Single-cell RNA sequencing of anaplastic ependymoma and H3K27M-mutant diffuse midline glioma.
Anaplastic ependymoma
H3K27M-mutant diffuse midline glioma
Intratumor heterogeneity
Single-cell RNA-sequencing
Journal
BMC neurology
ISSN: 1471-2377
Titre abrégé: BMC Neurol
Pays: England
ID NLM: 100968555
Informations de publication
Date de publication:
21 Feb 2024
21 Feb 2024
Historique:
received:
31
07
2023
accepted:
01
02
2024
medline:
22
2
2024
pubmed:
22
2
2024
entrez:
21
2
2024
Statut:
epublish
Résumé
Anaplastic ependymoma and H3K27M-mutant diffuse midline glioma are two common subtypes of brain tumors with poor long-term prognosis. The present study analyzed and compared the differences in cell types between two tumors by single-cell RNA sequencing (scRNA-seq) technology. ScRNA-seq was performed to profile cells from cancer tissue from anaplastic ependymoma patient and H3K27M-mutant diffuse midline glioma patient. Cell clustering, marker gene identification, cell type annotation, copy number variation analysis and function analysis of differentially expressed genes were then performed. A total of 11,219 cells were obtained from anaplastic ependymoma and H3K27M mutant diffuse midline glioma, and these cells categorized into 12 distinct clusters. Each cell cluster could be characterized with specific cell markers to indicate cellular heterogeneity. Five cell types were annotated in each sample, including astrocyte, oligodendrocytes, microglial cell, neural progenitor cell and immune cell. The cluster types and proportion of cell types were not consistent between the two brain tumors. Functional analyses suggest that these cell clusters are involved in tumor-associated pathways, with slight differences in the cells of origin between the two tumors. In addition, cell communication analysis showed that the NRG3-ERBB4 pair is a key Ligand-receptor pair for anaplastic ependymoma, while in H3K27M-mutant diffuse midline glioma it is the PTN-PTPRZ1 pair that establishes contact with other cells. There was intratumor heterogeneity in anaplastic ependymoma and H3K27M mutant diffuse midline glioma, and that the subtype differences may be due to differences in the origin of the cells.
Sections du résumé
BACKGROUND
BACKGROUND
Anaplastic ependymoma and H3K27M-mutant diffuse midline glioma are two common subtypes of brain tumors with poor long-term prognosis. The present study analyzed and compared the differences in cell types between two tumors by single-cell RNA sequencing (scRNA-seq) technology.
METHODS
METHODS
ScRNA-seq was performed to profile cells from cancer tissue from anaplastic ependymoma patient and H3K27M-mutant diffuse midline glioma patient. Cell clustering, marker gene identification, cell type annotation, copy number variation analysis and function analysis of differentially expressed genes were then performed.
RESULTS
RESULTS
A total of 11,219 cells were obtained from anaplastic ependymoma and H3K27M mutant diffuse midline glioma, and these cells categorized into 12 distinct clusters. Each cell cluster could be characterized with specific cell markers to indicate cellular heterogeneity. Five cell types were annotated in each sample, including astrocyte, oligodendrocytes, microglial cell, neural progenitor cell and immune cell. The cluster types and proportion of cell types were not consistent between the two brain tumors. Functional analyses suggest that these cell clusters are involved in tumor-associated pathways, with slight differences in the cells of origin between the two tumors. In addition, cell communication analysis showed that the NRG3-ERBB4 pair is a key Ligand-receptor pair for anaplastic ependymoma, while in H3K27M-mutant diffuse midline glioma it is the PTN-PTPRZ1 pair that establishes contact with other cells.
CONCLUSION
CONCLUSIONS
There was intratumor heterogeneity in anaplastic ependymoma and H3K27M mutant diffuse midline glioma, and that the subtype differences may be due to differences in the origin of the cells.
Identifiants
pubmed: 38383423
doi: 10.1186/s12883-024-03558-7
pii: 10.1186/s12883-024-03558-7
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
74Subventions
Organisme : Shenzhen Fund for Guangdong Provincial High-level Clinical Key specialties
ID : No.SZXK035
Informations de copyright
© 2024. The Author(s).
Références
Pollack IF, Agnihotri S, Broniscer A. Childhood brain tumors: current management, biological insights, and future directions. J Neurosurg Pediatr. 2019;23(3):261–73.
pubmed: 30835699
pmcid: 6823600
doi: 10.3171/2018.10.PEDS18377
Packer RJ, Gajjar A, Vezina G, Rorke-Adams L, Burger PC, Robertson PL, Bayer L, LaFond D, Donahue BR, Marymont MH, et al. Phase III study of craniospinal radiation therapy followed by adjuvant chemotherapy for newly diagnosed average-risk medulloblastoma. J Clin Oncology: Official J Am Soc Clin Oncol. 2006;24(25):4202–8.
doi: 10.1200/JCO.2006.06.4980
Wisoff JH, Sanford RA, Heier LA, Sposto R, Burger PC, Yates AJ, Holmes EJ, Kun LE. Primary neurosurgery for pediatric low-grade gliomas: a prospective multi-institutional study from the children’s Oncology Group. Neurosurgery. 2011;68(6):1548–54. discussion 1554 – 1545.
pubmed: 21368693
doi: 10.1227/NEU.0b013e318214a66e
Merchant TE, Li C, Xiong X, Kun LE, Boop FA, Sanford RA. Conformal radiotherapy after surgery for paediatric ependymoma: a prospective study. Lancet Oncol. 2009;10(3):258–66.
pubmed: 19274783
pmcid: 3615425
doi: 10.1016/S1470-2045(08)70342-5
Pajtler KW, Witt H, Sill M, Jones DT, Hovestadt V, Kratochwil F, Wani K, Tatevossian R, Punchihewa C, Johann P, et al. Molecular classification of Ependymal tumors across all CNS compartments, histopathological grades, and Age groups. Cancer Cell. 2015;27(5):728–43.
pubmed: 25965575
pmcid: 4712639
doi: 10.1016/j.ccell.2015.04.002
Reni M, Gatta G, Mazza E, Vecht C. Ependymoma. Crit Rev Oncol/Hematol. 2007;63(1):81–9.
pubmed: 17482475
doi: 10.1016/j.critrevonc.2007.03.004
Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD, Kleihues P, Ellison DW. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol. 2016;131(6):803–20.
pubmed: 27157931
doi: 10.1007/s00401-016-1545-1
Massimino M, Miceli R, Giangaspero F, Boschetti L, Modena P, Antonelli M, Ferroli P, Bertin D, Pecori E, Valentini L, et al. Final results of the second prospective AIEOP protocol for pediatric intracranial ependymoma. Neurooncology. 2016;18(10):1451–60.
Khatua S, Mangum R, Bertrand KC, Zaky W, McCall D, Mack SC. Pediatric ependymoma: current treatment and newer therapeutic insights. Future Oncol (London England). 2018;14(30):3175–86.
doi: 10.2217/fon-2018-0502
Lee J, Chung SY, Han JW, Kim DS, Kim J, Moon JY, Yoon HI, Suh CO. Treatment outcome of anaplastic ependymoma under the age of 3 treated by intensity-modulated radiotherapy. Radiation Oncol J. 2020;38(1):26–34.
doi: 10.3857/roj.2020.00073
Johung TB, Monje M. Diffuse intrinsic pontine glioma: New Pathophysiological insights and emerging therapeutic targets. Curr Neuropharmacol. 2017;15(1):88–97.
pubmed: 27157264
pmcid: 5327455
doi: 10.2174/1570159X14666160509123229
Hoffman LM, van Veldhuijzen SEM, Colditz N, Baugh J, Chaney B, Hoffmann M, Lane A, Fuller C, Miles L, Hawkins C, et al. Clinical, radiologic, pathologic, and molecular characteristics of long-term survivors of diffuse intrinsic pontine glioma (DIPG): a collaborative report from the International and European Society for Pediatric Oncology DIPG Registries. J Clin Oncology: Official J Am Soc Clin Oncol. 2018;36(19):1963–72.
doi: 10.1200/JCO.2017.75.9308
Argersinger DP, Rivas SR, Shah AH, Jackson S, Heiss JD. New Developments in the Pathogenesis, Therapeutic Targeting, and treatment of H3K27M-Mutant diffuse midline glioma. 2021, 13(21).
Griesinger AM, Josephson RJ, Donson AM, Mulcahy Levy JM, Amani V, Birks DK, Hoffman LM, Furtek SL, Reigan P, Handler MH, et al. Interleukin-6/STAT3 Pathway Signaling drives an inflammatory phenotype in Group A Ependymoma. Cancer Immunol Res. 2015;3(10):1165–74.
pubmed: 25968456
pmcid: 4596749
doi: 10.1158/2326-6066.CIR-15-0061
Lötsch D, Kirchhofer D, Englinger B, Jiang L, Okonechnikov K, Senfter D, Laemmerer A, Gabler L, Pirker C, Donson AM, et al. Targeting fibroblast growth factor receptors to combat aggressive ependymoma. Acta Neuropathol. 2021;142(2):339–60.
pubmed: 34046693
pmcid: 8270873
doi: 10.1007/s00401-021-02327-x
Wang G, Jia Y, Ye Y, Kang E, Chen H, Wang J, He X. Identification of key methylation differentially expressed genes in posterior fossa ependymoma based on epigenomic and transcriptome analysis. J Translational Med. 2021;19(1):174.
doi: 10.1186/s12967-021-02834-1
Levitin HM, Yuan J, Sims PA. Single-cell transcriptomic analysis of Tumor Heterogeneity. Trends cancer. 2018;4(4):264–8.
pubmed: 29606308
pmcid: 5993208
doi: 10.1016/j.trecan.2018.02.003
Baslan T, Hicks J. Unravelling biology and shifting paradigms in cancer with single-cell sequencing. Nat Rev Cancer. 2017;17(9):557–69.
pubmed: 28835719
doi: 10.1038/nrc.2017.58
Ren X, Kang B, Zhang Z. Understanding tumor ecosystems by single-cell sequencing: promises and limitations. Genome Biol. 2018;19(1):211.
pubmed: 30509292
pmcid: 6276232
doi: 10.1186/s13059-018-1593-z
Zhang M, Yang H, Wan L, Wang Z, Wang H, Ge C, Liu Y, Hao Y, Zhang D, Shi G, et al. Single-cell transcriptomic architecture and intercellular crosstalk of human intrahepatic cholangiocarcinoma. J Hepatol. 2020;73(5):1118–30.
pubmed: 32505533
doi: 10.1016/j.jhep.2020.05.039
Zhang Q, He Y, Luo N, Patel SJ, Han Y, Gao R, Modak M, Carotta S, Haslinger C, Kind D, et al. Landscape and Dynamics of Single Immune Cells in Hepatocellular Carcinoma. Cell. 2019;179(4):829–845e820.
pubmed: 31675496
doi: 10.1016/j.cell.2019.10.003
Lambrechts D, Wauters E, Boeckx B, Aibar S, Nittner D, Burton O, Bassez A, Decaluwé H, Pircher A, Van den Eynde K, et al. Phenotype molding of stromal cells in the lung tumor microenvironment. Nat Med. 2018;24(8):1277–89.
pubmed: 29988129
doi: 10.1038/s41591-018-0096-5
Savas P, Virassamy B, Ye C, Salim A, Mintoff CP, Caramia F, Salgado R, Byrne DJ, Teo ZL, Dushyanthen S, et al. Single-cell profiling of breast cancer T cells reveals a tissue-resident memory subset associated with improved prognosis. Nat Med. 2018;24(7):986–93.
pubmed: 29942092
doi: 10.1038/s41591-018-0078-7
Karaayvaz M, Cristea S, Gillespie SM, Patel AP, Mylvaganam R, Luo CC, Specht MC, Bernstein BE, Michor F, Ellisen LW. Unravelling subclonal heterogeneity and aggressive disease states in TNBC through single-cell RNA-seq. Nat Commun. 2018;9(1):3588.
pubmed: 30181541
pmcid: 6123496
doi: 10.1038/s41467-018-06052-0
Genomics x. : What is Cell Ranger. 2019.
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR. STAR: ultrafast universal RNA-seq aligner. Bioinf (Oxford England). 2013;29(1):15–21.
Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM 3rd, Hao Y, Stoeckius M, Smibert P, Satija R. Comprehensive Integration of Single-Cell Data. Cell. 2019;177(7):1888–1902e1821.
pubmed: 31178118
pmcid: 6687398
doi: 10.1016/j.cell.2019.05.031
Aran D, Looney AP, Liu L, Wu E, Fong V, Hsu A, Chak S, Naikawadi RP, Wolters PJ, Abate AR et al. Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. 2019, 20(2):163–72.
Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z, Feng T, Zhou L, Tang W, Zhan L, et al. clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innov (Camb). 2021;2(3):100141.
Efremova M, Vento-Tormo M, Teichmann SA, Vento-Tormo R. CellPhoneDB: inferring cell-cell communication from combined expression of multi-subunit ligand-receptor complexes. Nat Protoc. 2020;15(4):1484–506.
pubmed: 32103204
doi: 10.1038/s41596-020-0292-x
Hao Y, Hao S, Andersen-Nissen E, Mauck WM 3rd, Zheng S, Butler A, Lee MJ, Wilk AJ, Darby C, Zager M, et al. Integrated analysis of multimodal single-cell data. Cell. 2021;184(13):3573–3587e3529.
pubmed: 34062119
pmcid: 8238499
doi: 10.1016/j.cell.2021.04.048
Filbin MG, Tirosh I, Hovestadt V, Shaw ML, Escalante LE, Mathewson ND, Neftel C, Frank N, Pelton K, Hebert CM, et al. Developmental and oncogenic programs in H3K27M gliomas dissected by single-cell RNA-seq. Science. 2018;360(6386):331–5.
pubmed: 29674595
pmcid: 5949869
doi: 10.1126/science.aao4750
Ostrom QT, Adel Fahmideh M, Cote DJ, Muskens IS, Schraw JM, Scheurer ME, Bondy ML. Risk factors for childhood and adult primary brain tumors. Neurooncology. 2019;21(11):1357–75.
Ostrom QT, Francis SS, Barnholtz-Sloan JS. Epidemiology of brain and other CNS tumors. Curr Neurol Neurosci Rep. 2021;21(12):68.
pubmed: 34817716
pmcid: 8613072
doi: 10.1007/s11910-021-01152-9
Armand EJ, Li J, Xie F, Luo C, Mukamel EA. Single-cell sequencing of Brain Cell transcriptomes and Epigenomes. Neuron. 2021;109(1):11–26.
pubmed: 33412093
pmcid: 7808568
doi: 10.1016/j.neuron.2020.12.010
Zhang Y, Wang D, Peng M, Tang L, Ouyang J, Xiong F, Guo C, Tang Y, Zhou Y, Liao Q, et al. Single-cell RNA sequencing in cancer research. J Experimental Clin cancer Research: CR. 2021;40(1):81.
pmcid: 7919320
doi: 10.1186/s13046-021-01874-1
Nagelhus EA, Ottersen OP. Physiological roles of aquaporin-4 in brain. Physiol Rev. 2013;93(4):1543–62.
pubmed: 24137016
pmcid: 3858210
doi: 10.1152/physrev.00011.2013
Wang R, Peng L, Xiao Y, Zhou Q, Wang Z, Tang L, Xiao H, Yang K, Liu H, Li L. Single-cell RNA sequencing reveals changes in glioma-associated macrophage polarization and cellular states of malignant gliomas with high AQP4 expression. Cancer Gene Ther. 2023;30(5):716–26.
pubmed: 36599974
pmcid: 10191842
doi: 10.1038/s41417-022-00582-y
Kristensen BW, Priesterbach-Ackley LP, Petersen JK, Wesseling P. Molecular pathology of tumors of the central nervous system. Annals Oncology: Official J Eur Soc Med Oncol. 2019;30(8):1265–78.
doi: 10.1093/annonc/mdz164
Mader S, Brimberg L, Vo A, Strohl JJ, Crawford JM, Bonnin A, Carrion J, Campbell D, Huerta TS, La Bella A, et al. In utero exposure to maternal anti-aquaporin-4 antibodies alters brain vasculature and neural dynamics in male mouse offspring. Sci Transl Med. 2022;14(641):eabe9726.
pubmed: 35442708
pmcid: 9973562
doi: 10.1126/scitranslmed.abe9726
Ryall S, Zapotocky M, Fukuoka K, Nobre L, Guerreiro Stucklin A, Bennett J, Siddaway R, Li C, Pajovic S, Arnoldo A, et al. Integrated Molecular and Clinical Analysis of 1,000 Pediatric Low-Grade Gliomas. Cancer Cell. 2020;37(4):569–583e565.
pubmed: 32289278
pmcid: 7169997
doi: 10.1016/j.ccell.2020.03.011
Shaim H, Shanley M, Basar R, Daher M, Gumin J, Zamler DB, Uprety N, Wang F, Huang Y, Gabrusiewicz K et al. Targeting the αv integrin/TGF-β axis improves natural killer cell function against glioblastoma stem cells. J Clin Investig 2021, 131(14).
Nataf S. The demonstration of an Aqp4/Tgf-beta 1 pathway in murine astrocytes holds implications for both Neuromyelitis Optica and Progressive multiple sclerosis. Int J Mol Sci 2020, 21(3).
Lee Y, Dho SH, Lee J, Hwang JH, Kim M, Choi WY, Lee JY, Lee J, Chang W, Lee MY, et al. Hypermethylation of PDX1, EN2, and MSX1 predicts the prognosis of colorectal cancer. Exp Mol Med. 2022;54(2):156–68.
pubmed: 35169223
pmcid: 8894425
doi: 10.1038/s12276-022-00731-1
Manghera M, Ferguson-Parry J, Lin R, Douville RN. NF-kappaB and IRF1 induce endogenous Retrovirus K expression via Interferon-stimulated response elements in its 5’ long terminal repeat. J Virol. 2016;90(20):9338–49.
pubmed: 27512062
pmcid: 5044829
doi: 10.1128/JVI.01503-16
Dang Y, He Q, Yang S, Sun H, Liu Y, Li W, Tang Y, Zheng Y, Wu T. FTH1- and SAT1-Induced Astrocytic Ferroptosis Is Involved in Alzheimer’s Disease: Evidence from Single-Cell Transcriptomic Analysis. Pharmaceuticals (Basel) 2022, 15(10).
Noguchi S, Inoue M, Ichikawa T, Kurozumi K, Matsumoto Y, Nakamoto Y, Akiyoshi H, Kamishina H. The NRG3/ERBB4 signaling cascade as a novel therapeutic target for canine glioma. Exp Cell Res. 2021;400(2):112504.
pubmed: 33508276
doi: 10.1016/j.yexcr.2021.112504
Shi Y, Ping YF, Zhou W, He ZC, Chen C, Bian BS, Zhang L, Chen L, Lan X, Zhang XC, et al. Tumour-associated macrophages secrete pleiotrophin to promote PTPRZ1 signalling in glioblastoma stem cells for tumour growth. Nat Commun. 2017;8:15080.
pubmed: 28569747
pmcid: 5461490
doi: 10.1038/ncomms15080
Yang M, Wang B, Yin Y, Ma X, Tang L, Zhang Y, Fan Q, Yin T, Wang Y. PTN-PTPRZ1 signaling axis blocking mediates tumor microenvironment remodeling for enhanced glioblastoma treatment. J Control Release. 2023;353:63–76.
pubmed: 36402232
doi: 10.1016/j.jconrel.2022.11.025