A comparison between the enzymatic oxidation method and headspace gas chromatography with a flame ionization detector in the determination of postmortem blood ethanol.

Blood alcohol concentration Enzymatic oxidation Ethanol HS-GC/FID Lactate Lactate dehydrogenase

Journal

Forensic science, medicine, and pathology
ISSN: 1556-2891
Titre abrégé: Forensic Sci Med Pathol
Pays: United States
ID NLM: 101236111

Informations de publication

Date de publication:
20 Feb 2024
Historique:
accepted: 30 01 2024
medline: 20 2 2024
pubmed: 20 2 2024
entrez: 20 2 2024
Statut: aheadofprint

Résumé

Ethanol is the most commonly encountered substance in forensic toxicology. Determining blood alcohol concentration (BAC) in autopsies accounts for the majority of work in forensic diagnosis. The most common method to assess BAC is the enzymatic oxidation method because of its low cost, easy operation, and high throughput. Still, the elevated lactate and lactate dehydrogenase (LDH) levels in postmortem blood may affect accuracy. This study uses headspace gas chromatography with a flame ionization detector (HS-GC/FID) to assess the interference of lactate and LDH levels on BAC in 110 autopsied blood samples determined by the enzymatic oxidation method. The results showed that lactate and LDH levels in postmortem blood were higher than in normal blood. There was a weak correlation between the lactate levels and BAC difference (r = 0.23, p < 0.05) and a strong correlation between LDH levels and BAC difference (r = 0.67, p < 0.001). The differentiation of BAC between the enzymatic oxidation method and HS-GC/FID was significant (p < 0.001), confirming the interference significantly. All postmortem blood samples with lactate and LDH levels higher than regular lead to a positive error in determining BAC by enzymatic oxidation method. The study results suggest that the HS-GC/FID method should be used to determine BAC in postmortem blood samples instead of the enzymatic oxidation method to avoid mistakes in forensic diagnosis.

Identifiants

pubmed: 38376759
doi: 10.1007/s12024-024-00791-x
pii: 10.1007/s12024-024-00791-x
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.

Références

Karch SB. Forensic issues in alcohol testing. New York: CRC Press/Taylor & Francis Group; 2007.
Elisaf M, Kalaitzidis R. Metabolic abnormalities in alcoholic patients: focus on acid base and electrolyte disorders. J Alcohol Drug Depend. 2015;3:1.
Vonghia L, Leggio L, Ferrulli A, Bertini M, Gasbarrini G, Addolorato G. Alcoholism Treatment Study Group. Acute alcohol intoxication. Eur J Intern Med. 2008;19:561–7. https://doi.org/10.1016/j.ejim.2007.06.033 .
doi: 10.1016/j.ejim.2007.06.033 pubmed: 19046719
Levine BS, Caplan YH, Jones AW. Alcohol, principles of forensic toxicology. In: Barry SL, Sarah K, editors. Switzerland Springer Nature. Switzerland AG; 2020. p. 287–316.
Dubowski KM. Alcohol Determination in the clinical laboratory. Am J Pathol. 1980;74:747–50. https://doi.org/10.1093/ajcp/74.5.747 .
doi: 10.1093/ajcp/74.5.747
Beutler HO. Ethanol, Methods of enzymatic analysis. In: Bergmeyer HU, editor. Academic Press. New York; 1984. p. 598–606.
Donaldson AE, Lamont IL. Estimation of post-mortem interval using biochemical markers. Aust J Forensic Sci. 2013;46:1–19. https://doi.org/10.1080/00450618.2013.784356 .
doi: 10.1080/00450618.2013.784356
Oakes SA. Cell injury, cell death, and adaptations, Robbins and Cotran pathologic basis of disease. In: Kumar V, Abbas A, Aster J, editors. Elsevier. Philadelphia; 2020. p. 33–69.
Coe JI. Postmortem chemistry of blood, cerebrospinal fluid, and vitreous humor Forensic Pathology, A Handbook for Pathologists. In: Fisher RS, Petty CS, editors. Department of Justice. US; 1977. p. 21–49.
Donaldson AE, Lamont IL. Biochemistry changes that occur after death: potential markers for determining post-mortem interval. PLoS ONE. 2013;8:e82011. https://doi.org/10.1371/journal.pone.0082011 .
doi: 10.1371/journal.pone.0082011 pubmed: 24278469 pmcid: 3836773
Lythgoe AS. The activity of lactate dehydrogenase in cadaver sera: a comparison of different sampling sites. Med Sci Law. 1980;20:48–53. https://doi.org/10.1177/002580248002000110 .
doi: 10.1177/002580248002000110 pubmed: 7366351
Nine JS, Moraca M, Virji MA, Rao KN. Serum-ethanol determination: comparison of lactate and lactate dehydrogenase interference in three enzymatic assays. J Anal Toxicol. 1995;19:192–6. https://doi.org/10.1093/jat/19.3.192 .
doi: 10.1093/jat/19.3.192 pubmed: 7564299
Powers RH, Dean DE. Evaluation of potential lactate - lactate dehydrogenase interference with an enzymatic alcohol analysis. J Anal Toxicol. 2009;33:561–3. https://doi.org/10.1093/jat/33.8.561 .
doi: 10.1093/jat/33.8.561 pubmed: 19874670
Bishop-Freeman SC, Bertholf RL, Powers RH, Mayhew LC, Winecker RE. False-positive enzymatic alcohol results in perimortem specimens. Lab Med. 2020;394–401. https://doi.org/10.1093/labmed/lmz082 .
doi: 10.1093/labmed/lmz082 pubmed: 31999346
Reisfield GM. Alcohol and its biomarkers: clinical aspects and laboratory determination. Lab Med. 2015;46:e72–3. https://doi.org/10.1309/LMD9PAMUNKPA7DVN .
doi: 10.1309/LMD9PAMUNKPA7DVN
Thompson WC, MaIhotra D, Schammel DP, Blackwell W, Ward ME, Dasgupta A. False-positive ethanol in clinical and postmortem sera by enzymatic assay: elimination of interference by measuring alcohol in protein-free ultrafiltrate. Clin Chem. 1994;40:1594–5. https://doi.org/10.1093/clinchem/40.8.1594 .
doi: 10.1093/clinchem/40.8.1594 pubmed: 8045004
Badcock NR, O’Reilly DA. False-positive Emit-st ethanol screen with post-mortem infant plasma. Clin Chem. 1992;38:434.
doi: 10.1093/clinchem/38.3.434 pubmed: 1547566
Lefrere B, Wohrer D, Godefroy C, Soichot M, Mihoubi A, Nivet-Antoine V, Oualha M, Houze P. False-positive ethanol level in urine and plasma samples of a resuscitated infant. J Anal Toxicol. 2022;46:e21–7. https://doi.org/10.1093/jat/bkaa188 .
doi: 10.1093/jat/bkaa188 pubmed: 33277902
Golby R, Ovakim D, Garg A. False-positive ethanol levels in modern laboratory assays. Clin Toxicol. 2020;58:853–4. https://doi.org/10.1080/15563650.2019.1687908 .
doi: 10.1080/15563650.2019.1687908
Nacca N, Hodgman MJ, Lao K, Elkins M, Holland MG. Can elevated lactate and LDH produce a false positive enzymatic ethanol result in live patients presenting to the emergency department? Clin Toxicol. 2018;56:189–92. https://doi.org/10.1080/15563650.2017.1357825 .
doi: 10.1080/15563650.2017.1357825
Wineka CL, Wahba WW, Windisch RM, Winek CL Jr. Serum alcohol concentrations in trauma patients determined by immunoassay versus gas chromatography. Forensic Sci Int. 2004;139:1–3. https://doi.org/10.1016/S0379-0738(03)00262-7 .
doi: 10.1016/S0379-0738(03)00262-7
Senkowski CM, Thompson KA. The accuracy of blood alcohol analysis using Headspace gas chromatography when performed on clotted samples. J Forensic Sci. 1990;35.
doi: 10.1520/JFS12814J pubmed: 2313256
Hwang RJ, Beltran J, Rogers C, Barlow J, Razatos G. Measurement of uncertainty for blood alcohol concentration by headspace gas chromatography. J Can Soc Forensic Sci. 2017;50:114–24. https://doi.org/10.1080/00085030.2017.1312069 .
doi: 10.1080/00085030.2017.1312069
AAFS Standards Board. Standard practices for method validation in forensic toxicology. ANSI/ASB Standard 036. 1st Ed. 2019. https://aafs.org/sites/default/files/media/documents/036_Std_e1.pdf .
AAFS Standards Board. Standard for the Validation of Procedures in Bloodstain Pattern Analysis. ANSI/ASB Standard 072. 1st Ed. 2019. https://aafs.org/sites/default/files/media/documents/072_Std_e1.pdf .
Ministry of Health, Viet Nam. The quality standards of the method following decision no 2429/QĐ-BYT-Promulgation of criteria for quality assessment of medical laboratories. 2017. https://thuvienphapluat.vn/van-ban/The-thao-Y-te/Quyet-dinh-2429-QD-BYT-2017-Tieu-chi-danh-gia-muc-chat-luong-phong-xet-nghiem-y-hoc-351985.aspx .
Costa I, Carvalho F, Magalhães T, Pinho PGd, Silvestre R, Dinis-Oliveira RJ. Promising blood-derived biomarkers for estimation of postmortem interval. Toxicology Res. 2013;1–26. https://doi.org/10.1039/c5tx00209e .
doi: 10.1039/c5tx00209e

Auteurs

Nguyen Thi Thanh Xuan (NTT)

Forensic Medicine Center of Ho Chi Minh City, Ho Chi Minh City, 700000, Vietnam.

Dinh Vu Le (DV)

Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh City, 700000, Vietnam. ledinhvu@iuh.edu.vn.

Mai Thi Thanh (MT)

Forensic Medicine Center of Ho Chi Minh City, Ho Chi Minh City, 700000, Vietnam.

Le Dinh Son (LD)

Forensic Medicine Center of Ho Chi Minh City, Ho Chi Minh City, 700000, Vietnam.

Nguyen Viet Doanh (NV)

Forensic Medicine Center of Ho Chi Minh City, Ho Chi Minh City, 700000, Vietnam.

Dang Minh Thu (DM)

Forensic Medicine Center of Ho Chi Minh City, Ho Chi Minh City, 700000, Vietnam.

Nguyen Trong Tuan (NT)

Forensic Medicine Center of Ho Chi Minh City, Ho Chi Minh City, 700000, Vietnam.

Trang Khanh Duy (TK)

Forensic Medicine Center of Ho Chi Minh City, Ho Chi Minh City, 700000, Vietnam.

Tran Dinh Thang (TD)

Institute of Biotechnology and Food Technology, Industrial University of Ho Chi Minh City, Ho Chi Minh, 700000, Vietnam.

Lam Vinh Nien (LV)

University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, 700000, Vietnam.

Classifications MeSH