Stroke. 25(2), 504–507 (1994).
pubmed: 8303764 doi: 10.1161/01.STR.25.2.504
Hademenos, G. J. & Massoud, T. F. Risk of intracranial arteriovenous malformation rupture due to venous drainage impairment. Stroke. 27(6), 1072–1083 (1996).
pubmed: 8650717 doi: 10.1161/01.STR.27.6.1072
Lin, T. M. et al. Stasis index from hemodynamic analysis using quantitative DSA correlates with hemorrhage of supratentorial arteriovenous malformation: A cross-sectional study. J. Neurosurg. 132(5), 1574–1582 (2019).
pubmed: 31026828 doi: 10.3171/2019.1.JNS183386
Ding, D. et al. Radiosurgery for cerebral arteriovenous malformations in a randomized trial of unruptured brain arteriovenous malformations (ARUBA)-eligible patients. Stroke. 47(2), 342–349 (2016).
pubmed: 26658441 doi: 10.1161/STROKEAHA.115.011400
Han, P. P., Ponce, F. A. & Spetzler, R. F. Intention-to-treat analysis of Spetzler-Martin grades IV and V arteriovenous malformations: Natural history and treatment paradigm. J. Neurosurg. 98(1), 3–7 (2003).
pubmed: 12546345 doi: 10.3171/jns.2003.98.1.0003
Flickinger, J. C., Kondziolka, D., Pollock, B. E., Maitz, A. H. & Lunsford, L. D. Complications from arteriovenous malformation radiosurgery: Multivariate analysis and risk modeling. Int. J. Radiat. Oncol. Biol. Phys. 38(3), 485–490 (1997).
pubmed: 9231670 doi: 10.1016/S0360-3016(97)89481-3
Chung, W. Y. et al. Staged radiosurgery for extra-large cerebral arteriovenous malformations: Method, implementation, and results. J. Neurosurg. 109(Suppl), 65–72 (2008).
pubmed: 19123890 doi: 10.3171/JNS/2008/109/12/S11
Kano, H. et al. Stereotactic radiosurgery for arteriovenous malformations, Part 6: Multistaged volumetric management of large arteriovenous malformations. J. Neurosurg. 116(1), 54–65 (2012).
pubmed: 22077447 doi: 10.3171/2011.9.JNS11177
Chang, S. D. et al. Multimodality treatment of giant intracranial arteriovenous malformations. Neurosurgery. 53(1), 1–11 (2003) (Discussion 11–13).
pubmed: 12823868 doi: 10.1227/01.NEU.0000068700.68238.84
Yen, C. P., Sheehan, J. P., Schwyzer, L. & Schlesinger, D. Hemorrhage risk of cerebral arteriovenous malformations before and during the latency period after GAMMA knife radiosurgery. Stroke. 42(6), 1691–1696 (2011).
pubmed: 21512177 doi: 10.1161/STROKEAHA.110.602706
Pan, D.H.-C. et al. Gamma knife radiosurgery as a single treatment modality for large cerebral arteriovenous malformations. J. Neurosurg. 93(3), 113 (2000).
pubmed: 11143227 doi: 10.3171/jns.2000.93.supplement_3.0113
Yamamoto, M., Jimbo, M., Ide, M., Lindquist, C. & Steiner, L. Postradiation volume changes in gamma unit-treated cerebral arteriovenous malformations. Surg. Neurol. 40(6), 485–490 (1993).
pubmed: 8235971 doi: 10.1016/0090-3019(93)90051-2
Karlsson, B., Lindquist, C. & Steiner, L. Prediction of obliteration after gamma knife surgery for cerebral arteriovenous malformations. Neurosurgery. 40(3), 425–431 (1997).
pubmed: 9055280
Cohen-Inbar, O., Lee, C.-C., Xu, Z., Schlesinger, D. & Sheehan, J. P. A quantitative analysis of adverse radiation effects following Gamma Knife radiosurgery for arteriovenous malformations. J. Neurosurg. 123(4), 945 (2015).
pubmed: 25909572 doi: 10.3171/2014.10.JNS142264
Ding, D., Yen, C. P., Xu, Z., Starke, R. M. & Sheehan, J. P. Radiosurgery for patients with unruptured intracranial arteriovenous malformations. J. Neurosurg. 118(5), 958–966 (2013).
pubmed: 23530863 doi: 10.3171/2013.2.JNS121239
Ding, D. et al. Radiosurgery for unruptured brain arteriovenous malformations: An international multicenter retrospective cohort study. Neurosurgery. 80(6), 888–898 (2017).
pubmed: 28431024 doi: 10.1093/neuros/nyx181
Tonetti, D. A. et al. The benefit of radiosurgery for ARUBA-eligible arteriovenous malformations: A practical analysis over an appropriate follow-up period. J. Neurosurg. 128(6), 1850–1854 (2018).
pubmed: 28665253 doi: 10.3171/2017.1.JNS162962
Mohr, J. P. et al. Medical management with interventional therapy versus medical management alone for unruptured brain arteriovenous malformations (ARUBA): Final follow-up of a multicentre, non-blinded, randomised controlled trial. Lancet Neurol. 19(7), 573–581 (2020).
pubmed: 32562682 doi: 10.1016/S1474-4422(20)30181-2
Pollock, B. E., Link, M. J. & Brown, R. D. The risk of stroke or clinical impairment after stereotactic radiosurgery for ARUBA-eligible patients. Stroke. 44(2), 437–441 (2013).
pubmed: 23287780 doi: 10.1161/STROKEAHA.112.670232
Karlsson, B. et al. The NASSAU (new assessment of cerebral arteriovenous malformations yet unruptured) analysis: Are the results from the ARUBA trial also applicable to unruptured arteriovenous malformations deemed suitable for gamma knife surgery?. Neurosurgery. 85(1), E118–E124 (2019).
pubmed: 30295870 doi: 10.1093/neuros/nyy391
Kano, H. et al. Aneurysms increase the risk of rebleeding after stereotactic radiosurgery for hemorrhagic arteriovenous malformations. Stroke. 43(10), 2586–2591 (2012).
pubmed: 22879101 doi: 10.1161/STROKEAHA.112.664045
Lee, C. C. et al. Chronic encapsulated expanding hematoma after gamma knife stereotactic radiosurgery for cerebral arteriovenous malformation. Clin. Neurol. Neurosurg. 113(8), 668–671 (2011).
pubmed: 21507569 doi: 10.1016/j.clineuro.2011.03.010
Yen, C.-P. et al. Radiation-induced imaging changes following Gamma Knife surgery for cerebral arteriovenous malformations. J. Neurosurg. 118(1), 63 (2013).
pubmed: 23140155 doi: 10.3171/2012.10.JNS12402
Heinze, G., Wallisch, C. & Dunkler, D. Variable selection: A review and recommendations for the practicing statistician. Biom. J. 60(3), 431–449 (2018).
pubmed: 29292533 pmcid: 5969114 doi: 10.1002/bimj.201700067

Auteurs

Po-Wei Huang (PW)

Department of Radiation Oncology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.

Syu-Jyun Peng (SJ)

Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.

David Hung-Chi Pan (DH)

Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.
Department of Neurosurgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.
Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan.

Huai-Che Yang (HC)

Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.
School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.

Jo-Ting Tsai (JT)

Department of Radiation Oncology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.
Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.

Cheng-Ying Shiau (CY)

Cancer Center, Taipei Veterans General Hospital, Taipei, Taiwan.
School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.

I-Chang Su (IC)

Department of Neurosurgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.
Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan.

Ching-Jen Chen (CJ)

Department of Neurosurgery, University of Texas Health Science Center, Houston, TX, USA.

Hsiu-Mei Wu (HM)

Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan.
School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.

Chung-Jung Lin (CJ)

Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan.
School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.

Wen-Yuh Chung (WY)

Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.
Department of Neurosurgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.
Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan.

Wan-Yuo Guo (WY)

Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan.
School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.

Wei-Lun Lo (WL)

Department of Neurosurgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.
Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan.

Shao-Wen Lai (SW)

Product and Engineering, Zippin, San Carlos, CA, USA.

Cheng-Chia Lee (CC)

Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan. yfnaughty@gmail.com.
School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan. yfnaughty@gmail.com.
Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan. yfnaughty@gmail.com.

Classifications MeSH