The role of CoQ10 in embryonic development.
CoQ10
Embryonic development
Germ cells
Mitochondrial electron transport chain (mETC)
Journal
Journal of assisted reproduction and genetics
ISSN: 1573-7330
Titre abrégé: J Assist Reprod Genet
Pays: Netherlands
ID NLM: 9206495
Informations de publication
Date de publication:
Mar 2024
Mar 2024
Historique:
received:
30
09
2023
accepted:
01
02
2024
pubmed:
19
2
2024
medline:
19
2
2024
entrez:
19
2
2024
Statut:
ppublish
Résumé
Coenzyme Q10 (CoQ10) is a natural component widely present in the inner membrane of mitochondria. CoQ10 functions as a key cofactor for adenosine triphosphate (ATP) production and exhibits antioxidant properties in vivo. Mitochondria, as the energy supply center of cells, play a crucial role in germ cell maturation and embryonic development, a complicated process of cell division and cellular differentiation that transforms from a single cell (zygote) to a multicellular organism (fetus). Here, we discuss the effects of CoQ10 on oocyte maturation and the important role of CoQ10 in the growth of various organs during different stages of fetal development. These allowed us to gain a deeper understanding of the pathophysiology of embryonic development and the potential role of CoQ10 in improving fertility quality. They also provide a reference for further developing its application in clinical treatments.
Identifiants
pubmed: 38372883
doi: 10.1007/s10815-024-03052-6
pii: 10.1007/s10815-024-03052-6
doi:
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
767-779Subventions
Organisme : Natural Science Foundation of Hunan Province
ID : 2023JJ30522
Organisme : Key Technologies Research and Development Program
ID : 2019YFA0801601
Organisme : National Natural Science Foundation of China
ID : No. 32101018
Informations de copyright
© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Références
Wang L, Sang Q. MOS is a novel genetic marker for human early embryonic arrest and fragmentation. EMBO Mol Med. 2021;13(12):e15323.
pubmed: 34806827
pmcid: 8649885
doi: 10.15252/emmm.202115323
Xu Y, et al. Mutations in PADI6 cause female infertility characterized by early embryonic arrest. Am J Hum Genet. 2016;99(3):744–52.
pubmed: 27545678
pmcid: 5010645
doi: 10.1016/j.ajhg.2016.06.024
Van den Veyver IB, Al-Hussaini TK. Biparental hydatidiform moles: a maternal effect mutation affecting imprinting in the offspring. Hum Reprod Update. 2006;12(3):233–42.
pubmed: 16540529
doi: 10.1093/humupd/dmk005
Zhao J, et al. Metabolic remodelling during early mouse embryo development. Nat Metab. 2021;3(10):1372–84.
pubmed: 34650276
doi: 10.1038/s42255-021-00464-x
Wang M, et al. Autophagy: a multifaceted player in the fate of sperm. Hum Reprod Update. 2022;28(2):200–31.
pubmed: 34967891
doi: 10.1093/humupd/dmab043
Gott AL, et al. Non-invasive measurement of pyruvate and glucose uptake and lactate production by single human preimplantation embryos. Hum Reprod. 1990;5(1):104–8.
pubmed: 2324239
doi: 10.1093/oxfordjournals.humrep.a137028
Rossmann MP, et al. Cell-specific transcriptional control of mitochondrial metabolism by TIF1gamma drives erythropoiesis. Science. 2021;372(6543):716–21.
pubmed: 33986176
pmcid: 8177078
doi: 10.1126/science.aaz2740
You X, et al. Embryonic expression of Nras(G 12 D) leads to embryonic lethality and cardiac defects. Front Cell Dev Biol. 2021;9: 633661.
pubmed: 33681212
pmcid: 7928391
doi: 10.3389/fcell.2021.633661
Wu YD Yang, and GY Chen. Targeted disruption of Rab1a causes early embryonic lethality. Int J Mol Med. 2022;49(4):46.
Drovandi S, et al. Variation of the clinical spectrum and genotype-phenotype associations in coenzyme Q10 deficiency associated glomerulopathy. Kidney Int. 2022;102(3):592–603.
pubmed: 35483523
doi: 10.1016/j.kint.2022.02.040
Griffiths KK, et al. Inefficient thermogenic mitochondrial respiration due to futile proton leak in a mouse model of fragile X syndrome. FASEB J. 2020;34(6):7404–26.
pubmed: 32307754
doi: 10.1096/fj.202000283RR
Ogasahara S, et al. Treatment of Kearns-Sayre syndrome with coenzyme Q10. Neurology. 1986;36(1):45–53.
pubmed: 3941783
doi: 10.1212/WNL.36.1.45
Pallotti F et al. The roles of coenzyme Q in disease: direct and indirect involvement in cellular functions. Int J Mol Sci. 2021;23(1):128.
Gutierrez-Mariscal FM et al. Coenzyme Q(10) Supplementation for the reduction of oxidative stress: clinical implications in the treatment of chronic diseases. Int J Mol Sci. 2020;21(21):7870.
Wang Y, Hekimi S. Understanding ubiquinone. Trends Cell Biol. 2016;26(5):367–78.
pubmed: 26827090
doi: 10.1016/j.tcb.2015.12.007
Lapuente-Brun E, et al. Supercomplex assembly determines electron flux in the mitochondrial electron transport chain. Science. 2013;340(6140):1567–70.
pubmed: 23812712
doi: 10.1126/science.1230381
Stefely JA, Pagliarini DJ. Biochemistry of mitochondrial coenzyme Q biosynthesis. Trends Biochem Sci. 2017;42(10):824–43.
pubmed: 28927698
pmcid: 5731490
doi: 10.1016/j.tibs.2017.06.008
Alcazar-Fabra M, et al. Primary coenzyme Q deficiencies: a literature review and online platform of clinical features to uncover genotype-phenotype correlations. Free Radic Biol Med. 2021;167:141–80.
pubmed: 33677064
doi: 10.1016/j.freeradbiomed.2021.02.046
Zhao M, et al. L-shaped association between dietary coenzyme Q10 intake and high-sensitivity C-reactive protein in Chinese adults: a national cross-sectional study. Food Funct. 2023;14(21):9815–24.
pubmed: 37850317
doi: 10.1039/D3FO00978E
Paredes-Fuentes AJ et al. Coenzyme Q(10) Treatment monitoring in different human biological samples. Antioxidants (Basel). 2020;9(10):979.
Griffiths KKA Wang, and RJ Levy. Assessment of open probability of the mitochondrial permeability transition pore in the setting of coenzyme Q excess. J Vis Exp. 2022(184):10.3791/63646.
Barajas M, et al. The newborn Fmr1 knockout mouse: a novel model of excess ubiquinone and closed mitochondrial permeability transition pore in the developing heart. Pediatr Res. 2021;89(3):456–63.
pubmed: 32674111
doi: 10.1038/s41390-020-1064-6
Chazaud C, et al. Early lineage segregation between epiblast and primitive endoderm in mouse blastocysts through the Grb2-MAPK pathway. Dev Cell. 2006;10(5):615–24.
pubmed: 16678776
doi: 10.1016/j.devcel.2006.02.020
Gauster M, et al. Early human trophoblast development: from morphology to function. Cell Mol Life Sci. 2022;79(6):345.
pubmed: 35661923
pmcid: 9167809
doi: 10.1007/s00018-022-04377-0
Gardner RL, Rossant J. Investigation of the fate of 4–5 day post-coitum mouse inner cell mass cells by blastocyst injection. J Embryol Exp Morphol. 1979;52:141–52.
pubmed: 521746
Lawson KA and RA Pedersen. Clonal analysis of cell fate during gastrulation and early neurulation in the mouse. Ciba Found Symp, 1992;165:3–21.
Smith JL, Schoenwolf GC. Neurulation: coming to closure. Trends Neurosci. 1997;20(11):510–7.
pubmed: 9364665
doi: 10.1016/S0166-2236(97)01121-1
Tam PP, Tan SS. The somitogenetic potential of cells in the primitive streak and the tail bud of the organogenesis-stage mouse embryo. Development. 1992;115(3):703–15.
pubmed: 1425350
doi: 10.1242/dev.115.3.703
Wardle FC. Mesoderm differentiation in vertebrate development and regenerative medicine. Semin Cell Dev Biol. 2022;127:1–2.
pubmed: 35210138
doi: 10.1016/j.semcdb.2022.02.014
Adhikari D, et al. Oocyte mitochondria-key regulators of oocyte function and potential therapeutic targets for improving fertility. Biol Reprod. 2022;106(2):366–77.
pubmed: 35094043
doi: 10.1093/biolre/ioac024
Santos TA, El Shourbagy S, St John JC. Mitochondrial content reflects oocyte variability and fertilization outcome. Fertil Steril. 2006;85(3):584–91.
Van Blerkom J. Mitochondria in human oogenesis and preimplantation embryogenesis: engines of metabolism, ionic regulation and developmental competence. Reproduction. 2004;128(3):269–80.
pubmed: 15333778
doi: 10.1530/rep.1.00240
Tarazona AM, et al. Mitochondrial activity, distribution and segregation in bovine oocytes and in embryos produced in vitro. Reprod Domest Anim. 2006;41(1):5–11.
pubmed: 16420320
doi: 10.1111/j.1439-0531.2006.00615.x
Czernik M, et al. Author correction: mitochondrial function and intracellular distribution is severely affected in in vitro cultured mouse embryos. Sci Rep. 2022;12(1):21276.
pubmed: 36481919
pmcid: 9732336
doi: 10.1038/s41598-022-25820-z
Marchante M, et al. Deciphering reproductive aging in women using a NOD/SCID mouse model for distinct physiological ovarian phenotypes. Aging (Albany NY). 2023;15(20):10856–74.
pubmed: 37847151
He J, et al. Theaflavin 3, 3’-digallate delays ovarian aging by improving oocyte quality and regulating granulosa cell function. Oxid Med Cell Longev. 2021;2021:7064179.
pubmed: 34925699
pmcid: 8674650
doi: 10.1155/2021/7064179
Qin X, et al. TrkB agonist antibody ameliorates fertility deficits in aged and cyclophosphamide-induced premature ovarian failure model mice. Nat Commun. 2022;13(1):914.
pubmed: 35177657
pmcid: 8854395
doi: 10.1038/s41467-022-28611-2
van der Reest J, et al. Mitochondria: their relevance during oocyte ageing. Ageing Res Rev. 2021;70:101378.
pubmed: 34091076
doi: 10.1016/j.arr.2021.101378
Jiang Z, Shen H. Mitochondria: emerging therapeutic strategies for oocyte rescue. Reprod Sci. 2022;29(3):711–22.
pubmed: 33712995
doi: 10.1007/s43032-021-00523-4
Perez GI, et al. Mitochondria and the death of oocytes. Nature. 2000;403(6769):500–1.
pubmed: 10676949
doi: 10.1038/35000651
Zhang H, et al. Melatonin improves the quality of maternally aged oocytes by maintaining intercellular communication and antioxidant metabolite supply. Redox Biol. 2022;49:102215.
pubmed: 34929573
doi: 10.1016/j.redox.2021.102215
Liu J, et al. Transcriptomic responses of porcine cumulus cells to heat exposure during oocytes in vitro maturation. Mol Reprod Dev. 2021;88(1):43–54.
pubmed: 33331096
doi: 10.1002/mrd.23446
Hu Y, et al. Transcriptomic profiles reveal the characteristics of oocytes and cumulus cells at GV, MI, and MII in follicles before ovulation. J Ovarian Res. 2023;16(1):225.
pubmed: 37993893
pmcid: 10664256
doi: 10.1186/s13048-023-01291-2
Babayev E, Duncan FE. Age-associated changes in cumulus cells and follicular fluid: the local oocyte microenvironment as a determinant of gamete quality. Biol Reprod. 2022;106(2):351–65.
pubmed: 34982142
pmcid: 8862720
doi: 10.1093/biolre/ioab241
Da Luz CM, et al. Altered transcriptome in cumulus cells of infertile women with advanced endometriosis with and without endometrioma. Reprod Biomed Online. 2021;42(5):952–62.
pubmed: 33736992
doi: 10.1016/j.rbmo.2021.01.024
Ma Y, et al. Corrigendum: arachidonic acid in follicular fluid of PCOS induces oxidative stress in a human ovarian granulosa tumor cell line (KGN) and upregulates GDF15 expression as a response. Front Endocrinol (Lausanne). 2022;13:988767.
pubmed: 36267564
doi: 10.3389/fendo.2022.988767
Jochems R, et al. Follicular fluid steroid hormones and in vitro embryo development in Duroc and Landrace pigs. Theriogenology. 2022;190:15–21.
pubmed: 35863097
doi: 10.1016/j.theriogenology.2022.07.004
Yu L, et al. Follicular fluid steroid and gonadotropic hormone levels and mitochondrial function from exosomes predict embryonic development. Front Endocrinol (Lausanne). 2022;13:1025523.
pubmed: 36440207
doi: 10.3389/fendo.2022.1025523
Krawczyk K, et al. Persistent organic pollutants affect steroidogenic and apoptotic activities in granulosa cells and reactive oxygen species concentrations in oocytes in the mouse. Reprod Fertil Dev. 2023;35(3):294–305.
pubmed: 36403477
doi: 10.1071/RD21326
Barcelos IP, Haas RH. CoQ10 and aging. Biology (Basel). 2019;8(2):28.
Yang CX, et al. CoQ10 improves meiotic maturation of pig oocytes through enhancing mitochondrial function and suppressing oxidative stress. Theriogenology. 2021;159:77–86.
pubmed: 33113448
doi: 10.1016/j.theriogenology.2020.10.009
Giannubilo SR et al. CoQ10 supplementation in patients undergoing IVF-ET: the relationship with follicular fluid content and oocyte maturity. Antioxidants (Basel). 2018;7(10):141.
Niu YJ, et al. Ubiquinol-10 delays postovulatory oocyte aging by improving mitochondrial renewal in pigs. Aging (Albany NY). 2020;12(2):1256–71.
pubmed: 31958774
doi: 10.18632/aging.102681
Brown AM, McCarthy HE. The effect of CoQ10 supplementation on ART treatment and oocyte quality in older women. Hum Fertil (Camb). 2023;26(6):1544–52.
Yang J, et al. Human follicular fluid shows diverse metabolic profiles at different follicle developmental stages. Reprod Biol Endocrinol. 2020;18(1):74.
pubmed: 32703275
pmcid: 7376676
doi: 10.1186/s12958-020-00631-x
Lee CH, et al. Coenzyme Q10 ameliorates the quality of mouse oocytes during in vitro culture. Zygote. 2022;30(2):249–57.
pubmed: 34429186
doi: 10.1017/S0967199421000617
Yang L, et al. Systematic understanding of anti-aging effect of coenzyme Q10 on oocyte through a network pharmacology approach. Front Endocrinol (Lausanne). 2022;13:813772.
pubmed: 35222272
doi: 10.3389/fendo.2022.813772
Heydarnejad A, et al. Supplementation of maturation medium with CoQ10 enhances developmental competence of ovine oocytes through improvement of mitochondrial function. Mol Reprod Dev. 2019;86(7):812–24.
pubmed: 31066163
doi: 10.1002/mrd.23159
Ruiz-Conca M, et al. Apoptosis and glucocorticoid-related genes mRNA expression is modulated by coenzyme Q10 supplementation during in vitro maturation and vitrification of bovine oocytes and cumulus cells. Theriogenology. 2022;192:62–72.
pubmed: 36063671
doi: 10.1016/j.theriogenology.2022.08.030
Gendelman M, Roth Z. Incorporation of coenzyme Q10 into bovine oocytes improves mitochondrial features and alleviates the effects of summer thermal stress on developmental competence. Biol Reprod. 2012;87(5):118.
pubmed: 23018185
doi: 10.1095/biolreprod.112.101881
Trapphoff T, et al. Postovulatory aging affects dynamics of mRNA, expression and localization of maternal effect proteins, spindle integrity and pericentromeric proteins in mouse oocytes. Hum Reprod. 2016;31(1):133–49.
pubmed: 26577303
doi: 10.1093/humrep/dev279
Miao Y, et al. Nicotinamide mononucleotide supplementation reverses the declining quality of maternally aged oocytes. Cell Rep. 2020;32(5):107987.
pubmed: 32755581
doi: 10.1016/j.celrep.2020.107987
Zielinska AP et al. Meiotic kinetochores fragment into multiple lobes upon cohesin loss in aging eggs. Curr Biol. 2019;29(22):3749–3765.
Miao Y, et al. Postovulatory aging causes the deterioration of porcine oocytes via induction of oxidative stress. FASEB J. 2018;32(3):1328–37.
pubmed: 29109171
doi: 10.1096/fj.201700908R
Zhang M, et al. Coenzyme Q10 ameliorates the quality of postovulatory aged oocytes by suppressing DNA damage and apoptosis. Free Radic Biol Med. 2019;143:84–94.
pubmed: 31398498
doi: 10.1016/j.freeradbiomed.2019.08.002
Jeong SM, et al. SIRT4 has tumor-suppressive activity and regulates the cellular metabolic response to DNA damage by inhibiting mitochondrial glutamine metabolism. Cancer Cell. 2013;23(4):450–63.
pubmed: 23562301
pmcid: 3650305
doi: 10.1016/j.ccr.2013.02.024
Zeng J, et al. SIRT4 is essential for metabolic control and meiotic structure during mouse oocyte maturation. Aging Cell. 2018;17(4):e12789.
pubmed: 29845740
pmcid: 6052465
doi: 10.1111/acel.12789
Xing X, et al. Coenzyme Q10 supplement rescues postovulatory oocyte aging by regulating SIRT4 expression. Curr Mol Pharmacol. 2022;15(1):190–203.
pubmed: 33881976
Ben-Meir A, et al. Coenzyme Q10 restores oocyte mitochondrial function and fertility during reproductive aging. Aging Cell. 2015;14(5):887–95.
pubmed: 26111777
pmcid: 4568976
doi: 10.1111/acel.12368
McReynolds S et al. Impact of maternal aging on the molecular signature of human cumulus cells. Fertil Steril. 2012;98(6):1574–80.
Ben-Meir A et al. Co-enzyme Q10 supplementation rescues cumulus cells dysfunction in a maternal aging model. Antioxidants (Basel). 2019;8(3):58.
Agarwal A, et al. Male oxidative stress infertility (MOSI): proposed terminology and clinical practice guidelines for management of idiopathic male infertility. World J Mens Health. 2019;37(3):296–312.
pubmed: 31081299
pmcid: 6704307
doi: 10.5534/wjmh.190055
Barrachina F, et al. Sperm acquire epididymis-derived proteins through epididymosomes. Hum Reprod. 2022;37(4):651–68.
pubmed: 35137089
pmcid: 8971652
doi: 10.1093/humrep/deac015
Tourzani DA et al. Caput ligation renders immature mouse sperm motile and capable to undergo cAMP-dependent phosphorylation. Int J Mol Sci. 2021;22(19):10241.
Moustakli E et al. Sperm mitochondrial content and mitochondrial DNA to nuclear DNA ratio are associated with body mass index and progressive motility. Biomedicines. 2023;11(11):3014.
Park YJ, et al. Low sperm motility is determined by abnormal protein modification during epididymal maturation. World J Mens Health. 2022;40(3):526–35.
pubmed: 35274503
pmcid: 9253804
doi: 10.5534/wjmh.210180
Park YJ, Pang MG. Mitochondrial functionality in male fertility: from spermatogenesis to fertilization. Antioxidants (Basel). 2021;10(1):98.
Chen X, et al. Identification of differentially expressed proteins between bull X and Y spermatozoa. J Proteomics. 2012;77:59–67.
pubmed: 22820535
doi: 10.1016/j.jprot.2012.07.004
Sengupta P, et al. Oxidative stress and idiopathic male infertility. Adv Exp Med Biol. 2022;1358:181–204.
pubmed: 35641871
doi: 10.1007/978-3-030-89340-8_9
Shahid M, et al. Male infertility: role of vitamin D and oxidative stress markers. Andrologia. 2021;53(8):e14147.
pubmed: 34247390
doi: 10.1111/and.14147
Liu KS, et al. Effect and mechanisms of reproductive tract infection on oxidative stress parameters, sperm DNA fragmentation, and semen quality in infertile males. Reprod Biol Endocrinol. 2021;19(1):97.
pubmed: 34183027
pmcid: 8237428
doi: 10.1186/s12958-021-00781-6
Oseguera-Lopez I et al. Perfluorooctane sulfonate (PFOS) and perfluorohexane sulfonate (PFHxS) alters protein phosphorylation, increase ROS levels and DNA fragmentation during in vitro capacitation of boar spermatozoa. Animals (Basel). 2020;10(10):1934.
Li KP, Yang XS, Wu T. The effect of antioxidants on sperm quality parameters and pregnancy rates for idiopathic male infertility: a network meta-analysis of randomized controlled trials. Front Endocrinol (Lausanne). 2022;13:810242.
pubmed: 35265037
doi: 10.3389/fendo.2022.810242
Alahmar AT, et al. Coenzyme Q10 improves sperm parameters, oxidative stress markers and sperm DNA fragmentation in infertile patients with idiopathic oligoasthenozoospermia. World J Mens Health. 2021;39(2):346–51.
pubmed: 32009311
doi: 10.5534/wjmh.190145
Balercia G, et al. Coenzyme Q10 treatment in infertile men with idiopathic asthenozoospermia: a placebo-controlled, double-blind randomized trial. Fertil Steril. 2009;91(5):1785–92.
pubmed: 18395716
doi: 10.1016/j.fertnstert.2008.02.119
Safarinejad MR. Efficacy of coenzyme Q10 on semen parameters, sperm function and reproductive hormones in infertile men. J Urol. 2009;182(1):237–48.
pubmed: 19447425
doi: 10.1016/j.juro.2009.02.121
Bellusci M, et al. Distal phalangeal erythema in an infant with biallelic PDSS1 mutations: expanding the phenotype of primary coenzyme Q(10) deficiency. JIMD Rep. 2021;62(1):3–5.
pubmed: 34765390
pmcid: 8574184
doi: 10.1002/jmd2.12216
Li M, et al. COQ2 mutation associated isolated nephropathy in two siblings from a Chinese pedigree. Ren Fail. 2021;43(1):97–101.
pubmed: 33397173
pmcid: 7801106
doi: 10.1080/0886022X.2020.1864402
Laugwitz L, et al. Human COQ4 deficiency: delineating the clinical, metabolic and neuroimaging phenotypes. J Med Genet. 2022;59(9):878–87.
pubmed: 34656997
doi: 10.1136/jmedgenet-2021-107729
Wang N, et al. A family segregating lethal primary coenzyme Q10 deficiency due to two novel COQ6 variants. Front Genet. 2021;12: 811833.
pubmed: 35111204
doi: 10.3389/fgene.2021.811833
Olgac A, et al. A rare case of primary coenzyme Q10 deficiency due to COQ9 mutation. J Pediatr Endocrinol Metab. 2020;33(1):165–70.
pubmed: 31821167
doi: 10.1515/jpem-2019-0245
Chambers BE, NE Weaver, Wingert RA. The "3Ds" of growing kidney organoids: advances in nephron development, disease modeling, and drug screening. Cells. 2023;12(4):549.
Zhai SB, et al. Early-onset COQ8B (ADCK4) glomerulopathy in a child with isolated proteinuria: a case report and literature review. BMC Nephrol. 2020;21(1):406.
pubmed: 32957916
pmcid: 7507654
doi: 10.1186/s12882-020-02038-7
Stanczyk M, et al. CoQ10-related sustained remission of proteinuria in a child with COQ6 glomerulopathy-a case report. Pediatr Nephrol. 2018;33(12):2383–7.
pubmed: 30232548
pmcid: 6208703
doi: 10.1007/s00467-018-4083-3
Suciu SK, Caspary T. Cilia, neural development and disease. Semin Cell Dev Biol. 2021;110:34–42.
pubmed: 32732132
doi: 10.1016/j.semcdb.2020.07.014
Muigg V, et al. Delayed cerebellar ataxia, a rare post-malaria neurological complication: Case report and review of the literature. Travel Med Infect Dis. 2021;44: 102177.
pubmed: 34687871
doi: 10.1016/j.tmaid.2021.102177
Musumeci O, et al. Familial cerebellar ataxia with muscle coenzyme Q10 deficiency. Neurology. 2001;56(7):849–55.
pubmed: 11294920
doi: 10.1212/WNL.56.7.849
Monfrini E, et al. Whole-exome sequencing study of fibroblasts derived from patients with cerebellar ataxia referred to investigate CoQ10 deficiency. Neurol Genet. 2023;9(2):e200058.
pubmed: 37090936
pmcid: 10117701
doi: 10.1212/NXG.0000000000200058
Rius R, et al. Biallelic pathogenic variants in COX11 are associated with an infantile-onset mitochondrial encephalopathy. Hum Mutat. 2022;43(12):1970–8.
pubmed: 36030551
pmcid: 9771894
doi: 10.1002/humu.24453
Justine Perrin R, et al. COQ6 mutation in patients with nephrotic syndrome, sensorineural deafness, and optic atrophy. JIMD Rep. 2020;54(1):37–44.
pubmed: 32685349
pmcid: 7358665
doi: 10.1002/jmd2.12068
Turnis ME, et al. Requirement for antiapoptotic MCL-1 during early erythropoiesis. Blood. 2021;137(14):1945–58.
pubmed: 33512417
pmcid: 8033457
doi: 10.1182/blood.2020006916
Martinez PA, et al. Smad2/3-pathway ligand trap luspatercept enhances erythroid differentiation in murine beta-thalassaemia by increasing GATA-1 availability. J Cell Mol Med. 2020;24(11):6162–77.
pubmed: 32351032
pmcid: 7294138
doi: 10.1111/jcmm.15243
Bai X, et al. TIF1gamma controls erythroid cell fate by regulating transcription elongation. Cell. 2010;142(1):133–43.
pubmed: 20603019
pmcid: 3072682
doi: 10.1016/j.cell.2010.05.028
Drakhlis L, et al. Human heart-forming organoids recapitulate early heart and foregut development. Nat Biotechnol. 2021;39(6):737–46.
pubmed: 33558697
pmcid: 8192303
doi: 10.1038/s41587-021-00815-9
Robichaux DJ, et al. Mitochondrial permeability transition pore-dependent necrosis. J Mol Cell Cardiol. 2023;174:47–55.
pubmed: 36410526
doi: 10.1016/j.yjmcc.2022.11.003
Yan A, et al. Idebenone alleviates neuroinflammation and modulates microglial polarization in LPS-stimulated BV2 cells and MPTP-induced Parkinson’s disease mice. Front Cell Neurosci. 2018;12:529.
pubmed: 30687016
doi: 10.3389/fncel.2018.00529
Takahashi M, Shimizu T, Shirasawa T. Reversal of slow growth and heartbeat through the restoration of mitochondrial function in clk-1-deficient mouse embryos by exogenous administration of coenzyme Q10. Exp Gerontol. 2012;47(6):425–31.
pubmed: 22465812
doi: 10.1016/j.exger.2012.03.008
Smith AC, et al. A family segregating lethal neonatal coenzyme Q(10) deficiency caused by mutations in COQ9. J Inherit Metab Dis. 2018;41(4):719–29.
pubmed: 29560582
doi: 10.1007/s10545-017-0122-7
Danhauser K, et al. Fatal neonatal encephalopathy and lactic acidosis caused by a homozygous loss-of-function variant in COQ9. Eur J Hum Genet. 2016;24(3):450–4.
pubmed: 26081641
doi: 10.1038/ejhg.2015.133
Miles MV. The uptake and distribution of coenzyme Q10. Mitochondrion. 2007;7(Suppl):S72–7.
pubmed: 17446143
doi: 10.1016/j.mito.2007.02.012
Teran E, et al. Mitochondria and coenzyme Q10 in the pathogenesis of preeclampsia. Front Physiol. 2018;9:1561.
pubmed: 30498451
pmcid: 6249996
doi: 10.3389/fphys.2018.01561
Budani MC, Tiboni GM. Effects of supplementation with natural antioxidants on oocytes and preimplantation embryos. Antioxidants (Basel). 2020;9(7):612.