Cardiac contractility modulation in patients with heart failure - A review of the literature.
CCM therapy
Cardiac contractility modulation
Heart failure
Journal
Heart failure reviews
ISSN: 1573-7322
Titre abrégé: Heart Fail Rev
Pays: United States
ID NLM: 9612481
Informations de publication
Date de publication:
23 Feb 2024
23 Feb 2024
Historique:
accepted:
30
01
2024
medline:
23
2
2024
pubmed:
23
2
2024
entrez:
23
2
2024
Statut:
aheadofprint
Résumé
Experimental in vivo and in vitro studies showed that electric currents applied during the absolute refractory period can modulate cardiac contractility. In preclinical studies, cardiac contractility modulation (CCM) was found to improve calcium handling, reverse the foetal myocyte gene programming associated with heart failure (HF), and facilitate reverse remodeling. Randomized control trials and observational studies have provided evidence about the safety and efficacy of CCM in patients with HF. Clinically, CCM therapy is indicated to improve the 6-min hall walk, quality of life, and functional status of HF patients who remain symptomatic despite guideline-directed medical treatment without an indication for cardiac resynchronization therapy (CRT) and have a left ventricular ejection fraction (LVEF) ranging from 25 to 45%. Although there are promising results about the role of CCM in HF patients with preserved LVEF (HFpEF), further studies are needed to elucidate the role of CCM therapy in this population. Late gadolinium enhancement (LGE) assessment before CCM implantation has been proposed for guiding the lead placement. Furthermore, the optimal duration of CCM application needs further investigation. This review aims to present the existing evidence regarding the role of CCM therapy in HF patients and identify gaps and challenges that require further studies.
Identifiants
pubmed: 38393423
doi: 10.1007/s10741-024-10390-1
pii: 10.1007/s10741-024-10390-1
doi:
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : NIH HHS
ID : 1 R01 HL135335-01
Pays : United States
Organisme : NIH HHS
ID : 1 R21 HL137870-01
Pays : United States
Organisme : NIH HHS
ID : 1 R21EB026164-01
Pays : United States
Organisme : NIH HHS
ID : 3R21EB026164-02S1
Pays : United States
Organisme : NIH HHS
ID : R01HL161008
Pays : United States
Informations de copyright
© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Références
Gomez AM, Valdivia HH, Cheng H, Lederer MR, Santana LF, Cannell MB, McCune SA, Altschuld RA, Lederer WJ (1997) Defective excitation-contraction coupling in experimental cardiac hypertrophy and heart failure. Science 276:800–806
doi: 10.1126/science.276.5313.800
pubmed: 9115206
Armoundas AA, Wu R, Juang G, Marban E, Tomaselli GF (2001) Electrical and structural remodeling of the failing ventricle. Pharmacol Ther 92:213–230
doi: 10.1016/S0163-7258(01)00171-1
pubmed: 11916538
Iyer V, Heller V, Armoundas AA (1985) Altered spatial calcium regulation enhances electrical heterogeneity in the failing canine left ventricle: Implications for electrical instability. J Appl Physiol 2012(112):944–955
Armoundas AA, Rose J, Aggarwal R, Stuyvers BD, O’Rourke B, Kass DA, Marban E, Shorofsky SR, Tomaselli GF, William BC (2007) Cellular and molecular determinants of altered Ca2+ handling in the failing rabbit heart: primary defects in SR Ca2+ uptake and release mechanisms. Am J Physiol Heart Circ Physiol 292:H1607–H1618
doi: 10.1152/ajpheart.00525.2006
pubmed: 17122195
Armoundas AA, Hobai IA, Tomaselli GF, Winslow RL, O’Rourke B (2003) Role of sodium-calcium exchanger in modulating the action potential of ventricular myocytes from normal and failing hearts. Circ Res 93:46–53
doi: 10.1161/01.RES.0000080932.98903.D8
pubmed: 12805237
pmcid: 1237121
Katz AM (2011) Physiology of the Heart, 5th edn. Wolters Kluwer Health/Lippincott Williams & Wilkins Health
Akar FG, Wu RC, Juang GJ, Tian Y, Burysek M, Disilvestre D, Xiong W, Armoundas AA, Tomaselli GF (2005) Molecular mechanisms underlying K+ current downregulation in canine tachycardia-induced heart failure. Am J Physiol Heart Circ Physiol 288:H2887–H2896
doi: 10.1152/ajpheart.00320.2004
pubmed: 15681701
Rose J, Armoundas AA, Tian Y, DiSilvestre D, Burysek M, Halperin V, O’Rourke B, Kass DA, Marban E, Tomaselli GF (2005) Molecular correlates of altered expression of potassium currents in failing rabbit myocardium. Am J Physiol Heart Circ Physiol 288:H2077–H2087
doi: 10.1152/ajpheart.00526.2003
pubmed: 15637125
Akar FG, Wu RC, Deschenes I, Armoundas AA, Piacentino V 3rd, Houser SR, Tomaselli GF (2004) Phenotypic differences in transient outward K+ current of human and canine ventricular myocytes: insights into molecular composition of ventricular Ito. Am J Physiol Heart Circ Physiol 286:H602–H609
doi: 10.1152/ajpheart.00673.2003
pubmed: 14527940
Wood EH, Heppner RL, Weidmann S (1969) Inotropic effects of electric currents. I. Positive and negative effects of constant electric currents or current pulses applied during cardiac action potentials. II. Hypotheses: calcium movements, excitation-contraction coupling and inotropic effects. Circ Res 24:409–45
doi: 10.1161/01.RES.24.3.409
pubmed: 5766519
Roger S, Schneider R, Rudic B, Liebe V, Stach K, Schimpf R, Borggrefe M, Kuschyk J (2014) Cardiac contractility modulation: first experience in heart failure patients with reduced ejection fraction and permanent atrial fibrillation. Europace 16(8):1205–1209. https://doi.org/10.1093/europace/euu050
doi: 10.1093/europace/euu050
pubmed: 24706089
Kuschyk J, Kloppe A, Schmidt-Schweda S, Bonnemeier H, Rousso B, Roger S (2017) Cardiac contractility modulation: a technical guide for device implantation. Rev Cardiovasc Med 18:1–13
doi: 10.3909/ricm0825
pubmed: 28509888
Merchant FM, Sayadi O, Sohn K, Weiss EH, Puppala D, Doddamani R, Singh JP, Heist EK, Owen C, Kulkarni K, Armoundas AA (2020) Real-time closed-loop suppression of repolarization alternans reduces arrhythmia susceptibility in vivo. Circ Arrhythm Electrophysiol 13:e008186
doi: 10.1161/CIRCEP.119.008186
pubmed: 32434448
pmcid: 7334752
Sayadi O, Puppala D, Ishaque N, Doddamani R, Merchant FM, Barrett C, Singh JP, Heist EK, Mela T, Martinez JP, Laguna P, Armoundas AA (2014) A novel method to capture the onset of dynamic electrocardiographic ischemic changes and its implications to arrhythmia susceptibility. J Am Heart Assoc 3:e001055
doi: 10.1161/JAHA.114.001055
pubmed: 25187521
pmcid: 4323775
Merchant FM, Sayadi O, Puppala D, Moazzami K, Heller V, Armoundas AA (2014) A translational approach to probe the proarrhythmic potential of cardiac alternans: a reversible overture to arrhythmogenesis? Am J Physiol Heart Circ Physiol 306:H465–H474
doi: 10.1152/ajpheart.00639.2013
pubmed: 24322612
Armoundas AA, Weiss EH, Sayadi O, Laferriere S, Sajja N, Mela T, Singh JP, Barrett CD, Kevin Heist E, Merchant FM (2013) A novel pacing method to suppress repolarization alternans in vivo: implications for arrhythmia prevention. Heart Rhythm 10:564–572
doi: 10.1016/j.hrthm.2012.12.026
pubmed: 23274372
Burkhoff D, Shemer I, Felzen B, Shimizu J, Mika Y, Dickstein M, Prutchi D, Darvish N, Ben-Haim SA (2001) Electric currents applied during the refractory period can modulate cardiac contractility in vitro and in vivo. Heart Fail Rev 6:27–34
doi: 10.1023/A:1009851107189
pubmed: 11248765
Sabbah HN, Haddad W, Mika Y, Nass O, Aviv R, Sharov VG, Maltsev V, Felzen B, Undrovinas AI, Goldstein S, Darvish N, Ben-Haim SA (2001) Cardiac contractility modulation with the impulse dynamics signal: Studies in dogs with chronic heart failure. Heart Fail Rev 6:45–53
doi: 10.1023/A:1009855208097
pubmed: 11248767
Mohri S, He KL, Dickstein M, Mika Y, Shimizu J, Shemer I, Yi GH, Wang J, Ben-Haim S, Burkhoff D (2002) Cardiac contractility modulation by electric currents applied during the refractory period. Am J Physiol Heart Circ Physiol 282:H1642–H1647
doi: 10.1152/ajpheart.00959.2001
pubmed: 11959626
Butter C, Wellnhofer E, Schlegl M, Winbeck G, Fleck E, Sabbah HN (2007) Enhanced inotropic state of the failing left ventricle by cardiac contractility modulation electrical signals is not associated with increased myocardial oxygen consumption. J Card Fail 13(2):137–142. https://doi.org/10.1016/j.cardfail.2006.11.00421
doi: 10.1016/j.cardfail.2006.11.00421
pubmed: 17395055
Goliasch G, Khorsand A, Schutz M, Karanikas G, Khazen C, Sochor H, Schmidinger H, Wolzt M, Graf S (2012) The effect of device-based cardiac contractility modulation therapy on myocardial efficiency and oxidative metabolism in patients with heart failure. Eur J Nucl Med Mol Imaging 39(3):408–415. https://doi.org/10.1007/s00259-011-1977-8
doi: 10.1007/s00259-011-1977-8
pubmed: 22083298
Tschope C, Kherad B, Klein O, Lipp A, Blaschke F, Gutterman D, Burkhoff D, Hamdani N, Spillmann F, Van Linthout S (2019) Cardiac contractility modulation: mechanisms of action in heart failure with reduced ejection fraction and beyond. Eur J Heart Fail 21:14–22
doi: 10.1002/ejhf.1349
pubmed: 30485591
Kloppe A, Mijic D, Schiedat F, Bogossian H, Mugge A, Rousso B, Lemke B (2016) A randomized comparison of 5 versus 12 hours per day of cardiac contractility modulation treatment for heart failure patients: A preliminary report. Cardiol J 23(1):114–119. https://doi.org/10.5603/CJ.a2015.0073
doi: 10.5603/CJ.a2015.0073
pubmed: 26503077
Pappone C, Rosanio S, Burkhoff D, Mika Y, Vicedomini G, Augello G, Shemer I, Prutchi D, Haddad W, Aviv R, Snir Y, Kronzon I, Alfieri O, Ben-Haim SA (2002) Cardiac contractility modulation by electric currents applied during the refractory period in patients with heart failure secondary to ischemic or idiopathic dilated cardiomyopathy. Am J Cardiol 90:1307–1313
doi: 10.1016/S0002-9149(02)02868-0
pubmed: 12480039
Pappone C, Augello G, Rosanio S, Vicedomini G, Santinelli V, Romano M, Agricola E, Maggi F, Buchmayr G, Moretti G, Mika Y, Ben-Haim SA, Wolzt M, Stix G, Schmidinger H (2004) First human chronic experience with cardiac contractility modulation by nonexcitatory electrical currents for treating systolic heart failure: mid-term safety and efficacy results from a multicenter study. J Cardiovasc Electrophysiol 15(4):418–427. https://doi.org/10.1046/j.1540-8167.2004.03580.x
doi: 10.1046/j.1540-8167.2004.03580.x
pubmed: 15089990
Zhang Q, Chan YS, Liang YJ, Fang F, Lam YY, Chan CP, Lee AP, Chan KC, Wu EB, Yu CM (2013) Comparison of left ventricular reverse remodeling induced by cardiac contractility modulation and cardiac resynchronization therapy in heart failure patients with different QRS durations. Int J Cardiol 167(3):889–893. https://doi.org/10.1016/j.ijcard.2012.01.066
doi: 10.1016/j.ijcard.2012.01.066
pubmed: 22330007
Kuschyk J, Nagele H, Heinz-Kuck K, Butter C, Lawo T, Wietholt D, Roeger S, Gutterman D, Burkhoff D, Rousso B, Borggrefe M (2019) Cardiac contractility modulation treatment in patients with symptomatic heart failure despite optimal medical therapy and cardiac resynchronization therapy (CRT). Int J Cardiol 277:173–177. https://doi.org/10.1016/j.ijcard.2018.10.086
doi: 10.1016/j.ijcard.2018.10.086
pubmed: 30409733
Yucel G, Fastner C, Hetjens S, Toepel M, Schmiel G, Yazdani B, Husain-Syed F, Liebe V, Rudic B, Akin I, Borggrefe M, Kuschyk J (2022) Impact of baseline left ventricular ejection fraction on long-term outcomes in cardiac contractility modulation therapy. Pacing Clin Electrophysiol 45(5):639–648. https://doi.org/10.1111/pace.14478
doi: 10.1111/pace.14478
pubmed: 35262210
Yu CM, Chan JY, Zhang Q, Yip GW, Lam YY, Chan A, Burkhoff D, Lee PW, Fung JW (2009) Impact of cardiac contractility modulation on left ventricular global and regional function and remodeling. JACC Cardiovasc Imaging 2(12):1341–1349. https://doi.org/10.1016/j.jcmg.2009.07.011
doi: 10.1016/j.jcmg.2009.07.011
pubmed: 20083066
Anker SD, Borggrefe M, Neuser H, Ohlow MA, Roger S, Goette A, Remppis BA, Kuck KH, Najarian KB, Gutterman DD, Rousso B, Burkhoff D, Hasenfuss G (2019) Cardiac contractility modulation improves long-term survival and hospitalizations in heart failure with reduced ejection fraction. Eur J Heart Fail 21(9):1103–1113. https://doi.org/10.1002/ejhf.1374
doi: 10.1002/ejhf.1374
pubmed: 30652394
Kuschyk J, Falk P, Demming T, Marx O, Morley D, Rao I, Burkhoff D (2021) Long-term clinical experience with cardiac contractility modulation therapy delivered by the Optimizer Smart system. Eur J Heart Fail 23(7):1160–1169. https://doi.org/10.1002/ejhf.2202
doi: 10.1002/ejhf.2202
pubmed: 34002440
Kuschyk J, Roeger S, Schneider R, Streitner F, Stach K, Rudic B, Weiss C, Schimpf R, Papavasilliu T, Rousso B, Burkhoff D, Borggrefe M (2015) Efficacy and survival in patients with cardiac contractility modulation: Long-term single center experience in 81 patients. Int J Cardiol 183:76–81. https://doi.org/10.1016/j.ijcard.2014.12.178
doi: 10.1016/j.ijcard.2014.12.178
pubmed: 25662055
Liu M, Fang F, Luo XX, Shlomo BH, Burkhoff D, Chan JY, Chan CP, Cheung L, Rousso B, Gutterman D, Yu CM (2016) Improvement of long-term survival by cardiac contractility modulation in heart failure patients: A case-control study. Int J Cardiol 206:122–126. https://doi.org/10.1016/j.ijcard.2016.01.071
doi: 10.1016/j.ijcard.2016.01.071
pubmed: 26788686
Muller D, Remppis A, Schauerte P, Schmidt-Schweda S, Burkhoff D, Rousso B, Gutterman D, Senges J, Hindricks G, Kuck KH (2017) Clinical effects of long-term cardiac contractility modulation (CCM) in subjects with heart failure caused by left ventricular systolic dysfunction. Clin Res Cardiol 106(11):893–904. https://doi.org/10.1007/s00392-017-1135-9
doi: 10.1007/s00392-017-1135-9
pubmed: 28685207
pmcid: 5655601
Schau T, Seifert M, Meyhofer J, Neuss M, Butter C (2011) Long-term outcome of cardiac contractility modulation in patients with severe congestive heart failure. Europace 13(10):1436–1444. https://doi.org/10.1093/europace/eur153
doi: 10.1093/europace/eur153
pubmed: 21712286
Fastner C, Yuecel G, Rudic B, Schmiel G, Toepel M, Burkhoff D, Liebe V, Kruska M, Hetjens S, Borggrefe M, Akin I, Kuschyk J (2021) Cardiac contractility modulation in patients with ischemic versus non-ischemic cardiomyopathy: Results from the MAINTAINED observational study. Int J Cardiol 342:49–55. https://doi.org/10.1016/j.ijcard.2021.07.048
doi: 10.1016/j.ijcard.2021.07.048
pubmed: 34329680
Yao J, Gao J, Yan JF, Fang S (2023) Cardiac contractility modulation and subcutaneous defibrillator (S-ICD): first experience with simultaneous implantation. Pacing Clin Electrophysiol 46:1595–1598
doi: 10.1111/pace.14695
pubmed: 36938703
Roger S, Rudic B, Akin I, Shchetynska-Marinova T, Fastenrath F, Tulumen E, Liebe V, El-Battrawy I, Baumann S, Kuschyk J, Borggrefe M (2018) Long-term results of combined cardiac contractility modulation and subcutaneous defibrillator therapy in patients with heart failure and reduced ejection fraction. Clin Cardiol 41(4):518–524. https://doi.org/10.1002/clc.22919
doi: 10.1002/clc.22919
pubmed: 29697870
pmcid: 5947638
Trolese L, Faber T, Gressler A, Steinfurt J, Stuplich J, Jordan E, Bode C, Zehender M, Hilgendorf I (2021) Device interaction between cardiac contractility modulation (CCM) and subcutaneous defibrillator (S-ICD). J Cardiovasc Electrophysiol 32:3095–3098
doi: 10.1111/jce.15198
pubmed: 34379359
Fastenrath F, Roger S, Akin I, Borggrefe M, Kuschyk J (2016) Combined implantation of dual-chamber ICD and optimizer through a persistent left superior vena cava. Anatol J Cardiol 16:138–140
pubmed: 26898253
pmcid: 5336730
Linde C, Grabowski M, Ponikowski P, Rao I, Stagg A, Tschope C (2022) Cardiac contractility modulation therapy improves health status in patients with heart failure with preserved ejection fraction: A pilot study (CCM-HFpEF). Eur J Heart Fail 24(12):2275–2284. https://doi.org/10.1002/ejhf.2619
doi: 10.1002/ejhf.2619
pubmed: 35855646
Ansari U, Overhoff D, Burkhoff D, Fastner C, Yucel G, Roger S, Rudic B, Liebe V, Borggrefe M, Akin I, Kuschyk J, Papavassiliu T, Tulumen E (2022) Septal myocardial scar burden predicts the response to cardiac contractility modulation in patients with heart failure. Sci Rep 12(1):20504. https://doi.org/10.1038/s41598-022-24461-6
doi: 10.1038/s41598-022-24461-6
pubmed: 36443407
pmcid: 9705404
Stix G, Borggrefe M, Wolpert C, Hindricks G, Kottkamp H, Bocker D, Wichter T, Mika Y, Ben-Haim S, Burkhoff D, Wolzt M, Schmidinger H (2004) Chronic electrical stimulation during the absolute refractory period of the myocardium improves severe heart failure. Eur Heart J 25(8):650–655. https://doi.org/10.1016/j.ehj.2004.02.027
doi: 10.1016/j.ehj.2004.02.027
pubmed: 15084369
Borggrefe MM, Lawo T, Butter C, Schmidinger H, Lunati M, Pieske B, Misier AR, Curnis A, Bocker D, Remppis A, Kautzner J, Stuhlinger M, Leclerq C, Taborsky M, Frigerio M, Parides M, Burkhoff D, Hindricks G (2008) Randomized, double blind study of non-excitatory, cardiac contractility modulation electrical impulses for symptomatic heart failure. Eur Heart J 29:1019–1028. https://doi.org/10.1093/eurheartj/ehn020
doi: 10.1093/eurheartj/ehn020
pubmed: 18270213
Neelagaru SB, Sanchez JE, Lau SK, Greenberg SM, Raval NY, Worley S, Kalman J, Merliss AD, Krueger S, Wood M, Wish M, Burkhoff D, Nademanee K (2006) Nonexcitatory, cardiac contractility modulation electrical impulses: feasibility study for advanced heart failure in patients with normal QRS duration. Heart Rhythm 3(10):1140–1147. https://doi.org/10.1016/j.hrthm.2006.06.031
doi: 10.1016/j.hrthm.2006.06.031
pubmed: 17018340
Kadish A, Nademanee K, Volosin K, Krueger S, Neelagaru S, Raval N, Obel O, Weiner S, Wish M, Carson P, Ellenbogen K, Bourge R, Parides M, Chiacchierini RP, Goldsmith R, Goldstein S, Mika Y, Burkhoff D, Abraham WT (2011) A randomized controlled trial evaluating the safety and efficacy of cardiac contractility modulation in advanced heart failure. Am Heart J 161(2):329–337 e321–322. https://doi.org/10.1016/j.ahj.2010.10.025
doi: 10.1016/j.ahj.2010.10.025
pubmed: 21315216
Abraham WT, Nademanee K, Volosin K, Krueger S, Neelagaru S, Raval N, Obel O, Weiner S, Wish M, Carson P, Ellenbogen K, Bourge R, Parides M, Chiacchierini RP, Goldsmith R, Goldstein S, Mika Y, Burkhoff D, Kadish A, Investigators F-H- and Coordinators (2011) Subgroup analysis of a randomized controlled trial evaluating the safety and efficacy of cardiac contractility modulation in advanced heart failure. J Card Fail 17:710–7. https://doi.org/10.1016/j.cardfail.2011.05.006
doi: 10.1016/j.cardfail.2011.05.006
pubmed: 21872139
Abraham WT, Kuck KH, Goldsmith RL, Lindenfeld J, Reddy VY, Carson PE, Mann DL, Saville B, Parise H, Chan R, Wiegn P, Hastings JL, Kaplan AJ, Edelmann F, Luthje L, Kahwash R, Tomassoni GF, Gutterman DD, Stagg A, Burkhoff D, Hasenfuss G (2018) A randomized controlled trial to evaluate the safety and efficacy of cardiac contractility modulation. JACC Heart Fail 6:874–883. https://doi.org/10.1016/j.jchf.2018.04.010
doi: 10.1016/j.jchf.2018.04.010
pubmed: 29754812
Wiegn P, Chan R, Jost C, Saville BR, Parise H, Prutchi D, Carson PE, Stagg A, Goldsmith RL, Burkhoff D (2020) Safety, performance, and efficacy of cardiac contractility modulation delivered by the 2-lead optimizer smart system: The FIX-HF-5C2 study. Circ Heart Fail 13(4):e006512. https://doi.org/10.1161/CIRCHEARTFAILURE.119.006512
doi: 10.1161/CIRCHEARTFAILURE.119.006512
pubmed: 32264716
Roger S, Said S, Kloppe A, Lawo T, Emig U, Rousso B, Gutterman D, Borggrefe M, Kuschyk J (2017) Cardiac contractility modulation in heart failure patients: Randomized comparison of signal delivery through one vs. two ventricular leads. J Cardiol 69(1):326–332. https://doi.org/10.1016/j.jjcc.2016.06.015
doi: 10.1016/j.jjcc.2016.06.015
pubmed: 27590412
Giallauria F, Vigorito C, Piepoli MF, Stewart Coats AJ (2014) Effects of cardiac contractility modulation by non-excitatory electrical stimulation on exercise capacity and quality of life: an individual patient’s data meta-analysis of randomized controlled trials. Int J Cardiol 175:352–357
doi: 10.1016/j.ijcard.2014.06.005
pubmed: 24975782
Giallauria F, Cuomo G, Parlato A, Raval NY, Kuschyk J, Stewart Coats AJ (2020) A comprehensive individual patient data meta-analysis of the effects of cardiac contractility modulation on functional capacity and heart failure-related quality of life. ESC Heart Fail 7:2922–2932
doi: 10.1002/ehf2.12902
pubmed: 32700809
pmcid: 7524137
Mando R, Goel A, Habash F, Saad M, Ayoub K, Vallurupalli S, Maskoun W (2019) Outcomes of cardiac contractility modulation: a systematic review and meta-analysis of randomized clinical trials. Cardiovasc Ther 2019:9769724
doi: 10.1155/2019/9769724
pubmed: 31772622
pmcid: 6739758
Witte K, Hasenfuss G, Kloppe A, Burkhoff D, Green M, Moss J, Peel A, Mealing S, Durand Zaleski I, Cowie MR (2019) Cost-effectiveness of a cardiac contractility modulation device in heart failure with normal QRS duration. ESC Heart Fail 6:1178–1187
doi: 10.1002/ehf2.12526
pubmed: 31997539
Hesselson AB (2022) Cardiac contractility modulation: a technical review. J Innov Card Rhythm Manag 13:5205–5218
doi: 10.19102/icrm.2022.13102
pubmed: 36605294
pmcid: 9635574
Vartanian K, Franco M, Busse N, Bidzhoian S, Hamdan T, von Schwarz ER (2022) Improved physical function after cardiac contractility modulation therapy in 10 patients with chronic heart failure. Tex Heart Inst J 49(6):e227905 https://doi.org/10.14503/THIJ-22-7905
doi: 10.14503/THIJ-22-7905
Kloppe A, Lawo T, Mijic D, Schiedat F, Muegge A, Lemke B (2016) Long-term survival with cardiac contractility modulation in patients with NYHA II or III symptoms and normal QRS duration. Int J Cardiol 209:291–295. https://doi.org/10.1016/j.ijcard.2016.02.001
doi: 10.1016/j.ijcard.2016.02.001
pubmed: 26908357