Adjuvant dendritic cell therapy in stage IIIB/C melanoma: the MIND-DC randomized phase III trial.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
23 Feb 2024
23 Feb 2024
Historique:
received:
09
05
2023
accepted:
22
01
2024
medline:
24
2
2024
pubmed:
24
2
2024
entrez:
23
2
2024
Statut:
epublish
Résumé
Autologous natural dendritic cells (nDCs) treatment can induce tumor-specific immune responses and clinical responses in cancer patients. In this phase III clinical trial (NCT02993315), 148 patients with resected stage IIIB/C melanoma were randomized to adjuvant treatment with nDCs (n = 99) or placebo (n = 49). Active treatment consisted of intranodally injected autologous CD1c+ conventional and plasmacytoid DCs loaded with tumor antigens. The primary endpoint was the 2-year recurrence-free survival (RFS) rate, whereas the secondary endpoints included median RFS, 2-year and median overall survival, adverse event profile, and immunological response The 2-year RFS rate was 36.8% in the nDC treatment group and 46.9% in the control group (p = 0.31). Median RFS was 12.7 months vs 19.9 months, respectively (hazard ratio 1.25; 90% CI: 0.88-1.79; p = 0.29). Median overall survival was not reached in both treatment groups (hazard ratio 1.32; 90% CI: 0.73-2.38; p = 0.44). Grade 3-4 study-related adverse events occurred in 5% and 6% of patients. Functional antigen-specific T cell responses could be detected in 67.1% of patients tested in the nDC treatment group vs 3.8% of patients tested in the control group (p < 0.001). In conclusion, while adjuvant nDC treatment in stage IIIB/C melanoma patients generated specific immune responses and was well tolerated, no benefit in RFS was observed.
Identifiants
pubmed: 38395969
doi: 10.1038/s41467-024-45358-0
pii: 10.1038/s41467-024-45358-0
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1632Informations de copyright
© 2024. The Author(s).
Références
Banchereau, J. & Steinman, R. M. Dendritic cells and the control of immunity. Nature 392, 245–252 (1998).
pubmed: 9521319
doi: 10.1038/32588
Palucka, K. & Banchereau, J. Cancer immunotherapy via dendritic cells. Nat. Rev. Cancer 12, 265–277 (2012).
pubmed: 22437871
pmcid: 3433802
doi: 10.1038/nrc3258
Baraibar, I., Melero, I., Ponz-Sarvise, M. & Castanon, E. Safety and tolerability of immune checkpoint inhibitors (PD-1 and PD-L1) in Cancer. Drug Saf. 42, 281–294 (2019).
pubmed: 30649742
doi: 10.1007/s40264-018-0774-8
Anguille, S., Smits, E. L., Lion, E., van Tendeloo, V. F. & Berneman, Z. N. Clinical use of dendritic cells for cancer therapy. Lancet Oncol. 15, e257–e267 (2014).
pubmed: 24872109
doi: 10.1016/S1470-2045(13)70585-0
Soruri, A. et al. IL-4 down-regulates anaphylatoxin receptors in monocytes and dendritic cells and impairs anaphylatoxin-induced migration in vivo. J. Immunol. 170, 3306–3314 (2003).
pubmed: 12626590
doi: 10.4049/jimmunol.170.6.3306
Breckpot, K. et al. Dendritic cells differentiated in the presence of IFN-{beta} and IL-3 are potent inducers of an antigen-specific CD8+ T cell response. J. Leukoc. Biol. 78, 898–908 (2005).
pubmed: 16037410
doi: 10.1189/jlb.0105052
Thurnher, M., Zelle-Rieser, C., Ramoner, R., Bartsch, G. & Holtl, L. The disabled dendritic cell. FASEB J. 15, 1054–1061 (2001).
pubmed: 11292667
doi: 10.1096/fsb2fj000508hyp
Wimmers, F., Schreibelt, G., Skold, A. E., Figdor, C. G. & De Vries, I. J. Paradigm shift in dendritic cell-based immunotherapy: from in vitro generated monocyte-derived DCs to naturally circulating DC subsets. Front. Immunol. 5, 165 (2014).
pubmed: 24782868
pmcid: 3990057
doi: 10.3389/fimmu.2014.00165
MacDonald, K. P. et al. Characterization of human blood dendritic cell subsets. Blood 100, 4512–4520 (2002).
pubmed: 12393628
doi: 10.1182/blood-2001-11-0097
Schreibelt, G. et al. Effective clinical responses in metastatic melanoma patients after vaccination with primary myeloid dendritic cells. Clin. Cancer Res. 22, 2155–2166 (2016).
pubmed: 26712687
doi: 10.1158/1078-0432.CCR-15-2205
Tel, J. et al. Natural human plasmacytoid dendritic cells induce antigen-specific T-cell responses in melanoma patients. Cancer Res. 73, 1063–1075 (2013).
pubmed: 23345163
doi: 10.1158/0008-5472.CAN-12-2583
Westdorp, H. et al. Blood-derived dendritic cell vaccinations induce immune responses that correlate with clinical outcome in patients with chemo-naive castration-resistant prostate cancer. J. Immunother. Cancer 7, 302 (2019).
pubmed: 31727154
pmcid: 6854814
doi: 10.1186/s40425-019-0787-6
Bloemendal, M. et al. Immunological responses to adjuvant vaccination with combined CD1c(+) myeloid and plasmacytoid dendritic cells in stage III melanoma patients. Oncoimmunology 11, 2015113 (2022).
pubmed: 36524210
doi: 10.1080/2162402X.2021.2015113
Schadendorf, D. et al. Dacarbazine (DTIC) versus vaccination with autologous peptide-pulsed dendritic cells (DC) in first-line treatment of patients with metastatic melanoma: a randomized phase III trial of the DC study group of the DeCOG. Ann. Oncol. 17, 563–570 (2006).
pubmed: 16418308
doi: 10.1093/annonc/mdj138
Kantoff, P. W. et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N. Eng. J. Med. 363, 411–422 (2010).
doi: 10.1056/NEJMoa1001294
Balch, C. M. et al. Final version of 2009 AJCC melanoma staging and classification. J. Clin. Oncol. 27, 6199–6206 (2009).
pubmed: 19917835
pmcid: 2793035
doi: 10.1200/JCO.2009.23.4799
Gajewski, T. F. et al. Immune resistance orchestrated by the tumor microenvironment. Immunol. Rev. 213, 131–145 (2006).
pubmed: 16972901
doi: 10.1111/j.1600-065X.2006.00442.x
Boudewijns, S. et al. Adjuvant dendritic cell vaccination induces tumor-specific immune responses in the majority of stage III melanoma patients. Oncoimmunology 5, e1191732 (2016).
pubmed: 27622047
pmcid: 5006921
doi: 10.1080/2162402X.2016.1191732
Aarntzen, E. H. J. G. et al. Skin-test infiltrating lymphocytes early predict clinical outcome of dendritic cell-based vaccination in metastatic melanoma. Cancer Res. 72, 6102–6110 (2012).
pubmed: 23010076
doi: 10.1158/0008-5472.CAN-12-2479
Bol, K. Favorable overall survival in stage III melanoma patients after adjuvant dendritic cell vaccination. OncoImmunology 5, e1057673 (2016).
pubmed: 26942068
doi: 10.1080/2162402X.2015.1057673
Eggermont, A. M. et al. Prolonged survival in stage III Melanoma with Ipilimumab Adjuvant Therapy. N. Engl. J. Med. 375, 1845–1855 (2016).
pubmed: 27717298
pmcid: 5648545
doi: 10.1056/NEJMoa1611299
Weber, J. et al. Adjuvant Nivolumab versus Ipilimumab in Resected Stage III or IV Melanoma. N. Engl. J. Med. 377, 1824–1835 (2017).
pubmed: 28891423
doi: 10.1056/NEJMoa1709030
Long, G. V. et al. Adjuvant dabrafenib plus Trametinib in Stage III BRAF-Mutated Melanoma. N. Engl. J. Med. 377, 1813–1823 (2017).
pubmed: 28891408
doi: 10.1056/NEJMoa1708539
Eggermont, A. M. M. et al. Adjuvant Pembrolizumab versus placebo in resected stage III Melanoma. N. Engl. J. Med. 378, 1789–1801 (2018).
pubmed: 29658430
doi: 10.1056/NEJMoa1802357
Bloemendal, M. et al. Early recurrence in completely resected IIIB and IIIC melanoma warrants restaging prior to adjuvant therapy. Annl. Surg. Oncol. 26, 3945–3952 (2019).
doi: 10.1245/s10434-019-07274-2
Gopalakrishnan, V. et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science 359, 97–103 (2018).
pubmed: 29097493
doi: 10.1126/science.aan4236
Chaput, N. et al. Baseline gut microbiota predicts clinical response and colitis in metastatic melanoma patients treated with ipilimumab. Ann. Oncol. 28, 1368–1379 (2017).
pubmed: 28368458
doi: 10.1093/annonc/mdx108
Alves Costa Stilva, C. et al. Influence of microbiota-associated metabolic reprograming on clinical outcome in patients with melanoma from the randomized adjuvant dendritic cell-based MIND-DC trial. Nat. Commun. https://doi.org/10.1038/s41467-024-45357-1 (2024).
Eggermont, A. M. et al. Adjuvant ipilimumab versus placebo after complete resection of high-risk stage III melanoma (EORTC 18071): a randomised, double-blind, phase 3 trial. Lancet. Oncol. 16, 522–530 (2015).
pubmed: 25840693
doi: 10.1016/S1470-2045(15)70122-1
Draube, A. et al. Dendritic cell based tumor vaccination in prostate and renal cell cancer: a systematic review and meta-analysis. PLoS One 6, e18801 (2011).
pubmed: 21533099
pmcid: 3080391
doi: 10.1371/journal.pone.0018801
Aarntzen, E. H. et al. Skin-test infiltrating lymphocytes early predict clinical outcome of dendritic cell based vaccination in metastatic melanoma. Cancer Res. 72, 6102–6110 (2012).
pubmed: 23010076
doi: 10.1158/0008-5472.CAN-12-2479
Waldman, A. D., Fritz, J. M. & Lenardo, M. J. A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat. Rev. Immunol. 20, 651–668 (2020).
pubmed: 32433532
pmcid: 7238960
doi: 10.1038/s41577-020-0306-5
Xie, N. et al. Neoantigens: promising targets for cancer therapy. Signal. Transduct Target Ther. 8, 9 (2023).
pubmed: 36604431
pmcid: 9816309
doi: 10.1038/s41392-022-01270-x
Schwarze, J. K. et al. Intratumoral administration of CD1c (BDCA-1)(+) and CD141 (BDCA-3)(+) myeloid dendritic cells in combination with talimogene laherparepvec in immune checkpoint blockade refractory advanced melanoma patients: a phase I clinical trial. J. Immunother. Cancer 10, e005141 (2022).
pubmed: 36113895
pmcid: 9486335
doi: 10.1136/jitc-2022-005141
Emerson, D. A. & Redmond, W. L. Overcoming tumor-induced immune suppression: from relieving inhibition to providing costimulation with T cell agonists. BioDrugs 32, 221–231 (2018).
pubmed: 29637478
pmcid: 7664461
doi: 10.1007/s40259-018-0277-2
Ribas, A. et al. Dendritic cell vaccination combined with CTLA4 blockade in patients with metastatic melanoma. Clin. Cancer Res. 15, 6267–6276 (2009).
pubmed: 19789309
pmcid: 2765061
doi: 10.1158/1078-0432.CCR-09-1254
Wilgenhof, S. et al. Phase II study of autologous monocyte-derived mRNA electroporated dendritic cells (TriMixDC-MEL) plus ipilimumab in patients with pretreated advanced melanoma. J. Clin. Oncol. 34, 1330–1338 (2016).
pubmed: 26926680
doi: 10.1200/JCO.2015.63.4121
Versteven, M. et al. Dendritic cells and programmed death-1 blockade: a joint venture to combat cancer. Front. Immunol. 9, 394 (2018).
pubmed: 29599770
pmcid: 5863527
doi: 10.3389/fimmu.2018.00394
Achkar, T. & Tarhini, A. A. The use of immunotherapy in the treatment of melanoma. J. Hematol. Oncol. 10, 88 (2017).
pubmed: 28434398
pmcid: 5402170
doi: 10.1186/s13045-017-0458-3
Faries, M. B. et al. Completion dissection or observation for sentinel-node metastasis in melanoma. N Engl. J. Med. 376, 2211–2222 (2017).
pubmed: 28591523
pmcid: 5548388
doi: 10.1056/NEJMoa1613210
Textor, J. & Wortel, I. M. jtextor/trialMinRand: Initial release (v1.0.0). Zenodo. https://doi.org/10.5281/zenodo.10145627 (2023).
Pocock, S. J. & Simon, R. Sequential treatment assignment with balancing for prognostic factors in the controlled clinical trial. Biometrics 31, 103–115 (1975).
pubmed: 1100130
doi: 10.2307/2529712
de Vries, I. J. et al. Immunomonitoring tumor-specific T cells in delayed-type hypersensitivity skin biopsies after dendritic cell vaccination correlates with clinical outcome. J. Clin. Oncol. 23, 5779–5787 (2005).
pubmed: 16110035
doi: 10.1200/JCO.2005.06.478