The impact of image contrast, resolution and reader expertise on black hole identification in Multiple Sclerosis.

Black holes Brain ICC Multiple Sclerosis

Journal

Neuroradiology
ISSN: 1432-1920
Titre abrégé: Neuroradiology
Pays: Germany
ID NLM: 1302751

Informations de publication

Date de publication:
19 Feb 2024
Historique:
received: 03 10 2023
accepted: 08 02 2024
medline: 20 2 2024
pubmed: 20 2 2024
entrez: 20 2 2024
Statut: aheadofprint

Résumé

In the neuroradiological work-up of Multiple Sclerosis (MS), the detection of "black holes" (BH) represent an information of undeniable importance. Nevertheless, different sequences can be used in clinical practice to evaluate BH in MS. Aim of this study was to investigate the possible impact of different sequences, resolutions, and levels of expertise on the intra- and inter-rater reliability identification of BH in MS. Brain MRI scans of 85 MS patients (M/F = 22/63; mean age = 36.0 ± 10.2 years) were evaluated in this prospective single-center study. The acquisition protocol included a 3 mm SE-T1w sequence, a 1 mm 3D-GrE-T1w sequence from which a resliced 3 mm sequence was also obtained. Images were evaluated independently by two readers of different expertise at baseline and after a wash-out period of 30 days. The intraclass correlation coefficient (ICC) was calculated as an index of intra and inter-reader reliability. For both readers, the intra-reader ICC analysis showed that the 3 mm SE-T1w and 3 mm resliced GrE-T1w images achieved an excellent performance (both with an ICC ≥ 0.95), while 1 mm 3D-GrE-T1w scans achieved a moderate one (ICC < 0.90). The inter-reader analysis showed that each of the three sequences achieved a moderate performance (all ICCs < 0.90). The 1 mm 3D-GrE-T1w sequence seems to be prone to a greater intra-reader variability compared to the 3 mm SE-T1w, with this effect being driven by the higher spatial resolution of the first sequence. To ensure reliability levels comparable with the standard SE-T1w in BH count, an assessment on a 3 mm resliced GrE-T1w sequence should be recommended.

Identifiants

pubmed: 38374410
doi: 10.1007/s00234-024-03310-5
pii: 10.1007/s00234-024-03310-5
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : Fondazione Italiana Sclerosi Multipla
ID : 2020/R-Single/061

Informations de copyright

© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

Références

Barkhof F, McGowan JC, van Waesberghe JH, Grossman RI (1998) Hypointense multiple sclerosis lesions on T1-weighted spin echo magnetic resonance images: their contribution in understanding multiple sclerosis evolution. J Neurol Neurosurg Psychiatry 64(Suppl 1):S77-79
pubmed: 9647290
Bitsch A, Kuhlmann T, Stadelmann C et al (2001) A longitudinal MRI study of histopathologically defined hypointense multiple sclerosis lesions: Longitudinal Study of Hypointense T1 Lesions. Ann Neurol 49:793–796. https://doi.org/10.1002/ana.1053
doi: 10.1002/ana.1053 pubmed: 11409432
van Walderveen MAA, Kamphorst W, Scheltens P et al (1998) Histopathologic correlate of hypointense lesions on T1-weighted spin-echo MRI in multiple sclerosis. Neurology 50:1282–1288. https://doi.org/10.1212/WNL.50.5.1282
doi: 10.1212/WNL.50.5.1282 pubmed: 9595975
Alessandrino F, Pichiecchio A, Mallucci G et al (2018) Do MRI Structured Reports for Multiple Sclerosis Contain Adequate Information for Clinical Decision Making? Am J Roentgenol 210:24–29. https://doi.org/10.2214/AJR.17.18451
doi: 10.2214/AJR.17.18451
ASNR (2018) Neuroradiology CDE Distribution Supporting Documentation https://www.asnr.org/wp-content/uploads/cde/ASNR%202018%20CDE%20Distribution%20Supporting%20Documentation.pdf
Siger M (2022) Magnetic Resonance Imaging in Primary Progressive Multiple Sclerosis Patients: Review. Clin Neuroradiol 32:625–641. https://doi.org/10.1007/s00062-022-01144-3
doi: 10.1007/s00062-022-01144-3 pubmed: 35258820 pmcid: 9424179
Sahraian MA, Radue E-W, Haller S, Kappos L (2009) Black holes in multiple sclerosis: definition, evolution, and clinical correlations: Black holes in MS. Acta Neurol Scand 122:1–8. https://doi.org/10.1111/j.1600-0404.2009.01221.x
doi: 10.1111/j.1600-0404.2009.01221.x pubmed: 20003089
Arnold DL, Matthews PM (2002) MRI in the diagnosis and management of multiple sclerosis. Neurology 58:S23–S31. https://doi.org/10.1212/WNL.58.8_suppl_4.S23
doi: 10.1212/WNL.58.8_suppl_4.S23 pubmed: 11971123
Bagnato F (2003) Evolution of T1 black holes in patients with multiple sclerosis imaged monthly for 4 years. Brain 126:1782–1789. https://doi.org/10.1093/brain/awg182
doi: 10.1093/brain/awg182 pubmed: 12821527
Filippi M, Preziosa P, Barkhof F et al (2021) Diagnosis of Progressive Multiple Sclerosis From the Imaging Perspective: A Review. JAMA Neurol 78:351. https://doi.org/10.1001/jamaneurol.2020.4689
doi: 10.1001/jamaneurol.2020.4689 pubmed: 33315071
Filippi M, Rovaris M, Rocca MA et al (2001) Glatiramer acetate reduces the proportion of new MS lesions evolving into “black holes.” Neurology 57:731–733. https://doi.org/10.1212/WNL.57.4.731
doi: 10.1212/WNL.57.4.731 pubmed: 11524494
van Waesberghe JH, van Walderveen MA, Castelijns JA et al (1998) Patterns of lesion development in multiple sclerosis: longitudinal observations with T1-weighted spin-echo and magnetization transfer MR. AJNR Am J Neuroradiol 19:675–683
pubmed: 9576653 pmcid: 8337386
Wattjes MP, Ciccarelli O, Reich DS et al (2021) 2021 MAGNIMS-CMSC-NAIMS consensus recommendations on the use of MRI in patients with multiple sclerosis. Lancet Neurol 20:653–670. https://doi.org/10.1016/S1474-4422(21)00095-8
doi: 10.1016/S1474-4422(21)00095-8 pubmed: 34139157
Brant-Zawadzki M, Gillan GD, Nitz WR (1992) MP RAGE: a three-dimensional, T1-weighted, gradient-echo sequence–initial experience in the brain. Radiology 182:769–775. https://doi.org/10.1148/radiology.182.3.1535892
doi: 10.1148/radiology.182.3.1535892 pubmed: 1535892
Dupuy SL, Tauhid S, Kim G et al (2015) MRI detection of hypointense brain lesions in patients with multiple sclerosis: T1 spin-echo vs. gradient-echo. Eur J Radiol 84:1564–1568. https://doi.org/10.1016/j.ejrad.2015.05.004
doi: 10.1016/j.ejrad.2015.05.004 pubmed: 26044294
Lapucci C, Romano N, Schiavi S et al (2020) Degree of microstructural changes within T1-SE versus T1-GE hypointense lesions in multiple sclerosis: relevance for the definition of “black holes.” Eur Radiol 30:3843–3851. https://doi.org/10.1007/s00330-020-06761-5
doi: 10.1007/s00330-020-06761-5 pubmed: 32162002
Thompson AJ, Banwell BL, Barkhof F et al (2018) Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. The Lancet Neurology 17:162–173. https://doi.org/10.1016/S1474-4422(17)30470-2
doi: 10.1016/S1474-4422(17)30470-2 pubmed: 29275977
Lublin FD, Reingold SC, Cohen JA et al (2014) Defining the clinical course of multiple sclerosis. Neurology 83:278–286. https://doi.org/10.1212/WNL.0000000000000560
doi: 10.1212/WNL.0000000000000560 pubmed: 24871874 pmcid: 4117366
Fazekas F (2000) Apolipoprotein E genotype related differences in brain lesions of multiple sclerosis. J Neurol Neurosurg Psychiatry 69:25–28. https://doi.org/10.1136/jnnp.69.1.25
doi: 10.1136/jnnp.69.1.25 pubmed: 10864599 pmcid: 1737030
Koo TK, Li MY (2016) A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J Chiropr Med 15:155–163. https://doi.org/10.1016/j.jcm.2016.02.012
doi: 10.1016/j.jcm.2016.02.012 pubmed: 27330520 pmcid: 4913118
Hu XY, Rajendran L, Lapointe E et al (2019) Three-dimensional MRI sequences in MS diagnosis and research. Mult Scler 25:1700–1709. https://doi.org/10.1177/1352458519848100
doi: 10.1177/1352458519848100 pubmed: 31116071
McKinley R, Wepfer R, Aschwanden F et al (2021) Simultaneous lesion and brain segmentation in multiple sclerosis using deep neural networks. Sci Rep 11:1087. https://doi.org/10.1038/s41598-020-79925-4
doi: 10.1038/s41598-020-79925-4 pubmed: 33441684 pmcid: 7806997
Bozsik B, Tóth E, Polyák I et al (2022) Reproducibility of Lesion Count in Various Subregions on MRI Scans in Multiple Sclerosis. Front Neurol 13:843377. https://doi.org/10.3389/fneur.2022.843377
doi: 10.3389/fneur.2022.843377 pubmed: 35620784 pmcid: 9127199
Traboulsee A, Simon JH, Stone L et al (2016) Revised Recommendations of the Consortium of MS Centers Task Force for a Standardized MRI Protocol and Clinical Guidelines for the Diagnosis and Follow-Up of Multiple Sclerosis. AJNR Am J Neuroradiol 37:394–401. https://doi.org/10.3174/ajnr.A4539
doi: 10.3174/ajnr.A4539 pubmed: 26564433 pmcid: 5094650
Schiavi S, Petracca M, Sun P et al (2021) Non-invasive quantification of inflammation, axonal and myelin injury in multiple sclerosis. Brain 144:213–223. https://doi.org/10.1093/brain/awaa381
doi: 10.1093/brain/awaa381 pubmed: 33253366
Truyen L, Van Waesberghe JHTM, Van Walderveen MAA et al (1996) Accumulation of hypointense lesions (“black holes”) on T
doi: 10.1212/WNL.47.6.1469 pubmed: 8960729
Schick F, Pieper CC, Kupczyk P et al (2021) 1.5 vs 3 Tesla Magnetic Resonance Imaging: A Review of Favorite Clinical Applications for Both Field Strengths-Part 1. Invest Radiol 56:680–691. https://doi.org/10.1097/RLI.0000000000000812
doi: 10.1097/RLI.0000000000000812 pubmed: 34324464
Shinohara RT, Oh J, Nair G et al (2017) Volumetric Analysis from a Harmonized Multisite Brain MRI Study of a Single Subject with Multiple Sclerosis. AJNR Am J Neuroradiol 38:1501–1509. https://doi.org/10.3174/ajnr.A5254
doi: 10.3174/ajnr.A5254 pubmed: 28642263 pmcid: 5557658

Auteurs

Mario Tranfa (M)

Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy.

Alessandra Scaravilli (A)

Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy.

Chiara Pastore (C)

Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy.

Alfredo Montella (A)

Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy.

Roberta Lanzillo (R)

Department of Neurosciences and Reproductive and Odontostomatological Sciences, University of Naples "Federico II", Naples, Italy.

Margareth Kimura (M)

Research Department of Universidade de Uberaba (UNIUBE), Uberaba, Brazil.
Departament of Radiology and Diagnostic Imaging of Universidade Federal Do Triângulo Mineiro (UFTM), Uberaba, Brazil.

Bas Jasperse (B)

Department of Radiology and Nuclear Medicine, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.

Vincenzo Brescia Morra (VB)

Department of Neurosciences and Reproductive and Odontostomatological Sciences, University of Naples "Federico II", Naples, Italy.

Maria Petracca (M)

Department of Human Neurosciences, Sapienza University, Rome, Italy.

Giuseppe Pontillo (G)

Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy. giuseppe.pontillo@unina.it.

Arturo Brunetti (A)

Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy.

Sirio Cocozza (S)

Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy.

Classifications MeSH