Stimulating VAPB-PTPIP51 ER-mitochondria tethering corrects FTD/ALS mutant TDP43 linked Ca

Alzheimer’s disease Amyotrophic lateral sclerosis Frontotemporal dementia Neurodegenerative diseases Parkinson’s disease TDP43

Journal

Acta neuropathologica communications
ISSN: 2051-5960
Titre abrégé: Acta Neuropathol Commun
Pays: England
ID NLM: 101610673

Informations de publication

Date de publication:
23 Feb 2024
Historique:
received: 20 09 2023
accepted: 05 02 2024
medline: 24 2 2024
pubmed: 24 2 2024
entrez: 23 2 2024
Statut: epublish

Résumé

Frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) are clinically linked major neurodegenerative diseases. Notably, TAR DNA-binding protein-43 (TDP43) accumulations are hallmark pathologies of FTD/ALS and mutations in the gene encoding TDP43 cause familial FTD/ALS. There are no cures for FTD/ALS. FTD/ALS display damage to a broad range of physiological functions, many of which are regulated by signaling between the endoplasmic reticulum (ER) and mitochondria. This signaling is mediated by the VAPB-PTPIP51 tethering proteins that serve to recruit regions of ER to the mitochondrial surface so as to facilitate inter-organelle communications. Several studies have now shown that disrupted ER-mitochondria signaling including breaking of the VAPB-PTPIP51 tethers are features of FTD/ALS and that for TDP43 and other familial genetic FTD/ALS insults, this involves activation of glycogen kinase-3β (GSK3β). Such findings have prompted suggestions that correcting damage to ER-mitochondria signaling and the VAPB-PTPIP51 interaction may be broadly therapeutic. Here we provide evidence to support this notion. We show that overexpression of VAPB or PTPIP51 to enhance ER-mitochondria signaling corrects mutant TDP43 induced damage to inositol 1,4,5-trisphosphate (IP3) receptor delivery of Ca

Identifiants

pubmed: 38395965
doi: 10.1186/s40478-024-01742-x
pii: 10.1186/s40478-024-01742-x
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

32

Subventions

Organisme : Medical Research Council
ID : MR/R022666/1
Pays : United Kingdom

Informations de copyright

© 2024. The Author(s).

Références

Ackerley S, Thornhill P, Grierson AJ, Brownlees J, Anderton BH, Leigh PN, Shaw CE, Miller CCJ (2003) Neurofilament heavy chain side-arm phosphorylation regulates axonal transport of neurofilaments. J Cell Biol 161:489–495
doi: 10.1083/jcb.200303138 pubmed: 12743103 pmcid: 2172950
Bajc Česnik A, Darovic S, Prpar Mihevc S, Štalekar M, Malnar M, Motaln H, Lee YB, Mazej J, Pohleven J, Grosch Met al et al (2019) Nuclear RNA foci from C9ORF72 expansion mutation form paraspeckle-like bodies. J Cell Sci 132:jcs224303. https://doi.org/10.1242/jcs.224303
doi: 10.1242/jcs.224303 pubmed: 30745340
Bernard-Marissal N, Medard JJ, Azzedine H, Chrast R (2015) Dysfunction in endoplasmic reticulum-mitochondria crosstalk underlies SIGMAR1 loss of function mediated motor neuron degeneration. Brain 138:875–890. https://doi.org/10.1093/brain/awv008
doi: 10.1093/brain/awv008 pubmed: 25678561
Chand KK, Lee KM, Lee JD, Qiu H, Willis EF, Lavidis NA, Hilliard MA, Noakes PG (2018) Defects in synaptic transmission at the neuromuscular junction precede motor deficits in a TDP-43(Q331K) transgenic mouse model of amyotrophic lateral sclerosis. Faseb J 32:2676–2689. https://doi.org/10.1096/fj.201700835R
doi: 10.1096/fj.201700835R pubmed: 29295857
Cortez LM, Campeau J, Norman G, Kalayil M, Van der Merwe J, McKenzie D, Sim VL (2015) Bile acids reduce prion conversion, reduce neuronal loss, and prolong male survival in models of prion disease. J Virol 89:7660–7672. https://doi.org/10.1128/jvi.01165-15
doi: 10.1128/jvi.01165-15 pubmed: 25972546 pmcid: 4505631
Csordas G, Weaver D, Hajnoczky G (2018) Endoplasmic reticular-mitochondrial contactology: structure and signaling functions. Trends Cell Biol 28:523–540. https://doi.org/10.1016/j.tcb.2018.02.009
doi: 10.1016/j.tcb.2018.02.009 pubmed: 29588129 pmcid: 6005738
Dafinca R, Scaber J, Ababneh N, Lalic T, Weir G, Christian H, Vowles J, Douglas AG, Fletcher-Jones A, Browne C al (2016) C9orf72 hexanucleotide expansions are associated with altered endoplasmic reticulum calcium homeostasis and stress granule formation in induced pluripotent stem cell-derived neurons from patients with amyotrophic lateral sclerosis and frontotemporal dementia. Stem Cells 34:2063–2078. https://doi.org/10.1002/stem.2388
doi: 10.1002/stem.2388 pubmed: 27097283
Dafinca R, Barbagallo P, Farrimond L, Candalija A, Scaber J, Ababneh NA, Sathyaprakash C, Vowles J, Cowley SA, Talbot K (2020) Impairment of mitochondrial calcium buffering links mutations in C9ORF72 and TARDBP in iPS-derived motor neurons from patients with ALS/FTD. Stem Cell Rep 14:892–908. https://doi.org/10.1016/j.stemcr.2020.03.023
doi: 10.1016/j.stemcr.2020.03.023
Dale NC, Johnstone EKM, White CW, Pfleger KDG (2019) NanoBRET: the Bright Future of Proximity-based assays. Front Bioeng Biotechnol 7:56. https://doi.org/10.3389/fbioe.2019.00056
doi: 10.3389/fbioe.2019.00056 pubmed: 30972335 pmcid: 6443706
De Vos KJ, Morotz GM, Stoica R, Tudor EL, Lau KF, Ackerley S, Warley A, Shaw CE, Miller CCJ (2012) VAPB interacts with the mitochondrial protein PTPIP51 to regulate calcium homeostasis. Hum Mol Genet 21:1299–1311. https://doi.org/10.1093/hmg/ddr559
doi: 10.1093/hmg/ddr559 pubmed: 22131369
Dionísio PA, Amaral JD, Ribeiro MF, Lo AC, D’Hooge R, Rodrigues CM (2015) Amyloid-β pathology is attenuated by tauroursodeoxycholic acid treatment in APP/PS1 mice after disease onset. Neurobiol Aging 36:228–240. https://doi.org/10.1016/j.neurobiolaging.2014.08.034
doi: 10.1016/j.neurobiolaging.2014.08.034 pubmed: 25443293
Dyer MS, Woodhouse A, Blizzard CA (2021) Cytoplasmic human TDP-43 mislocalization induces widespread dendritic spine loss in mouse Upper Motor neurons. Brain Sci 11. https://doi.org/10.3390/brainsci11070883
Gaffield MA, Betz WJ (2006) Imaging synaptic vesicle exocytosis and endocytosis with FM dyes. Nat Protoc/ 1:2916–2921. https://doi.org/10.1038/nprot.2006.476
doi: 10.1038/nprot.2006.476 pubmed: 17406552
Galmes R, Houcine A, van Vliet AR, Agostinis P, Jackson CL, Giordano F (2016) ORP5/ORP8 localize to endoplasmic reticulum-mitochondria contacts and are involved in mitochondrial function. EMBO Rep 17:800–810. https://doi.org/10.15252/embr.201541108
doi: 10.15252/embr.201541108 pubmed: 27113756 pmcid: 5278607
Gelon PA, Dutchak PA, Sephton CF (2022) Synaptic dysfunction in ALS and FTD: anatomical and molecular changes provide insights into mechanisms of disease. Front Mol Neurosci 15:1000183. https://doi.org/10.3389/fnmol.2022.1000183
doi: 10.3389/fnmol.2022.1000183 pubmed: 36263379 pmcid: 9575515
Gomez-Suaga P, Paillusson S, Stoica R, Noble W, Hanger DP, Miller CC (2017) The ER-mitochondria tethering complex VAPB-PTPIP51 regulates autophagy. Curr Biol 27:371–385. https://doi.org/10.1016/j.cub.2016.12.038
doi: 10.1016/j.cub.2016.12.038 pubmed: 28132811 pmcid: 5300905
Gomez-Suaga P, Perez-Nievas BG, Glennon EB, Lau DHW, Paillusson S, Morotz GM, Cali T, Pizzo P, Noble W, Miller CCJ (2019) The VAPB-PTPIP51 endoplasmic reticulum-mitochondria tethering proteins are present in neuronal synapses and regulate synaptic activity. Acta Neuropathol Commun 7:35. https://doi.org/10.1186/s40478-019-0688-4
doi: 10.1186/s40478-019-0688-4 pubmed: 30841933 pmcid: 6402140
Gomez-Suaga P, Mórotz GM, Markovinovic A, Martín-Guerrero SM, Preza E, Arias N, Mayl K, Aabdien A, Gesheva V, Nishimura Aet al et al (2022) Disruption of ER-mitochondria tethering and signalling in C9orf72-associated amyotrophic lateral sclerosis and frontotemporal dementia. Aging Cell 21:e13549. https://doi.org/10.1111/acel.13549
doi: 10.1111/acel.13549 pubmed: 35026048 pmcid: 8844122
Grant SM, DeMorrow S (2020) Bile Acid Signaling in neurodegenerative and neurological disorders. Int J Mol Sci 21. https://doi.org/10.3390/ijms21175982
Gregianin E, Pallafacchina G, Zanin S, Crippa V, Rusmini P, Poletti A, Fang M, Li Z, Diano L, Petrucci Aet al et al (2016) Loss-of-function mutations in the SIGMAR1 gene cause distal hereditary motor neuropathy by impairing ER-mitochondria tethering and Ca2 + signalling. Hum Mol Genet 25:3741–3753. https://doi.org/10.1093/hmg/ddw220
doi: 10.1093/hmg/ddw220 pubmed: 27402882
Hartopp N, Lau DHW, Martin-Guerrero SM, Markovinovic A, Mórotz GM, Greig J, Glennon EB, Troakes C, Gomez-Suaga P, Noble W, Miller CCJ (2022) Disruption of the VAPB-PTPIP51 ER-mitochondria tethering proteins in post-mortem human amyotrophic lateral sclerosis. Front Cell Dev Biol 10:950767. https://doi.org/10.3389/fcell.2022.950767
doi: 10.3389/fcell.2022.950767 pubmed: 36051435 pmcid: 9424765
Hedskog L, Pinho CM, Filadi R, Ronnback A, Hertwig L, Wiehager B, Larssen P, Gellhaar S, Sandebring A, Westerlund M al (2013) Modulation of the endoplasmic reticulum-mitochondria interface in Alzheimer’s disease and related models. Proc Natl Acad Sci USA 110:7916–7921. https://doi.org/10.1073/pnas.1300677110
doi: 10.1073/pnas.1300677110 pubmed: 23620518 pmcid: 3651455
Herms J, Dorostkar MM (2016) Dendritic spine pathology in neurodegenerative diseases. Annu Rev Pathol 11:221–250. https://doi.org/10.1146/annurev-pathol-012615-044216
doi: 10.1146/annurev-pathol-012615-044216 pubmed: 26907528
Hirabayashi Y, Kwon SK, Paek H, Pernice WM, Paul MA, Lee J, Erfani P, Raczkowski A, Petrey DS, Pon LA, Polleux F (2017) ER-mitochondria tethering by PDZD8 regulates Ca2 + dynamics in mammalian neurons. Science 358:623–630. https://doi.org/10.1126/science.aan6009
doi: 10.1126/science.aan6009 pubmed: 29097544 pmcid: 5818999
Iwabuchi S, Kakazu Y, Koh JY, Goodman KM, Harata NC (2014) Examination of synaptic vesicle recycling using FM dyes during evoked, spontaneous, and miniature synaptic activities. J Vis Exp: https://doi.org/10.3791/50557
doi: 10.3791/50557
Jensen BK, Schuldi MH, McAvoy K, Russell KA, Boehringer A, Curran BM, Krishnamurthy K, Wen X, Westergard T, Ma L al (2020) Synaptic dysfunction induced by glycine-alanine dipeptides in C9orf72-ALS/FTD is rescued by SV2 replenishment. EMBO Mol Med 12:e10722. https://doi.org/10.15252/emmm.201910722
doi: 10.15252/emmm.201910722 pubmed: 32347002 pmcid: 7207170
Kaidanovich-Beilin O, Woodgett JR (2011) GSK-3: functional insights from cell biology and animal models. Front Mol Neurosci 4:40. https://doi.org/10.3389/fnmol.2011.00040
doi: 10.3389/fnmol.2011.00040 pubmed: 22110425 pmcid: 3217193
Lau DHW, Paillusson S, Hartopp N, Rupawala H, Mórotz GM, Gomez-Suaga P, Greig J, Troakes C, Noble W, Miller CCJ (2020) Disruption of endoplasmic reticulum-mitochondria tethering proteins in post-mortem Alzheimer’s disease brain. Neurobiol Dis 143:105020. https://doi.org/10.1016/j.nbd.2020.105020
doi: 10.1016/j.nbd.2020.105020 pubmed: 32682953 pmcid: 7794060
Lautenschlager J, Prell T, Ruhmer J, Weidemann L, Witte OW, Grosskreutz J (2013) Overexpression of human mutated G93A SOD1 changes dynamics of the ER mitochondria calcium cycle specifically in mouse embryonic motor neurons. Exp Neurol: Doi. https://doi.org/10.1016/j.expneurol.2013.03.027
doi: 10.1016/j.expneurol.2013.03.027
Ling SC, Polymenidou M, Cleveland DW (2013) Converging mechanisms in ALS and FTD: disrupted RNA and protein homeostasis. Neuron 79:416–438. https://doi.org/10.1016/j.neuron.2013.07.033
doi: 10.1016/j.neuron.2013.07.033 pubmed: 23931993 pmcid: 4411085
Lv BF, Yu CF, Chen YY, Lu Y, Guo JH, Song QS, Ma DL, Shi TP, Wang L (2006) Protein tyrosine phosphatase interacting protein 51 (PTPIP51) is a novel mitochondria protein with an N-terminal mitochondrial targeting sequence and induces apoptosis. Apoptosis 11:1489–1501
doi: 10.1007/s10495-006-8882-9 pubmed: 16820967
Markovinovic A, Greig J, Martín-Guerrero SM, Salam S, Paillusson S (2022) Endoplasmic reticulum-mitochondria signaling in neurons and neurodegenerative diseases. J Cell Sci 135:jcs248534. https://doi.org/10.1242/jcs.248534
doi: 10.1242/jcs.248534 pubmed: 35129196
Martín-Guerrero SM, Markovinovic A, Mórotz GM, Salam S, Noble W, Miller CCJ (2022) Targeting ER-Mitochondria Signaling as a therapeutic target for Frontotemporal Dementia and related amyotrophic lateral sclerosis. Front Cell Dev Biol 10:915931. https://doi.org/10.3389/fcell.2022.915931
doi: 10.3389/fcell.2022.915931 pubmed: 35693938 pmcid: 9184680
Morotz GM, De Vos KJ, Vagnoni A, Ackerley S, Shaw CE, Miller CCJ (2012) Amyotrophic lateral sclerosis-associated mutant VAPBP56S perturbs calcium homeostasis to disrupt axonal transport of mitochondria. Hum Mol Genet 21:1979–1988. https://doi.org/10.1093/hmg/dds011
doi: 10.1093/hmg/dds011 pubmed: 22258555 pmcid: 3315205
Morotz GM, Glennon EB, Greig J, Lau DHW, Bhembre N, Mattedi F, Muschalik N, Noble W, Vagnoni A, Miller CCJ (2019) Kinesin light chain-1 serine-460 phosphorylation is altered in Alzheimer’s disease and regulates axonal transport and processing of the amyloid precursor protein. Acta Neuropathol Commun 7:200. https://doi.org/10.1186/s40478-019-0857-5
doi: 10.1186/s40478-019-0857-5 pubmed: 31806024 pmcid: 6896704
Morotz GM, Glennon EB, Gomez-Suaga P, Lau DHW, Robinson ED, Sedlak E, Vagnoni A, Noble W, Miller CCJ (2019) LMTK2 binds to kinesin light chains to mediate anterograde axonal transport of cdk5/p35 and LMTK2 levels are reduced in Alzheimer’s disease brains. Acta Neuropathol Commun 7:73. https://doi.org/10.1186/s40478-019-0715-5
doi: 10.1186/s40478-019-0715-5 pubmed: 31068217 pmcid: 6505310
Mórotz GM, Martín-Guerrero SM, Markovinovic A, Paillusson S, Russell MRG, Machado PMP, Fleck RA, Noble W, Miller CCJ (2022) The PTPIP51 coiled-coil domain is important in VAPB binding, formation of ER-mitochondria contacts and IP3 receptor delivery of ca(2+) to mitochondria. Front Cell Dev Biol 10:920947. https://doi.org/10.3389/fcell.2022.920947
doi: 10.3389/fcell.2022.920947 pubmed: 36120587 pmcid: 9473665
Mortiboys H, Aasly J, Bandmann O (2013) Ursocholanic acid rescues mitochondrial function in common forms of familial Parkinson’s disease. Brain 136:3038–3050. https://doi.org/10.1093/brain/awt224
doi: 10.1093/brain/awt224 pubmed: 24000005
Paillusson S, Stoica R, Gomez-Suaga P, Lau DH, Mueller S, Miller T, Miller CC (2016) There’s something wrong with my MAM; the ER-Mitochondria axis and neurodegenerative diseases. Trends Neurosci 39:146–157. https://doi.org/10.1016/j.tins.2016.01.008
doi: 10.1016/j.tins.2016.01.008 pubmed: 26899735 pmcid: 4780428
Paillusson S, Gomez-Suaga P, Stoica R, Little D, Gissen P, Devine MJ, Noble W, Hanger DP, Miller CC (2017) Alpha-synuclein binds to the ER-mitochondria tethering protein VAPB to disrupt Ca2 + homeostasis and mitochondrial ATP production. Acta Neuropathol 134:129–149. https://doi.org/10.1007/s00401-017-1704-z
doi: 10.1007/s00401-017-1704-z pubmed: 28337542 pmcid: 5486644
Peggion C, Massimino ML, Bonadio RS, Lia F, Lopreiato R, Cagnin S, Calì T, Bertoli A (2021) Regulation of endoplasmic reticulum-mitochondria tethering and ca(2+) fluxes by TDP-43 via GSK3β. Int J Mol Sci 22. https://doi.org/10.3390/ijms222111853
Pilotto F, Schmitz A, Maharjan N, Diab R, Odriozola A, Tripathi P, Yamoah A, Scheidegger O, Oestmann A, Dennys CN al (2022) PolyGA targets the ER stress-adaptive response by impairing GRP75 function at the MAM in C9ORF72-ALS/FTD. Acta Neuropathol 144:939–966. https://doi.org/10.1007/s00401-022-02494-5
doi: 10.1007/s00401-022-02494-5 pubmed: 36121477 pmcid: 9547809
Puri R, Cheng XT, Lin MY, Huang N, Sheng ZH (2019) Mul1 restrains parkin-mediated mitophagy in mature neurons by maintaining ER-mitochondrial contacts. Nat Commun 10:3645. https://doi.org/10.1038/s41467-019-11636-5
doi: 10.1038/s41467-019-11636-5 pubmed: 31409786 pmcid: 6692330
Shen W, Wu B, Zhang Z, Dou Y, Rao ZR, Chen YR, Duan S (2006) Activity-induced rapid synaptic maturation mediated by presynaptic cdc42 signaling. Neuron 50:401–414. https://doi.org/10.1016/j.neuron.2006.03.017
doi: 10.1016/j.neuron.2006.03.017 pubmed: 16675395
Spires-Jones TL, Attems J, Thal DR (2017) Interactions of pathological proteins in neurodegenerative diseases. Acta Neuropathol 134:187–205. https://doi.org/10.1007/s00401-017-1709-7
doi: 10.1007/s00401-017-1709-7 pubmed: 28401333 pmcid: 5508034
Sreedharan J, Neukomm LJ, Brown RH Jr., Freeman MR (2015) Age-dependent TDP-43-mediated motor neuron degeneration requires GSK3, hat-trick, and xmas-2. Curr Biol 25:2130–2136. https://doi.org/10.1016/j.cub.2015.06.045
doi: 10.1016/j.cub.2015.06.045 pubmed: 26234214 pmcid: 4546534
Stoica R, De Vos KJ, Paillusson S, Mueller S, Sancho RM, Lau KF, Vizcay-Barrena G, Lin WL, Xu YF, Lewis Jet al et al (2014) ER-mitochondria associations are regulated by the VAPB-PTPIP51 interaction and are disrupted by ALS/FTD-associated TDP-43. Nat Commun 5:3996. https://doi.org/10.1038/ncomms4996
doi: 10.1038/ncomms4996 pubmed: 24893131
Stoica R, Paillusson S, Gomez-Suaga P, Mitchell JC, Lau DH, Gray EH, Sancho RM, Vizcay-Barrena G, De Vos KJ (2016) ALS/FTD-associated FUS activates GSK-3beta to disrupt the VAPB-PTPIP51 interaction and ER-mitochondria associations. EMBO Rep 17:1326–1342 Shaw CEet al. https://doi.org/10.15252/embr.201541726
doi: 10.15252/embr.201541726 pubmed: 27418313 pmcid: 5007559
Szabo L, Cummins N, Paganetti P, Odermatt A, Papassotiropoulos A, Karch C, Götz J, Eckert A, Grimm A (2023) ER-mitochondria contacts and cholesterol metabolism are disrupted by disease-associated tau protein. EMBO Rep 24:e57499. https://doi.org/10.15252/embr.202357499
doi: 10.15252/embr.202357499 pubmed: 37401859 pmcid: 10398652
Tadic V, Malci A, Goldhammer N, Stubendorff B, Sengupta S, Prell T, Keiner S, Liu J, Guenther M, Frahm C al (2017) Sigma 1 receptor activation modifies intracellular calcium exchange in the G93AhSOD1 ALS model. Neuroscience 359:105–118. https://doi.org/10.1016/j.neuroscience.2017.07.012
doi: 10.1016/j.neuroscience.2017.07.012 pubmed: 28723387
Tamaki Y, Urushitani M (2022) Molecular dissection of TDP-43 as a leading cause of ALS/FTLD. Int J Mol Sci 23. https://doi.org/10.3390/ijms232012508
Tsao W, Jeong YH, Lin S, Ling J, Price DL, Chiang PM, Wong PC (2012) Rodent models of TDP-43: recent advances. Brain Res 1462:26–39. https://doi.org/10.1016/j.brainres.2012.04.031
doi: 10.1016/j.brainres.2012.04.031 pubmed: 22608070 pmcid: 3613131
Vagnoni A, Rodriguez L, Manser C, De Vos KJ, Miller CCJ (2011) Phosphorylation of kinesin light chain-1 at serine-460 modulates binding and trafficking of calsyntenin-1. J Cell Sci 124:1032–1042
doi: 10.1242/jcs.075168 pubmed: 21385839 pmcid: 3056604
Vagnoni A, Perkinton MS, Gray EH, Francis PT, Noble W, Miller CCJ (2012) Calsyntenin-1 mediates axonal transport of the amyloid precursor protein and regulates abeta production. Hum Mol Genet 21:2845–2854. https://doi.org/10.1093/hmg/dds109
doi: 10.1093/hmg/dds109 pubmed: 22434822 pmcid: 3373235
Vagnoni A, Glennon EB, Perkinton MS, Gray EH, Noble W, Miller CC (2013) Loss of c-Jun N-terminal kinase-interacting protein-1 does not affect axonal transport of the amyloid precursor protein or abeta production. Hum Mol Genet 22:4646–4652. https://doi.org/10.1093/hmg/ddt313
doi: 10.1093/hmg/ddt313 pubmed: 23825109 pmcid: 3889811
Vaz AR, Cunha C, Gomes C, Schmucki N, Barbosa M, Brites D (2015) Glycoursodeoxycholic acid reduces matrix metalloproteinase-9 and caspase-9 activation in a cellular model of superoxide dismutase-1 neurodegeneration. Mol Neurobiol 51:864–877. https://doi.org/10.1007/s12035-014-8731-8
doi: 10.1007/s12035-014-8731-8 pubmed: 24848512
Watanabe S, Ilieva H, Tamada H, Nomura H, Komine O, Endo F, Jin S, Mancias P, Kiyama H, Yamanaka K (2016) Mitochondria-associated membrane collapse is a common pathomechanism in SIGMAR1- and SOD1-linked ALS. EMBO Mol Med 8:1421–1437. https://doi.org/10.15252/emmm.201606403
doi: 10.15252/emmm.201606403 pubmed: 27821430 pmcid: 5167132
Yeo HK, Park TH, Kim HY, Jang H, Lee J, Hwang GS, Ryu SE, Park SH, Song HK Ban HS (2021) phospholipid transfer function of PTPIP51 at mitochondria-associated ER membranes. EMBO Rep 22: e51323 https://doi.org/10.15252/embr.202051323
Zangerolamo L, Vettorazzi JF, Rosa LRO, Carneiro EM, Barbosa HCL (2021) The bile acid TUDCA and neurodegenerative disorders: an overview. Life Sci: 119252. https://doi.org/10.1016/j.lfs.2021.119252
doi: 10.1016/j.lfs.2021.119252

Auteurs

Andrea Markovinovic (A)

Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE5 9RX, London, UK. andrea.markovinovic@kcl.ac.uk.

Sandra M Martín-Guerrero (SM)

Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE5 9RX, London, UK.

Gábor M Mórotz (GM)

Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE5 9RX, London, UK.

Shaakir Salam (S)

Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE5 9RX, London, UK.

Patricia Gomez-Suaga (P)

Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE5 9RX, London, UK.

Sebastien Paillusson (S)

Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE5 9RX, London, UK.

Jenny Greig (J)

Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE5 9RX, London, UK.

Younbok Lee (Y)

Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE5 9RX, London, UK.

Jacqueline C Mitchell (JC)

Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE5 9RX, London, UK.

Wendy Noble (W)

Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE5 9RX, London, UK.

Christopher C J Miller (CCJ)

Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE5 9RX, London, UK. chris.miller@kcl.ac.uk.

Classifications MeSH