Solar-activated and hydrothermally synthesized effective rGO/Ag


Journal

Environmental geochemistry and health
ISSN: 1573-2983
Titre abrégé: Environ Geochem Health
Pays: Netherlands
ID NLM: 8903118

Informations de publication

Date de publication:
20 Feb 2024
Historique:
received: 19 12 2023
accepted: 16 01 2024
medline: 21 2 2024
pubmed: 20 2 2024
entrez: 19 2 2024
Statut: epublish

Résumé

Graphene-based nanocomposites are developing as a new class of materials with several uses. The varied weight percentages of rGO on Ag

Identifiants

pubmed: 38374258
doi: 10.1007/s10653-024-01876-w
pii: 10.1007/s10653-024-01876-w
doi:

Substances chimiques

naphthol green B W60I5H3VMQ
Anti-Bacterial Agents 0
Naphthalenesulfonates 0
Water 059QF0KO0R
Ferric Compounds 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

95

Subventions

Organisme : King Saud University
ID : RSP2024R398

Informations de copyright

© 2024. The Author(s), under exclusive licence to Springer Nature B.V.

Références

Aguado, S., El-Jamal, S., Meunier, F., Canivet, J., & Farrusseng, D. (2016). A Pt/Al
doi: 10.1039/C6CC03096C pubmed: 27172134
Al-Enazi, N. M. (2023). Structural, optical, morphological, sun-light driven photocatalytic and antimicrobial investigations of Ag
doi: 10.1016/j.sjbs.2023.103840 pubmed: 37964782 pmcid: 10641547
Alikarami, S., Soltanizade, A., & Rashchi, F. (2022). Photocatalytic activity of the visible-light-driven spherical Ag
doi: 10.1016/j.matchemphys.2022.126174
Ameta, R., Punjabi, P. B., & Ameta, S. (2011). Photodegradation of naphthol green B in the presence of semiconducting antimony trisulphide. Journal of the Serbian Chemical Society, 76(7), 1049–1055. https://doi.org/10.2298/JSC100425082A
doi: 10.2298/JSC100425082A
Bai, S., & Shen, X. (2012). Graphene–inorganic nanocomposites. RSC Advances, 2(1), 64–98. https://doi.org/10.1039/C1RA00260K
doi: 10.1039/C1RA00260K
Cakmakyapan, S., Lu, P. K., Navabi, A., & Jarrahi, M. (2018). Gold-patched graphene nano-stripes for high-responsivity and ultrafast photodetection from the visible to infrared regime. Light: Science & Applications, 7(1), 20. https://doi.org/10.1038/s41377-018-0020-2
doi: 10.1038/s41377-018-0020-2
Chaleshtori, A. N., Meghaddam, F. M., Sadeghi, M., Rahimi, R., Hemati, S., & Ahmadi, A. (2017). Removal of Acid red 18 (Azo-Dye) from aqueous solution by adsorption onto activated charcoal prepared from almond shell. Journal of Environmental Science and Management, 20(2), 9–16. https://doi.org/10.47125/jesam/2017_2/02
doi: 10.47125/jesam/2017_2/02
Chang, G., Luo, Y., Lu, W., Qin, X., Asiri, A. M., Al-Youbi, A. O., & Sun, X. (2012). Ag nanoparticles decorated polyaniline nanofibers: Synthesis, characterization, and applications toward catalytic reduction of 4-nitrophenol and electrochemical detection of H
doi: 10.1039/c2cy00454b
Chen, X., Jia, B., Zhang, Y., & Gu, M. (2013). Exceeding the limit of plasmonic light trapping in textured screen-printed solar cells using Al nanoparticles and wrinkle-like graphene sheets. Light: Science & Applications, 2(8), e92–e92. https://doi.org/10.1038/lsa.2013.48
doi: 10.1038/lsa.2013.48
Cheng, X., Cheng, Q., Deng, X., Wang, P., & Liu, H. (2015). Construction of TiO
doi: 10.1016/j.electacta.2015.10.073
Cheng, X., Liu, H., Chen, Q., Li, J., & Wang, P. (2013). Preparation and characterization of palladium nano-crystallite decorated TiO
doi: 10.1016/j.jhazmat.2013.03.062 pubmed: 23611798
Dey, N., Vickram, S., Thanigaivel, S., Kamatchi, C., Subbaiya, R., Karmegam, N., & Govarthanan, M. (2022). Graphene materials: Armor against nosocomial infections and biofilm formation—A review. Environmental Research, 214, 113867. https://doi.org/10.1016/j.envres.2022.113867
doi: 10.1016/j.envres.2022.113867 pubmed: 35843279
Fakhri, A., Pourmand, M., Khakpour, R., & Behrouz, S. (2015). Structural, optical, photoluminescence and antibacterial properties of copper-doped silver sulfide nanoparticles. Journal of Photochemistry and Photobiology B: Biology, 149, 78–83. https://doi.org/10.1016/j.jphotobiol.2015.05.013
Govarthanan, M., Mythili, R., Kim, W., Alfarraj, S., & Alharbi, S. A. (2021). Facile fabrication of (2D/2D) MoS
doi: 10.1016/j.jhazmat.2021.125522 pubmed: 33684820
Hamed, M. S. G., Adedeji, M. A., Zhang, Y., & Mola, G. T. (2020). Silver sulphide nano-particles enhanced photo-current in polymer solar cells. Applied Physics A, 126(3), 207. https://doi.org/10.1007/s00339-020-3389-8
doi: 10.1007/s00339-020-3389-8
Han, S., Hu, L., Liang, Z., Wageh, S., Al-Ghamdi, A. A., Chen, Y., & Fang, X. (2014). One-step hydrothermal synthesis of 2D hexagonal nanoplates of α-Fe
doi: 10.1002/adfm.201401279
Hu, H., Wei, W., Jiang, Z., Sun, W., Lv, X., & Xie, J. (2019). In situ formation of small-scale Ag
doi: 10.1016/j.molliq.2019.111476
Huo, P., Liu, C., Wu, D., Guan, J., Li, J., Wang, H., et al. (2018). Fabricated Ag/Ag
doi: 10.1016/j.jiec.2017.08.015
Ji, T., Chen, L., Schmitz, M., Bao, F. S., & Zhu, J. (2015). Hierarchical macrotube/mesopore carbon decorated with mono-dispersed Ag nanoparticles as a highly active catalyst. Green Chemistry, 17(4), 2515–2523. https://doi.org/10.1039/C5GC00123D
doi: 10.1039/C5GC00123D
Jia, X., Cao, J., Lin, H., Zhang, M., Guo, X., & Chen, S. (2017). Transforming type-I to type-II heterostructure photocatalyst via energy band engineering: A case study of I-BiOCl/I-BiOBr. Applied Catalysis B: Environmental, 204, 505–514. https://doi.org/10.1016/j.apcatb.2016.11.061
doi: 10.1016/j.apcatb.2016.11.061
Jiang, D., Chen, L., Xie, J., & Chen, M. (2014). Ag2S/g-C3N4 composite photocatalysts for efficient Pt-free hydrogen production. The co-catalyst function of Ag/Ag
doi: 10.1039/C3DT53526F pubmed: 24492486
Jiang, J., Cao, S., Hu, C., & Chen, C. (2017). A comparison study of alkali metal-doped g-C
doi: 10.1016/S1872-2067(17)62936-X
Kang, P., Kim, K.-H., Park, H.-G., & Nam, S. (2018). Mechanically reconfigurable architectured graphene for tunable plasmonic resonances. Light: Science & Applications, 7(1), 17. https://doi.org/10.1038/s41377-018-0002-4
doi: 10.1038/s41377-018-0002-4
Kasinathan, M., Thiripuranthagan, S., Sivakumar, A., Ranganathan, S., Vembuli, T., Kumaravel, S., & Erusappan, E. (2020). Fabrication of novel Bi
doi: 10.1016/j.materresbull.2020.110782
Kaur, R., & Kaur, H. (2019). Adsorptive removal of amido black 10b from aqueous solution using stem carbon of ricinus communis as adsorbent. Asian Journal of Chemistry, 31(5), 1071–1076. https://doi.org/10.14233/ajchem.2019.21813
doi: 10.14233/ajchem.2019.21813
Kharitonov, V. G., Sundquist, A. R., & Sharma, V. S. (1995). Kinetics of nitrosation of thiols by nitric oxide in the presence of oxygen. Journal of Biological Chemistry, 270(47), 28158–28164. https://doi.org/10.1074/jbc.270.47.28158
doi: 10.1074/jbc.270.47.28158 pubmed: 7499306
Krishnakumar, B., Selvam, K., Velmurugan, R., & Swaminathan, M. (2010). Influence of operational parameters on photodegradation of acid black 1 with ZnO. Desalination and Water Treatment, 24(1–3), 132–139. https://doi.org/10.5004/dwt.2010.1466
doi: 10.5004/dwt.2010.1466
Krylova, V., Milbrat, A., Embrechts, A., & Baltrusaitis, J. (2014). Ag
doi: 10.1016/j.apsusc.2014.02.014
Kumaravel, S., Chandrasatheesh, C., Palanisamy, G., Lee, J., Hasan, I., Kumaravel, S., et al. (2023a). Highly efficient solar-light-active Ag-decorated g-C
doi: 10.3390/mi14071454 pubmed: 37512765 pmcid: 10383219
Kumaravel, S., Chandrasatheesh, C., Saranya, R., Kim, M.-J., Hasan, I., Lee, J., et al. (2024). Energy efficient sunshine active Ag decorated WO
doi: 10.1016/j.jpcs.2023.111745
Kumaravel, S., Durai, M., Sepúlveda, R., Chicardi, E., Kumaravel, S., Kim, M.-J., et al. (2023b). Fabrication of Ag/WO
doi: 10.1016/j.optmat.2023.114322
Kumaravel, S., Thiripuranthagan, S., Vembuli, T., Kumaravel, S., Erusappan, E., Chicardi, E., & Chinnasamy, S. (2023c). Detoxification of harmful pollutants using highly efficient visible light active Ru/TiO
doi: 10.1016/j.materresbull.2023.112421
Lamba, R., Umar, A., Mehta, S. K., & Kumar Kansal, S. (2015). Well-crystalline porous ZnO–SnO
doi: 10.1016/j.talanta.2014.07.096 pubmed: 25281131
Li, C., Jiang, B., Chen, H., Imura, M., Sang, L., Malgras, V., et al. (2016). Superior electrocatalytic activity of mesoporous Au film templated from diblock copolymer micelles. Nano Research, 9(6), 1752–1762. https://doi.org/10.1007/s12274-016-1068-z
doi: 10.1007/s12274-016-1068-z
Li, S., Chen, Y., He, X., Mao, X., Zhou, Y., Xu, J., & Yang, Y. (2019a). Modifying reduced graphene oxide by conducting polymer through a hydrothermal polymerization method and its application as energy storage electrodes. Nanoscale Research Letters, 14(1), 226. https://doi.org/10.1186/s11671-019-3051-6
doi: 10.1186/s11671-019-3051-6 pubmed: 31289953 pmcid: 6616605
Li, X., Liu, D., Shi, Z., & Yang, J. (2019b). Effect of Ag
doi: 10.1007/s10853-018-2930-z
Liu, L.-Y., Zhang, X., Li, H.-X., Liu, B., Lang, J.-W., Kong, L.-B., & Yan, X.-B. (2017a). Synthesis of Co–Ni oxide microflowers as a superior anode for hybrid supercapacitors with ultralong cycle life. Chinese Chemical Letters, 28(2), 206–212. https://doi.org/10.1016/j.cclet.2016.07.027
doi: 10.1016/j.cclet.2016.07.027
Liu, T., Liu, B., Yang, L., Ma, X., Li, H., Yin, S., et al. (2017b). RGO/Ag
doi: 10.1016/j.apcatb.2016.12.011
Mahesh, N., Balakumar, S., Shyamalagowri, S., Manjunathan, J., Pavithra, M. K. S., Babu, P. S., et al. (2022). Carbon-based adsorbents as proficient tools for the removal of heavy metals from aqueous solution: A state of art-review emphasizing recent progress and prospects. Environmental Research, 213, 113723. https://doi.org/10.1016/j.envres.2022.113723
doi: 10.1016/j.envres.2022.113723 pubmed: 35752329
Maheshwaran, S., Renganathan, V., Chen, S.-M., Balaji, R., Kao, C. R., Chandrasekar, N., et al. (2022). Hydrothermally constructed AgWO
doi: 10.1016/j.chemosphere.2022.134434 pubmed: 35351476
Matthews, R. W. (1987). Solar-electric water purification using photocatalytic oxidation with TiO
doi: 10.1016/0038-092X(87)90021-1
Morais, A., Alves, J. P. C., Lima, F. A. S., Lira-Cantu, M., & Nogueira, A. F. (2015). Enhanced photovoltaic performance of inverted hybrid bulk-heterojunction solar cells using TiO
doi: 10.1117/1.JPE.5.057408
Muchtar, A. R., Septiani, N. L. W., Iqbal, M., Nuruddin, A., & Yuliarto, B. (2018). Preparation of graphene-zinc oxide nanostructure composite for carbon monoxide gas sensing. Journal of Electronic Materials, 47(7), 3647–3656. https://doi.org/10.1007/s11664-018-6213-x
doi: 10.1007/s11664-018-6213-x
Munagapati, V. S., Yarramuthi, V., Kim, Y., Lee, K. M., & Kim, D.-S. (2018). Removal of anionic dyes (reactive black 5 and congo red) from aqueous solutions using banana peel powder as an adsorbent. Ecotoxicology and Environmental Safety, 148, 601–607. https://doi.org/10.1016/j.ecoenv.2017.10.075
doi: 10.1016/j.ecoenv.2017.10.075 pubmed: 29127823
Pattabi, M., Rao, K. M., Sainkar, S. R., & Sastry, M. (1999). Structural studies on silver cluster films deposited on softened PVP substrates. Thin Solid Films, 338(1–2), 40–45. https://doi.org/10.1016/S0040-6090(98)00970-5
doi: 10.1016/S0040-6090(98)00970-5
Pavlets, A., Titskaya, E., Alekseenko, A., Pankov, I., Ivanchenko, A., & Falina, I. (2024). Operation features of PEMFCs with De-alloyed PtCu/C catalysts. International Journal of Hydrogen Energy, 50, 458–470. https://doi.org/10.1016/j.ijhydene.2023.07.028
doi: 10.1016/j.ijhydene.2023.07.028
Priya, B. S., Aruchamy, K., Oh, T. H., Avula, B., Hasan, I., & Shanthi, M. (2023). Synthesis of solar light active reduced graphene oxide-ZnS nanomaterial for photocatalytic degradation and antibacterial applications. Micromachines, 14(7), 1324. https://doi.org/10.3390/mi14071324
doi: 10.3390/mi14071324
Qi, H., Yu, P., Wang, Y., Han, G., Liu, H., Yi, Y., et al. (2015). Graphdiyne oxides as excellent substrate for electroless deposition of Pd clusters with high catalytic activity. Journal of the American Chemical Society, 137(16), 5260–5263. https://doi.org/10.1021/ja5131337
doi: 10.1021/ja5131337 pubmed: 25871853
Saha, S., Pal, A., Kundu, S., Basu, S., & Pal, T. (2010). Photochemical green synthesis of calcium-alginate-stabilized Ag and Au nanoparticles and their catalytic application to 4-nitrophenol reduction. Langmuir, 26(4), 2885–2893. https://doi.org/10.1021/la902950x
doi: 10.1021/la902950x pubmed: 19957940
Shen, R., Xie, J., Xiang, Q., Chen, X., Jiang, J., & Li, X. (2019). Ni-based photocatalytic H
doi: 10.1016/S1872-2067(19)63294-8
Sher Shah, M. S. A., Park, A. R., Zhang, K., Park, J. H., & Yoo, P. J. (2012). Green synthesis of biphasic TiO
doi: 10.1021/am301287m
Shin, Y.-E., Sa, Y. J., Park, S., Lee, J., Shin, K.-H., Joo, S. H., & Ko, H. (2014). An ice-templated, pH-tunable self-assembly route to hierarchically porous graphene nanoscroll networks. Nanoscale, 6(16), 9734–9741. https://doi.org/10.1039/C4NR01988A
doi: 10.1039/C4NR01988A pubmed: 24998618
Shrestha, S., Harold, M. P., Kamasamudram, K., Kumar, A., Olsson, L., & Leistner, K. (2016). Selective oxidation of ammonia to nitrogen on bi-functional Cu–SSZ-13 and Pt/Al
doi: 10.1016/j.cattod.2015.11.035
Subash, B., Krishnakumar, B., Swaminathan, M., & Shanthi, M. (2013). Highly efficient, solar active, and reusable photocatalyst: Zr-loaded Ag–ZnO for reactive red 120 dye degradation with synergistic effect and dye-sensitized mechanism. Langmuir, 29(3), 939–949. https://doi.org/10.1021/la303842c
doi: 10.1021/la303842c pubmed: 23234536
Subash, B., Krishnakumar, B., Velmurugan, R., Swaminathan, M., & Shanthi, M. (2012). Synthesis of Ce co-doped Ag–ZnO photocatalyst with excellent performance for NBB dye degradation under natural sunlight illumination. Catalysis Science & Technology, 2(11), 2319. https://doi.org/10.1039/c2cy20254a
doi: 10.1039/c2cy20254a
Suh, M. P., Moon, H. R., Lee, E. Y., & Jang, S. Y. (2006). A redox-active two-dimensional coordination polymer: Preparation of silver and gold nanoparticles and crystal dynamics on guest removal. Journal of the American Chemical Society, 128(14), 4710–4718. https://doi.org/10.1021/ja056963l
doi: 10.1021/ja056963l pubmed: 16594708
Thangavel, N., Bellamkonda, S., Arulraj, A. D., Ranga Rao, G., & Neppolian, B. (2018). Visible light induced efficient hydrogen production through semiconductor–conductor–semiconductor (S–C–S) interfaces formed between g-C
doi: 10.1039/C8CY01248B
Thiel, J., Pakstis, L., Buzby, S., Raffi, M., Ni, C., Pochan, D. J., & Shah, S. I. (2007). Antibacterial properties of silver-doped titania. Small (weinheim an Der Bergstrasse, Germany), 3(5), 799–803. https://doi.org/10.1002/smll.200600481
doi: 10.1002/smll.200600481 pubmed: 17340662
Velmurugan, R., Selvam, K., Krishnakumar, B., & Swaminathan, M. (2011). An efficient reusable and antiphotocorrosive nano ZnO for the mineralization of reactive orange 4 under UV-A light. Separation and Purification Technology, 80(1), 119–124. https://doi.org/10.1016/j.seppur.2011.04.018
doi: 10.1016/j.seppur.2011.04.018
Velmurugan, R., & Swaminathan, M. (2011). An efficient nanostructured ZnO for dye sensitized degradation of reactive red 120 dye under solar light. Solar Energy Materials and Solar Cells, 95(3), 942–950. https://doi.org/10.1016/j.solmat.2010.11.029
doi: 10.1016/j.solmat.2010.11.029
Venugopal, V., Balaji, D., Preeyanghaa, M., Moon, C. J., Neppolian, B., Muthusamy, G., et al. (2023). Synergistic combination of BiFeO
doi: 10.1016/j.aej.2023.04.024
Wang, W.-H., Du, R.-X., Guo, X.-T., Jiang, J., Zhao, W.-W., Ni, Z.-H., et al. (2017). Interfacial amplification for graphene-based position-sensitive-detectors. Light: Science & Applications, 6(10), e17113–e17113. https://doi.org/10.1038/lsa.2017.113
doi: 10.1038/lsa.2017.113
Wang, X., Jiang, C., Hou, B., Wang, Y., Hao, C., & Wu, J. (2018). Carbon composite lignin-based adsorbents for the adsorption of dyes. Chemosphere, 206, 587–596. https://doi.org/10.1016/j.chemosphere.2018.04.183
doi: 10.1016/j.chemosphere.2018.04.183 pubmed: 29778084
Wang, X., Yao, S., & Li, X. (2009). Sol-gel preparation of CNT/ZnO nanocomposite and its photocatalytic property. Chinese Journal of Chemistry, 27(7), 1317–1320. https://doi.org/10.1002/cjoc.200990220
doi: 10.1002/cjoc.200990220
Wang, Z., Xu, C., Li, X., & Liu, Z. (2015). In situ green synthesis of Ag nanoparticles on tea polyphenols-modified graphene and their catalytic reduction activity of 4-nitrophenol. Colloids and Surfaces a: Physicochemical and Engineering Aspects, 485, 102–110. https://doi.org/10.1016/j.colsurfa.2015.09.015
doi: 10.1016/j.colsurfa.2015.09.015
Xu, X., Si, Z., Liu, L., Wang, Z., Chen, Z., Ran, R., et al. (2018a). CoMoS
doi: 10.1016/j.apsusc.2017.12.001
Xu, Y., Chen, Y., & Fu, W.-F. (2018b). Visible-light driven oxidative coupling of amines to imines with high selectivity in air over core-shell structured CdS@C
doi: 10.1016/j.apcatb.2018.03.098
Ye, L., Liu, J., Gong, C., Tian, L., Peng, T., & Zan, L. (2012). Two different roles of metallic Ag on Ag/AgX/BiOX (X = Cl, Br) visible light photocatalysts: Surface plasmon resonance and Z-scheme bridge. ACS Catalysis, 2(8), 1677–1683. https://doi.org/10.1021/cs300213m
doi: 10.1021/cs300213m
Zhang, S., Xu, Y., Zhao, D., Chen, W., Li, H., & Hou, C. (2019). Preparation of magnetic CuFe
doi: 10.3390/molecules25010124 pubmed: 31905655 pmcid: 6982921
Zhang, Y., Liu, S., Lu, W., Wang, L., Tian, J., & Sun, X. (2011). In situ green synthesis of Au nanostructures on graphene oxide and their application for catalytic reduction of 4-nitrophenol. Catalysis Science & Technology, 1(7), 1142. https://doi.org/10.1039/c1cy00205h
doi: 10.1039/c1cy00205h
Zhu, G., Bao, C., Liu, Y., Shen, X., Xi, C., Xu, Z., & Ji, Z. (2014). Self-regulated route to ternary hybrid nanocrystals of Ag–Ag
doi: 10.1039/C4NR03001J pubmed: 25212685

Auteurs

B Sathya Priya (BS)

Department of Chemistry, Annamalai University, Annamalainagar, Tamil Nadu, 608002, India.

Sakthivel Kumaravel (S)

Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu, 602105, India.
Department of Environmental Engineering, Korea Maritime and Ocean University, Busan, 49112, Republic of Korea.

Jagadeesh Kumar Alagarasan (JK)

School of Chemical Engineering, Yeungnam University, Gyeongsan-Si, 38541, Republic of Korea. jaga.jagadeesh1987@gmail.com.

Sandhanasamy Devanesan (S)

Department of Physics and Astronomy, College of Science, King Saud University, P. O. Box 2455, 11451, Riyadh, Saudi Arabia.

A Viji (A)

Department of Physics, Kongunadu College of Engineering and Technology, Thottiyam, Tamil Nadu, 621215, India.

Moonyong Lee (M)

School of Chemical Engineering, Yeungnam University, Gyeongsan-Si, 38541, Republic of Korea. mynlee@ynu.ac.kr.

M Shanthi (M)

Department of Chemistry, Annamalai University, Annamalainagar, Tamil Nadu, 608002, India. shanthimsm@gmail.com.

Articles similaires

Vancomycin-associated DRESS demonstrates delay in AST abnormalities.

Ahmed Hussein, Kateri L Schoettinger, Jourdan Hydol-Smith et al.
1.00
Humans Drug Hypersensitivity Syndrome Vancomycin Female Male
Humans Arthroplasty, Replacement, Elbow Prosthesis-Related Infections Debridement Anti-Bacterial Agents
Animals Humans Nickel Mice Immunotherapy
Animals Dietary Fiber Dextran Sulfate Mice Disease Models, Animal

Classifications MeSH