Single-cell RNA sequencing of anaplastic ependymoma and H3K27M-mutant diffuse midline glioma.

Anaplastic ependymoma H3K27M-mutant diffuse midline glioma Intratumor heterogeneity Single-cell RNA-sequencing

Journal

BMC neurology
ISSN: 1471-2377
Titre abrégé: BMC Neurol
Pays: England
ID NLM: 100968555

Informations de publication

Date de publication:
21 Feb 2024
Historique:
received: 31 07 2023
accepted: 01 02 2024
medline: 22 2 2024
pubmed: 22 2 2024
entrez: 21 2 2024
Statut: epublish

Résumé

Anaplastic ependymoma and H3K27M-mutant diffuse midline glioma are two common subtypes of brain tumors with poor long-term prognosis. The present study analyzed and compared the differences in cell types between two tumors by single-cell RNA sequencing (scRNA-seq) technology. ScRNA-seq was performed to profile cells from cancer tissue from anaplastic ependymoma patient and H3K27M-mutant diffuse midline glioma patient. Cell clustering, marker gene identification, cell type annotation, copy number variation analysis and function analysis of differentially expressed genes were then performed. A total of 11,219 cells were obtained from anaplastic ependymoma and H3K27M mutant diffuse midline glioma, and these cells categorized into 12 distinct clusters. Each cell cluster could be characterized with specific cell markers to indicate cellular heterogeneity. Five cell types were annotated in each sample, including astrocyte, oligodendrocytes, microglial cell, neural progenitor cell and immune cell. The cluster types and proportion of cell types were not consistent between the two brain tumors. Functional analyses suggest that these cell clusters are involved in tumor-associated pathways, with slight differences in the cells of origin between the two tumors. In addition, cell communication analysis showed that the NRG3-ERBB4 pair is a key Ligand-receptor pair for anaplastic ependymoma, while in H3K27M-mutant diffuse midline glioma it is the PTN-PTPRZ1 pair that establishes contact with other cells. There was intratumor heterogeneity in anaplastic ependymoma and H3K27M mutant diffuse midline glioma, and that the subtype differences may be due to differences in the origin of the cells.

Sections du résumé

BACKGROUND BACKGROUND
Anaplastic ependymoma and H3K27M-mutant diffuse midline glioma are two common subtypes of brain tumors with poor long-term prognosis. The present study analyzed and compared the differences in cell types between two tumors by single-cell RNA sequencing (scRNA-seq) technology.
METHODS METHODS
ScRNA-seq was performed to profile cells from cancer tissue from anaplastic ependymoma patient and H3K27M-mutant diffuse midline glioma patient. Cell clustering, marker gene identification, cell type annotation, copy number variation analysis and function analysis of differentially expressed genes were then performed.
RESULTS RESULTS
A total of 11,219 cells were obtained from anaplastic ependymoma and H3K27M mutant diffuse midline glioma, and these cells categorized into 12 distinct clusters. Each cell cluster could be characterized with specific cell markers to indicate cellular heterogeneity. Five cell types were annotated in each sample, including astrocyte, oligodendrocytes, microglial cell, neural progenitor cell and immune cell. The cluster types and proportion of cell types were not consistent between the two brain tumors. Functional analyses suggest that these cell clusters are involved in tumor-associated pathways, with slight differences in the cells of origin between the two tumors. In addition, cell communication analysis showed that the NRG3-ERBB4 pair is a key Ligand-receptor pair for anaplastic ependymoma, while in H3K27M-mutant diffuse midline glioma it is the PTN-PTPRZ1 pair that establishes contact with other cells.
CONCLUSION CONCLUSIONS
There was intratumor heterogeneity in anaplastic ependymoma and H3K27M mutant diffuse midline glioma, and that the subtype differences may be due to differences in the origin of the cells.

Identifiants

pubmed: 38383423
doi: 10.1186/s12883-024-03558-7
pii: 10.1186/s12883-024-03558-7
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

74

Subventions

Organisme : Shenzhen Fund for Guangdong Provincial High-level Clinical Key specialties
ID : No.SZXK035

Informations de copyright

© 2024. The Author(s).

Références

Pollack IF, Agnihotri S, Broniscer A. Childhood brain tumors: current management, biological insights, and future directions. J Neurosurg Pediatr. 2019;23(3):261–73.
pubmed: 30835699 pmcid: 6823600 doi: 10.3171/2018.10.PEDS18377
Packer RJ, Gajjar A, Vezina G, Rorke-Adams L, Burger PC, Robertson PL, Bayer L, LaFond D, Donahue BR, Marymont MH, et al. Phase III study of craniospinal radiation therapy followed by adjuvant chemotherapy for newly diagnosed average-risk medulloblastoma. J Clin Oncology: Official J Am Soc Clin Oncol. 2006;24(25):4202–8.
doi: 10.1200/JCO.2006.06.4980
Wisoff JH, Sanford RA, Heier LA, Sposto R, Burger PC, Yates AJ, Holmes EJ, Kun LE. Primary neurosurgery for pediatric low-grade gliomas: a prospective multi-institutional study from the children’s Oncology Group. Neurosurgery. 2011;68(6):1548–54. discussion 1554 – 1545.
pubmed: 21368693 doi: 10.1227/NEU.0b013e318214a66e
Merchant TE, Li C, Xiong X, Kun LE, Boop FA, Sanford RA. Conformal radiotherapy after surgery for paediatric ependymoma: a prospective study. Lancet Oncol. 2009;10(3):258–66.
pubmed: 19274783 pmcid: 3615425 doi: 10.1016/S1470-2045(08)70342-5
Pajtler KW, Witt H, Sill M, Jones DT, Hovestadt V, Kratochwil F, Wani K, Tatevossian R, Punchihewa C, Johann P, et al. Molecular classification of Ependymal tumors across all CNS compartments, histopathological grades, and Age groups. Cancer Cell. 2015;27(5):728–43.
pubmed: 25965575 pmcid: 4712639 doi: 10.1016/j.ccell.2015.04.002
Reni M, Gatta G, Mazza E, Vecht C. Ependymoma. Crit Rev Oncol/Hematol. 2007;63(1):81–9.
pubmed: 17482475 doi: 10.1016/j.critrevonc.2007.03.004
Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD, Kleihues P, Ellison DW. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol. 2016;131(6):803–20.
pubmed: 27157931 doi: 10.1007/s00401-016-1545-1
Massimino M, Miceli R, Giangaspero F, Boschetti L, Modena P, Antonelli M, Ferroli P, Bertin D, Pecori E, Valentini L, et al. Final results of the second prospective AIEOP protocol for pediatric intracranial ependymoma. Neurooncology. 2016;18(10):1451–60.
Khatua S, Mangum R, Bertrand KC, Zaky W, McCall D, Mack SC. Pediatric ependymoma: current treatment and newer therapeutic insights. Future Oncol (London England). 2018;14(30):3175–86.
doi: 10.2217/fon-2018-0502
Lee J, Chung SY, Han JW, Kim DS, Kim J, Moon JY, Yoon HI, Suh CO. Treatment outcome of anaplastic ependymoma under the age of 3 treated by intensity-modulated radiotherapy. Radiation Oncol J. 2020;38(1):26–34.
doi: 10.3857/roj.2020.00073
Johung TB, Monje M. Diffuse intrinsic pontine glioma: New Pathophysiological insights and emerging therapeutic targets. Curr Neuropharmacol. 2017;15(1):88–97.
pubmed: 27157264 pmcid: 5327455 doi: 10.2174/1570159X14666160509123229
Hoffman LM, van Veldhuijzen SEM, Colditz N, Baugh J, Chaney B, Hoffmann M, Lane A, Fuller C, Miles L, Hawkins C, et al. Clinical, radiologic, pathologic, and molecular characteristics of long-term survivors of diffuse intrinsic pontine glioma (DIPG): a collaborative report from the International and European Society for Pediatric Oncology DIPG Registries. J Clin Oncology: Official J Am Soc Clin Oncol. 2018;36(19):1963–72.
doi: 10.1200/JCO.2017.75.9308
Argersinger DP, Rivas SR, Shah AH, Jackson S, Heiss JD. New Developments in the Pathogenesis, Therapeutic Targeting, and treatment of H3K27M-Mutant diffuse midline glioma. 2021, 13(21).
Griesinger AM, Josephson RJ, Donson AM, Mulcahy Levy JM, Amani V, Birks DK, Hoffman LM, Furtek SL, Reigan P, Handler MH, et al. Interleukin-6/STAT3 Pathway Signaling drives an inflammatory phenotype in Group A Ependymoma. Cancer Immunol Res. 2015;3(10):1165–74.
pubmed: 25968456 pmcid: 4596749 doi: 10.1158/2326-6066.CIR-15-0061
Lötsch D, Kirchhofer D, Englinger B, Jiang L, Okonechnikov K, Senfter D, Laemmerer A, Gabler L, Pirker C, Donson AM, et al. Targeting fibroblast growth factor receptors to combat aggressive ependymoma. Acta Neuropathol. 2021;142(2):339–60.
pubmed: 34046693 pmcid: 8270873 doi: 10.1007/s00401-021-02327-x
Wang G, Jia Y, Ye Y, Kang E, Chen H, Wang J, He X. Identification of key methylation differentially expressed genes in posterior fossa ependymoma based on epigenomic and transcriptome analysis. J Translational Med. 2021;19(1):174.
doi: 10.1186/s12967-021-02834-1
Levitin HM, Yuan J, Sims PA. Single-cell transcriptomic analysis of Tumor Heterogeneity. Trends cancer. 2018;4(4):264–8.
pubmed: 29606308 pmcid: 5993208 doi: 10.1016/j.trecan.2018.02.003
Baslan T, Hicks J. Unravelling biology and shifting paradigms in cancer with single-cell sequencing. Nat Rev Cancer. 2017;17(9):557–69.
pubmed: 28835719 doi: 10.1038/nrc.2017.58
Ren X, Kang B, Zhang Z. Understanding tumor ecosystems by single-cell sequencing: promises and limitations. Genome Biol. 2018;19(1):211.
pubmed: 30509292 pmcid: 6276232 doi: 10.1186/s13059-018-1593-z
Zhang M, Yang H, Wan L, Wang Z, Wang H, Ge C, Liu Y, Hao Y, Zhang D, Shi G, et al. Single-cell transcriptomic architecture and intercellular crosstalk of human intrahepatic cholangiocarcinoma. J Hepatol. 2020;73(5):1118–30.
pubmed: 32505533 doi: 10.1016/j.jhep.2020.05.039
Zhang Q, He Y, Luo N, Patel SJ, Han Y, Gao R, Modak M, Carotta S, Haslinger C, Kind D, et al. Landscape and Dynamics of Single Immune Cells in Hepatocellular Carcinoma. Cell. 2019;179(4):829–845e820.
pubmed: 31675496 doi: 10.1016/j.cell.2019.10.003
Lambrechts D, Wauters E, Boeckx B, Aibar S, Nittner D, Burton O, Bassez A, Decaluwé H, Pircher A, Van den Eynde K, et al. Phenotype molding of stromal cells in the lung tumor microenvironment. Nat Med. 2018;24(8):1277–89.
pubmed: 29988129 doi: 10.1038/s41591-018-0096-5
Savas P, Virassamy B, Ye C, Salim A, Mintoff CP, Caramia F, Salgado R, Byrne DJ, Teo ZL, Dushyanthen S, et al. Single-cell profiling of breast cancer T cells reveals a tissue-resident memory subset associated with improved prognosis. Nat Med. 2018;24(7):986–93.
pubmed: 29942092 doi: 10.1038/s41591-018-0078-7
Karaayvaz M, Cristea S, Gillespie SM, Patel AP, Mylvaganam R, Luo CC, Specht MC, Bernstein BE, Michor F, Ellisen LW. Unravelling subclonal heterogeneity and aggressive disease states in TNBC through single-cell RNA-seq. Nat Commun. 2018;9(1):3588.
pubmed: 30181541 pmcid: 6123496 doi: 10.1038/s41467-018-06052-0
Genomics x. : What is Cell Ranger. 2019.
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR. STAR: ultrafast universal RNA-seq aligner. Bioinf (Oxford England). 2013;29(1):15–21.
Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM 3rd, Hao Y, Stoeckius M, Smibert P, Satija R. Comprehensive Integration of Single-Cell Data. Cell. 2019;177(7):1888–1902e1821.
pubmed: 31178118 pmcid: 6687398 doi: 10.1016/j.cell.2019.05.031
Aran D, Looney AP, Liu L, Wu E, Fong V, Hsu A, Chak S, Naikawadi RP, Wolters PJ, Abate AR et al. Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. 2019, 20(2):163–72.
Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z, Feng T, Zhou L, Tang W, Zhan L, et al. clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innov (Camb). 2021;2(3):100141.
Efremova M, Vento-Tormo M, Teichmann SA, Vento-Tormo R. CellPhoneDB: inferring cell-cell communication from combined expression of multi-subunit ligand-receptor complexes. Nat Protoc. 2020;15(4):1484–506.
pubmed: 32103204 doi: 10.1038/s41596-020-0292-x
Hao Y, Hao S, Andersen-Nissen E, Mauck WM 3rd, Zheng S, Butler A, Lee MJ, Wilk AJ, Darby C, Zager M, et al. Integrated analysis of multimodal single-cell data. Cell. 2021;184(13):3573–3587e3529.
pubmed: 34062119 pmcid: 8238499 doi: 10.1016/j.cell.2021.04.048
Filbin MG, Tirosh I, Hovestadt V, Shaw ML, Escalante LE, Mathewson ND, Neftel C, Frank N, Pelton K, Hebert CM, et al. Developmental and oncogenic programs in H3K27M gliomas dissected by single-cell RNA-seq. Science. 2018;360(6386):331–5.
pubmed: 29674595 pmcid: 5949869 doi: 10.1126/science.aao4750
Ostrom QT, Adel Fahmideh M, Cote DJ, Muskens IS, Schraw JM, Scheurer ME, Bondy ML. Risk factors for childhood and adult primary brain tumors. Neurooncology. 2019;21(11):1357–75.
Ostrom QT, Francis SS, Barnholtz-Sloan JS. Epidemiology of brain and other CNS tumors. Curr Neurol Neurosci Rep. 2021;21(12):68.
pubmed: 34817716 pmcid: 8613072 doi: 10.1007/s11910-021-01152-9
Armand EJ, Li J, Xie F, Luo C, Mukamel EA. Single-cell sequencing of Brain Cell transcriptomes and Epigenomes. Neuron. 2021;109(1):11–26.
pubmed: 33412093 pmcid: 7808568 doi: 10.1016/j.neuron.2020.12.010
Zhang Y, Wang D, Peng M, Tang L, Ouyang J, Xiong F, Guo C, Tang Y, Zhou Y, Liao Q, et al. Single-cell RNA sequencing in cancer research. J Experimental Clin cancer Research: CR. 2021;40(1):81.
pmcid: 7919320 doi: 10.1186/s13046-021-01874-1
Nagelhus EA, Ottersen OP. Physiological roles of aquaporin-4 in brain. Physiol Rev. 2013;93(4):1543–62.
pubmed: 24137016 pmcid: 3858210 doi: 10.1152/physrev.00011.2013
Wang R, Peng L, Xiao Y, Zhou Q, Wang Z, Tang L, Xiao H, Yang K, Liu H, Li L. Single-cell RNA sequencing reveals changes in glioma-associated macrophage polarization and cellular states of malignant gliomas with high AQP4 expression. Cancer Gene Ther. 2023;30(5):716–26.
pubmed: 36599974 pmcid: 10191842 doi: 10.1038/s41417-022-00582-y
Kristensen BW, Priesterbach-Ackley LP, Petersen JK, Wesseling P. Molecular pathology of tumors of the central nervous system. Annals Oncology: Official J Eur Soc Med Oncol. 2019;30(8):1265–78.
doi: 10.1093/annonc/mdz164
Mader S, Brimberg L, Vo A, Strohl JJ, Crawford JM, Bonnin A, Carrion J, Campbell D, Huerta TS, La Bella A, et al. In utero exposure to maternal anti-aquaporin-4 antibodies alters brain vasculature and neural dynamics in male mouse offspring. Sci Transl Med. 2022;14(641):eabe9726.
pubmed: 35442708 pmcid: 9973562 doi: 10.1126/scitranslmed.abe9726
Ryall S, Zapotocky M, Fukuoka K, Nobre L, Guerreiro Stucklin A, Bennett J, Siddaway R, Li C, Pajovic S, Arnoldo A, et al. Integrated Molecular and Clinical Analysis of 1,000 Pediatric Low-Grade Gliomas. Cancer Cell. 2020;37(4):569–583e565.
pubmed: 32289278 pmcid: 7169997 doi: 10.1016/j.ccell.2020.03.011
Shaim H, Shanley M, Basar R, Daher M, Gumin J, Zamler DB, Uprety N, Wang F, Huang Y, Gabrusiewicz K et al. Targeting the αv integrin/TGF-β axis improves natural killer cell function against glioblastoma stem cells. J Clin Investig 2021, 131(14).
Nataf S. The demonstration of an Aqp4/Tgf-beta 1 pathway in murine astrocytes holds implications for both Neuromyelitis Optica and Progressive multiple sclerosis. Int J Mol Sci 2020, 21(3).
Lee Y, Dho SH, Lee J, Hwang JH, Kim M, Choi WY, Lee JY, Lee J, Chang W, Lee MY, et al. Hypermethylation of PDX1, EN2, and MSX1 predicts the prognosis of colorectal cancer. Exp Mol Med. 2022;54(2):156–68.
pubmed: 35169223 pmcid: 8894425 doi: 10.1038/s12276-022-00731-1
Manghera M, Ferguson-Parry J, Lin R, Douville RN. NF-kappaB and IRF1 induce endogenous Retrovirus K expression via Interferon-stimulated response elements in its 5’ long terminal repeat. J Virol. 2016;90(20):9338–49.
pubmed: 27512062 pmcid: 5044829 doi: 10.1128/JVI.01503-16
Dang Y, He Q, Yang S, Sun H, Liu Y, Li W, Tang Y, Zheng Y, Wu T. FTH1- and SAT1-Induced Astrocytic Ferroptosis Is Involved in Alzheimer’s Disease: Evidence from Single-Cell Transcriptomic Analysis. Pharmaceuticals (Basel) 2022, 15(10).
Noguchi S, Inoue M, Ichikawa T, Kurozumi K, Matsumoto Y, Nakamoto Y, Akiyoshi H, Kamishina H. The NRG3/ERBB4 signaling cascade as a novel therapeutic target for canine glioma. Exp Cell Res. 2021;400(2):112504.
pubmed: 33508276 doi: 10.1016/j.yexcr.2021.112504
Shi Y, Ping YF, Zhou W, He ZC, Chen C, Bian BS, Zhang L, Chen L, Lan X, Zhang XC, et al. Tumour-associated macrophages secrete pleiotrophin to promote PTPRZ1 signalling in glioblastoma stem cells for tumour growth. Nat Commun. 2017;8:15080.
pubmed: 28569747 pmcid: 5461490 doi: 10.1038/ncomms15080
Yang M, Wang B, Yin Y, Ma X, Tang L, Zhang Y, Fan Q, Yin T, Wang Y. PTN-PTPRZ1 signaling axis blocking mediates tumor microenvironment remodeling for enhanced glioblastoma treatment. J Control Release. 2023;353:63–76.
pubmed: 36402232 doi: 10.1016/j.jconrel.2022.11.025

Auteurs

Dongdong Zang (D)

Department of Neurosurgery, Shenzhen Children's Hospital, 7019 Yitian Road, Futian District, Shenzhen, Guangdong, China.

Zilong Dong (Z)

Department of Neurosurgery, Shenzhen Children's Hospital, 7019 Yitian Road, Futian District, Shenzhen, Guangdong, China.

Yuecheng Liu (Y)

Department of Neurosurgery, Shenzhen Children's Hospital, 7019 Yitian Road, Futian District, Shenzhen, Guangdong, China.

Qian Chen (Q)

Department of Neurosurgery, Shenzhen Children's Hospital, 7019 Yitian Road, Futian District, Shenzhen, Guangdong, China. peaceandlove9527@126.com.

Classifications MeSH