Structured 3' UTRs destabilize mRNAs in plants.

3′ UTR 3′ end target-specific DMS-MaPseq DIM-2P-seq RNA secondary structure (RSS) mRNA stability

Journal

Genome biology
ISSN: 1474-760X
Titre abrégé: Genome Biol
Pays: England
ID NLM: 100960660

Informations de publication

Date de publication:
22 Feb 2024
Historique:
received: 22 05 2023
accepted: 14 02 2024
medline: 23 2 2024
pubmed: 23 2 2024
entrez: 23 2 2024
Statut: epublish

Résumé

RNA secondary structure (RSS) can influence the regulation of transcription, RNA processing, and protein synthesis, among other processes. 3' untranslated regions (3' UTRs) of mRNA also hold the key for many aspects of gene regulation. However, there are often contradictory results regarding the roles of RSS in 3' UTRs in gene expression in different organisms and/or contexts. Here, we incidentally observe that the primary substrate of miR159a (pri-miR159a), when embedded in a 3' UTR, could promote mRNA accumulation. The enhanced expression is attributed to the earlier polyadenylation of the transcript within the hybrid pri-miR159a-3' UTR and, resultantly, a poorly structured 3' UTR. RNA decay assays indicate that poorly structured 3' UTRs could promote mRNA stability, whereas highly structured 3' UTRs destabilize mRNA in vivo. Genome-wide DMS-MaPseq also reveals the prevailing inverse relationship between 3' UTRs' RSS and transcript accumulation in the transcriptomes of Arabidopsis, rice, and even human. Mechanistically, transcripts with highly structured 3' UTRs are preferentially degraded by 3'-5' exoribonuclease SOV and 5'-3' exoribonuclease XRN4, leading to decreased expression in Arabidopsis. Finally, we engineer different structured 3' UTRs to an endogenous FT gene and alter the FT-regulated flowering time in Arabidopsis. We conclude that highly structured 3' UTRs typically cause reduced accumulation of the harbored transcripts in Arabidopsis. This pattern extends to rice and even mammals. Furthermore, our study provides a new strategy of engineering the 3' UTRs' RSS to modify plant traits in agricultural production and mRNA stability in biotechnology.

Sections du résumé

BACKGROUND BACKGROUND
RNA secondary structure (RSS) can influence the regulation of transcription, RNA processing, and protein synthesis, among other processes. 3' untranslated regions (3' UTRs) of mRNA also hold the key for many aspects of gene regulation. However, there are often contradictory results regarding the roles of RSS in 3' UTRs in gene expression in different organisms and/or contexts.
RESULTS RESULTS
Here, we incidentally observe that the primary substrate of miR159a (pri-miR159a), when embedded in a 3' UTR, could promote mRNA accumulation. The enhanced expression is attributed to the earlier polyadenylation of the transcript within the hybrid pri-miR159a-3' UTR and, resultantly, a poorly structured 3' UTR. RNA decay assays indicate that poorly structured 3' UTRs could promote mRNA stability, whereas highly structured 3' UTRs destabilize mRNA in vivo. Genome-wide DMS-MaPseq also reveals the prevailing inverse relationship between 3' UTRs' RSS and transcript accumulation in the transcriptomes of Arabidopsis, rice, and even human. Mechanistically, transcripts with highly structured 3' UTRs are preferentially degraded by 3'-5' exoribonuclease SOV and 5'-3' exoribonuclease XRN4, leading to decreased expression in Arabidopsis. Finally, we engineer different structured 3' UTRs to an endogenous FT gene and alter the FT-regulated flowering time in Arabidopsis.
CONCLUSIONS CONCLUSIONS
We conclude that highly structured 3' UTRs typically cause reduced accumulation of the harbored transcripts in Arabidopsis. This pattern extends to rice and even mammals. Furthermore, our study provides a new strategy of engineering the 3' UTRs' RSS to modify plant traits in agricultural production and mRNA stability in biotechnology.

Identifiants

pubmed: 38388963
doi: 10.1186/s13059-024-03186-x
pii: 10.1186/s13059-024-03186-x
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

54

Subventions

Organisme : National Institute of Health
ID : R35GM151976
Organisme : Division of Molecular and Cellular Biosciences
ID : MCB 2139857
Organisme : Welch Foundation
ID : A-2177-20230405

Informations de copyright

© 2024. The Author(s).

Références

Gosai SJ, Foley SW, Wang D, Silverman IM, Selamoglu N, Nelson AD, Beilstein MA, Daldal F, Deal RB, Gregory BD. Global analysis of the RNA-protein interaction and RNA secondary structure landscapes of the Arabidopsis nucleus. Mol Cell. 2015;57:376–88.
pubmed: 25557549
Wu X, Bartel DP. Widespread influence of 3’-end structures on mammalian mRNA processing and stability. Cell. 2017;169:905-917.e911.
pubmed: 28525757 pmcid: 5546744
Zhang M, Lam TT, Tonelli M, Marzluff WF, Thapar R. Interaction of the histone mRNA hairpin with stem-loop binding protein (SLBP) and regulation of the SLBP-RNA complex by phosphorylation and proline isomerization. Biochemistry. 2012;51:3215–31.
pubmed: 22439849
Trappl K, Polacek N. The ribosome: a molecular machine powered by RNA. Met Ions Life Sci. 2011;9:253–75.
pubmed: 22010275
Bhaskaran H, Rodriguez-Hernandez A, Perona JJ. Kinetics of tRNA folding monitored by aminoacylation. RNA. 2012;18:569–80.
pubmed: 22286971 pmcid: 3285943
Garst AD, Edwards AL, Batey RT. Riboswitches: structures and mechanisms. Cold Spring Harb Perspect Biol. 2011;3:a003533.
pubmed: 20943759 pmcid: 3098680
Loh E, Dussurget O, Gripenland J, Vaitkevicius K, Tiensuu T, Mandin P, Repoila F, Buchrieser C, Cossart P, Johansson J. A trans-acting riboswitch controls expression of the virulence regulator PrfA in Listeria monocytogenes. Cell. 2009;139:770–9.
pubmed: 19914169
Chung BYW, Balcerowicz M, Di Antonio M, Jaeger KE, Geng F, Franaszek K, Marriott P, Brierley I, Firth AE, Wigge PA. An RNA thermoswitch regulates daytime growth in Arabidopsis. Nat Plants. 2020;6:522–32.
pubmed: 32284544 pmcid: 7231574
Zhu J, Li C, Peng X, Zhang X. RNA architecture influences plant biology. J Exp Bot. 2021;72:4144–60.
pubmed: 33484251 pmcid: 8130982
Mayr C, Bartel DP. Widespread shortening of 3’UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells. Cell. 2009;138:673–84.
pubmed: 19703394 pmcid: 2819821
An JJ, Gharami K, Liao GY, Woo NH, Lau AG, Vanevski F, Torre ER, Jones KR, Feng Y, Lu B, et al. Distinct role of long 3’ UTR BDNF mRNA in spine morphology and synaptic plasticity in hippocampal neurons. Cell. 2008;134:175–87.
pubmed: 18614020 pmcid: 2527207
Tushev G, Glock C, Heumuller M, Biever A, Jovanovic M, Schuman EM. Alternative 3’ UTRs modify the localization, regulatory potential, stability, and plasticity of mRNAs in neuronal compartments. Neuron. 2018;98:495-511.e496.
pubmed: 29656876
Mayr C. Evolution and biological roles of alternative 3’UTRs. Trends Cell Biol. 2016;26:227–37.
pubmed: 26597575
Geisberg JV, Moqtaderi Z, Fan XC, Ozsolak F, Struhl K. Global analysis of mRNA isoform half-lives reveals stabilizing and destabilizing elements in yeast. Cell. 2014;156:812–24.
pubmed: 24529382 pmcid: 3939777
Mitton-Fry RM, DeGregorio SJ, Wang J, Steitz TA, Steitz JA. Poly(A) tail recognition by a viral RNA element through assembly of a triple helix. Science. 2010;330:1244–7.
pubmed: 21109672 pmcid: 3074936
Brown JA, Valenstein ML, Yario TA, Tycowski KT, Steitz JA. Formation of triple-helical structures by the 3’-end sequences of MALAT1 and MENbeta noncoding RNAs. Proc Natl Acad Sci U S A. 2012;109:19202–7.
pubmed: 23129630 pmcid: 3511071
Moqtaderi Z, Geisberg JV, Jin Y, Fan X, Struhl K. Species-specific factors mediate extensive heterogeneity of mRNA 3’ ends in yeasts. Proc Natl Acad Sci U S A. 2013;110:11073–8.
pubmed: 23776204 pmcid: 3703967
Fischer JW, Busa VF, Shao Y, Leung AKL. Structure-mediated RNA decay by UPF1 and G3BP1. Mol Cell. 2020;78:70-84.e76.
pubmed: 32017897 pmcid: 8055448
Wang Z, Ma Z, Castillo-Gonzalez C, Sun D, Li Y, Yu B, Zhao B, Li P, Zhang X. SWI2/SNF2 ATPase CHR2 remodels pri-miRNAs via Serrate to impede miRNA production. Nature. 2018;557:516–21.
pubmed: 29769717
Zhu H, Zhou Y, Castillo-Gonzalez C, Lu A, Ge C, Zhao YT, Duan L, Li Z, Axtell MJ, Wang XJ, et al. Bidirectional processing of pri-miRNAs with branched terminal loops by Arabidopsis Dicer-like1. Nat Struct Mol Biol. 2013;20:1106–15.
pubmed: 23934148 pmcid: 3766402
Mori M, Triboulet R, Mohseni M, Schlegelmilch K, Shrestha K, Camargo FD, Gregory RI. Hippo signaling regulates microprocessor and links cell-density-dependent miRNA biogenesis to cancer. Cell. 2014;156:893–906.
pubmed: 24581491 pmcid: 3982296
Lauressergues D, Couzigou JM, Clemente HS, Martinez Y, Dunand C, Becard G, Combier JP. Primary transcripts of microRNAs encode regulatory peptides. Nature. 2015;520:90–3.
pubmed: 25807486
Reuter JS, Mathews DH. RNAstructure: software for RNA secondary structure prediction and analysis. BMC Bioinformatics. 2010;11:129.
pubmed: 20230624 pmcid: 2984261
Zubradt M, Gupta P, Persad S, Lambowitz AM, Weissman JS, Rouskin S. DMS-MaPseq for genome-wide or targeted RNA structure probing in vivo. Nat Methods. 2017;14:75–82.
pubmed: 27819661
Wang Z, Wang M, Wang T, Zhang Y, Zhang X. Genome-wide probing RNA structure with the modified DMS-MaPseq in Arabidopsis. Methods. 2019;155:30–40.
pubmed: 30503825
Ding Y, Tang Y, Kwok CK, Zhang Y, Bevilacqua PC, Assmann SM. In vivo genome-wide profiling of RNA secondary structure reveals novel regulatory features. Nature. 2014;505:696–700.
pubmed: 24270811
Rouskin S, Zubradt M, Washietl S, Kellis M, Weissman JS. Genome-wide probing of RNA structure reveals active unfolding of mRNA structures in vivo. Nature. 2014;505:701–5.
pubmed: 24336214
Saldi T, Riemondy K, Erickson B, Bentley DL. Alternative RNA structures formed during transcription depend on elongation rate and modify RNA processing. Mol Cell. 2021;81:1789-1801.e1785.
pubmed: 33631106 pmcid: 8052309
Shan L, Xu G, Yao RW, Luan PF, Huang Y, Zhang PH, Pan YH, Zhang L, Gao X, Li Y, et al. Nucleolar URB1 ensures 3’ ETS rRNA removal to prevent exosome surveillance. Nature. 2023;615:526–34.
pubmed: 36890225
Golbus MS, Calarco PG, Epstein CJ. The effects of inhibitors of RNA synthesis (alpha-amanitin and actinomycin D) on preimplantation mouse embryogenesis. J Exp Zool. 1973;186:207–16.
pubmed: 4795793
Liu Z, Liu Q, Yang X, Zhang Y, Norris M, Chen X, Cheema J, Zhang H, Ding Y. In vivo nuclear RNA structurome reveals RNA-structure regulation of mRNA processing in plants. Genome Biol. 2021;22:11.
pubmed: 33397430 pmcid: 7784297
Kertesz M, Wan Y, Mazor E, Rinn JL, Nutter RC, Chang HY, Segal E. Genome-wide measurement of RNA secondary structure in yeast. Nature. 2010;467:103–7.
pubmed: 20811459
Kramer MC, Janssen KA, Palos K, Nelson ADL, Vandivier LE, Garcia BA, Lyons E, Beilstein MA, Gregory BD. N(6)-methyladenosine and RNA secondary structure affect transcript stability and protein abundance during systemic salt stress in Arabidopsis. Plant Direct. 2020;4:e00239.
pubmed: 32724893 pmcid: 7379018
Li Y, Sun D, Ma Z, Yamaguchi K, Wang L, Zhong S, Yan X, Shang B, Nagashima Y, Koiwa H, et al. Degradation of SERRATE via ubiquitin-independent 20S proteasome to survey RNA metabolism. Nat Plants. 2020;6:970–82.
pubmed: 32690892 pmcid: 7426255
Deng H, Cheema J, Zhang H, Woolfenden H, Norris M, Liu Z, Liu Q, Yang X, Yang M, Deng X, et al. Rice in vivo RNA structurome reveals RNA secondary structure conservation and divergence in plants. Mol Plant. 2018;11:607–22.
pubmed: 29409859
Mizrahi O, Nachshon A, Shitrit A, Gelbart IA, Dobesova M, Brenner S, Kahana C, Stern-Ginossar N. Virus-induced changes in mRNA secondary structure uncover cis-regulatory elements that directly control gene expression. Mol Cell. 2018;72:862-874.e865.
pubmed: 30318442
Courel M, Clément Y, Bossevain C, Foretek D, Cruchez OV, Yi Z, Benard M, Benassy MN, Kress M, Vindry C, et al. GC content shapes mRNA storage and decay in human cells. Elife. 2019;8:e49708.
pubmed: 31855182 pmcid: 6944446
Zhang X. Tough GC beats transgene silencing. Nat Plants. 2017;3:850–1.
pubmed: 29085069
Sidorenko LV, Lee TF, Woosley A, Moskal WA, Bevan SA, Merlo PAO, Walsh TA, Wang XJ, Weaver S, Glancy TP, et al. GC-rich coding sequences reduce transposon-like, small RNA-mediated transgene silencing. Nat Plants. 2017;3:875–84.
pubmed: 29085072
Jia J, Lu W, Liu B, Fang H, Yu Y, Mo W, Zhang H, Jin X, Shu Y, Long Y, et al. An atlas of plant full-length RNA reveals tissue-specific and monocots-dicots conserved regulation of poly(A) tail length. Nat Plants. 2022;8:1118–26.
pubmed: 35982302
Srivastava AK, Lu Y, Zinta G, Lang Z, Zhu JK. UTR-dependent control of gene expression in plants. Trends Plant Sci. 2018;23:248–59.
pubmed: 29223924
Yang X, Yu H, Duncan S, Zhang Y, Cheema J, Liu H, Miller JB, Zhang J, Kwok CK, Zhang H, et al. RNA G-quadruplex structure contributes to cold adaptation in plants. Nat Commun. 2022;13:6224.
pubmed: 36266343 pmcid: 9585020
Huppert JL, Balasubramanian S. Prevalence of quadruplexes in the human genome. Nucleic Acids Res. 2005;33:2908–16.
pubmed: 15914667 pmcid: 1140081
Cheng CY, Krishnakumar V, Chan AP, Thibaud-Nissen F, Schobel S, Town CD. Araport11: a complete reannotation of the Arabidopsis thaliana reference genome. Plant J. 2017;89:789–804.
pubmed: 27862469
Ma Z, Zhang X. Actions of plant Argonautes: predictable or unpredictable? Curr Opin Plant Biol. 2018;45:59–67.
pubmed: 29857309
Chantarachot T, Sorenson RS, Hummel M, Ke H, Kettenburg AT, Chen D, Aiyetiwa K, Dehesh K, Eulgem T, Sieburth LE, et al. DHH1/DDX6-like RNA helicases maintain ephemeral half-lives of stress-response mRNAs. Nat Plants. 2020;6:675–85.
pubmed: 32483330
Sorenson RS, Deshotel MJ, Johnson K, Adler FR, Sieburth LE. Arabidopsis mRNA decay landscape arises from specialized RNA decay substrates, decapping-mediated feedback, and redundancy. Proc Natl Acad Sci U S A. 2018;115:E1485–94.
pubmed: 29386391 pmcid: 5816150
Proietti S, Caarls L, Coolen S, Van Pelt JA, Van Wees SCM, Pieterse CMJ. Genome-wide association study reveals novel players in defense hormone crosstalk in Arabidopsis. Plant Cell Environ. 2018;41:2342–56.
pubmed: 29852537 pmcid: 6175328
Ascencio-Ibanez JT, Sozzani R, Lee TJ, Chu TM, Wolfinger RD, Cella R, Hanley-Bowdoin L. Global analysis of Arabidopsis gene expression uncovers a complex array of changes impacting pathogen response and cell cycle during geminivirus infection. Plant Physiol. 2008;148:436–54.
pubmed: 18650403 pmcid: 2528102
Naranjo B, Diaz-Espejo A, Lindahl M, Cejudo FJ. Type-f thioredoxins have a role in the short-term activation of carbon metabolism and their loss affects growth under short-day conditions in Arabidopsis thaliana. J Exp Bot. 2016;67:1951–64.
pubmed: 26842981 pmcid: 4783373
Matsoukas IG. Florigens and antiflorigens: a molecular genetic understanding. Essays Biochem. 2015;58:133–49.
pubmed: 26374892
Mignone F, Gissi C, Liuni S, Pesole G. Untranslated regions of mRNAs. Genome Biol. 2002;3:REVIEWS0004.
pubmed: 11897027 pmcid: 139023
Mayr C. Regulation by 3’-untranslated regions. Annu Rev Genet. 2017;51:171–94.
pubmed: 28853924
Mayr C. What are 3’ UTRs doing? Cold Spring Harb Perspect Biol. 2019;11:a034728.
pubmed: 30181377 pmcid: 6771366
Barreau C, Paillard L, Osborne HB. AU-rich elements and associated factors: are there unifying principles? Nucleic Acids Res. 2005;33:7138–50.
pubmed: 16391004
Lykke-Andersen J, Wagner E. Recruitment and activation of mRNA decay enzymes by two ARE-mediated decay activation domains in the proteins TTP and BRF-1. Genes Dev. 2005;19:351–61.
pubmed: 15687258 pmcid: 546513
Chen CY, Gherzi R, Ong SE, Chan EL, Raijmakers R, Pruijn GJM, Stoecklin G, Moroni C, Mann M, Karin M. AU binding proteins recruit the exosome to degrade ARE-containing mRNAs. Cell. 2001;107:451–64.
pubmed: 11719186
Vejnar CE, Abdel Messih M, Takacs CM, Yartseva V, Oikonomou P, Christiano R, Stoeckius M, Lau S, Lee MT, Beaudoin JD, et al. Genome wide analysis of 3’ UTR sequence elements and proteins regulating mRNA stability during maternal-to-zygotic transition in zebrafish. Genome Res. 2019;29:1100–14.
pubmed: 31227602 pmcid: 6633259
Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res. 2009;37:W202–8.
pubmed: 19458158 pmcid: 2703892
Bernardes WS, Menossi M. Plant 3’ regulatory regions from mRNA-encoding genes and their uses to modulate expression. Front Plant Sci. 2020;11:1252.
pubmed: 32922424 pmcid: 7457121
Mitschka S, Mayr C. Context-specific regulation and function of mRNA alternative polyadenylation. Nat Rev Mol Cell Biol. 2022;23:779–96.
pubmed: 35798852 pmcid: 9261900
Su Z, Tang Y, Ritchey LE, Tack DC, Zhu M, Bevilacqua PC, Assmann SM. Genome-wide RNA structurome reprogramming by acute heat shock globally regulates mRNA abundance. Proc Natl Acad Sci U S A. 2018;115:12170–5.
pubmed: 30413617 pmcid: 6275526
Merret R, Nagarajan VK, Carpentier M-C, Park S, Favory J-J, Descombin J, Picart C, Charng Y-Y, Green PJ, Deragon J-M, et al. Heat-induced ribosome pausing triggers mRNA co-translational decay in Arabidopsis thaliana. Nucleic Acids Res. 2015;43:4121–32.
pubmed: 25845591 pmcid: 4417158
Zhang W, Murphy C, Sieburth LE. Conserved RNaseII domain protein functions in cytoplasmic mRNA decay and suppresses Arabidopsis decapping mutant phenotypes. Proc Natl Acad Sci U S A. 2010;107:15981–5.
pubmed: 20798041 pmcid: 2936607
Meze K, Axhemi A, Thomas DR, Doymaz A, Joshua-Tor L. A shape-shifting nuclease unravels structured RNA. Nat Struct Mol Biol. 2023;30:339–47.
pubmed: 36823385 pmcid: 10023572
Griesemer D, Xue JR, Reilly SK, Ulirsch JC, Kukreja K, Davis JR, Kanai M, Yang DK, Butts JC, Guney MH, et al. Genome-wide functional screen of 3’UTR variants uncovers causal variants for human disease and evolution. Cell. 2021;184:5247-5260.e5219.
pubmed: 34534445 pmcid: 8487971
Li L, Huang K-L, Gao Y, Cui Y, Wang G, Elrod ND, Li Y, Chen YE, Ji P, Peng F, et al. An atlas of alternative polyadenylation quantitative trait loci contributing to complex trait and disease heritability. Nat Genet. 2021;53:994–1005.
pubmed: 33986536
Ferrero-Serrano A, Sylvia MM, Forstmeier PC, Olson AJ, Ware D, Bevilacqua PC, Assmann SM. Experimental demonstration and pan-structurome prediction of climate-associated riboSNitches in Arabidopsis. Genome Biol. 2022;23:101.
pubmed: 35440059 pmcid: 9017077
Zhang X, Henriques R, Lin SS, Niu QW, Chua NH. Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nat Protoc. 2006;1:641–6.
pubmed: 17406292
Zhu H, Hu F, Wang R, Zhou X, Sze SH, Liou LW, Barefoot A, Dickman M, Zhang X. Arabidopsis Argonaute10 specifically sequesters miR166/165 to regulate shoot apical meristem development. Cell. 2011;145:242–56.
pubmed: 21496644 pmcid: 4124879
Zhang X, Yuan YR, Pei Y, Lin SS, Tuschl T, Patel DJ, Chua NH. Cucumber mosaic virus-encoded 2b suppressor inhibits Arabidopsis Argonaute1 cleavage activity to counter plant defense. Genes Dev. 2006;20:3255–68.
pubmed: 17158744 pmcid: 1686603
Castillo-Gonzalez C, Liu X, Huang C, Zhao C, Ma Z, Hu T, Sun F, Zhou Y, Zhou X, Wang XJ, et al. Geminivirus-encoded TrAP suppressor inhibits the histone methyltransferase SUVH4/KYP to counter host defense. Elife. 2015;4:e06671.
pubmed: 26344546 pmcid: 4606454
Feng S, Rubbi L, Jacobsen SE, Pellegrini M. Determining DNA methylation profiles using sequencing. Methods Mol Biol. 2011;733:223–38.
pubmed: 21431774
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011;17:10–2.
Gordon A, Hannon G. Fastx-toolkit. 2010. http://hannonlab.cshl.edu/fastx_toolkit .
Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013;14:R36.
pubmed: 23618408 pmcid: 4053844
Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26:841–2.
pubmed: 20110278 pmcid: 2832824
Kassambara A. ggpubr: “ggplot2” based publication ready plots. 2018. https://cran.r-project.org/web/packages/ggpubr/index.html .
Liao Y, Smyth GK, Shi W. The Subread aligner: fast, accurate and scalable read mapping by seed-and-vote. Nucleic Acids Res. 2013;41:e108.
pubmed: 23558742 pmcid: 3664803
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.
pubmed: 25516281 pmcid: 4302049
Ramirez F, Dundar F, Diehl S, Gruning BA, Manke T. deepTools: a flexible platform for exploring deep-sequencing data. Nucleic Acids Res. 2014;42:W187–91.
pubmed: 24799436 pmcid: 4086134
Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O, Benner C, Chanda SK. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun. 2019;10:1523.
pubmed: 30944313 pmcid: 6447622
Incarnato D, Morandi E, Simon LM, Oliviero S. RNA Framework: an all-in-one toolkit for the analysis of RNA structures and post-transcriptional modifications. Nucleic Acids Res. 2018;46:e97.
pubmed: 29893890 pmcid: 6144828
Shen W, Le S, Li Y, Hu F. SeqKit: a cross-platform and ultrafast toolkit for FASTA/Q file manipulation. PLoS One. 2016;11:e0163962.
pubmed: 27706213 pmcid: 5051824
Liu J, Liu X, Zhang S, Liang S, Luan W, Ma X. TarDB: an online database for plant miRNA targets and miRNA-triggered phased siRNAs. BMC Genomics. 2021;22:348.
pubmed: 33985427 pmcid: 8120726
Xu ZZ, Mathews DH. Experiment-assisted secondary structure prediction with RNAstructure. Methods Mol Biol. 2016;1490:163–76.
pubmed: 27665598
Zhang T, Li C, Zhu J, Li Y, Wang Z, Tong CY, Xi Y, Han Y, Koiwa H, Peng X, et al. Structured 3’ UTRs destabilize mRNAs in plants. Datasets. Sequence Read Archive; 2023. https://www.ncbi.nlm.nih.gov/bioproject/PRJNA1049869 .

Auteurs

Tianru Zhang (T)

Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA.
Molecular and Environmental Plant Sciences, Texas A&M University, College Station, TX, 77843, USA.

Changhao Li (C)

Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA.

Jiaying Zhu (J)

Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA. zhujiaying@tamu.edu.

Yanjun Li (Y)

Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA.
State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.

Zhiye Wang (Z)

Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA.
State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.

Chun-Yip Tong (CY)

Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA.

Yu Xi (Y)

Department of Medical Physiology, College of Medicine, Texas A&M University, Bryan, TX, 77807, USA.

Yi Han (Y)

National Engineering Laboratory of Crop Stress Resistence Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China.

Hisashi Koiwa (H)

Department of Horticultural Sciences, Texas A&M University, College Station, TX, 77843, USA.

Xu Peng (X)

Department of Medical Physiology, College of Medicine, Texas A&M University, Bryan, TX, 77807, USA.

Xiuren Zhang (X)

Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA. xiuren.zhang@tamu.edu.
Molecular and Environmental Plant Sciences, Texas A&M University, College Station, TX, 77843, USA. xiuren.zhang@tamu.edu.
Department of Biology, Texas A&M University, College Station, TX, 77843, USA. xiuren.zhang@tamu.edu.

Classifications MeSH