Adjuvant dendritic cell therapy in stage IIIB/C melanoma: the MIND-DC randomized phase III trial.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
23 Feb 2024
Historique:
received: 09 05 2023
accepted: 22 01 2024
medline: 24 2 2024
pubmed: 24 2 2024
entrez: 23 2 2024
Statut: epublish

Résumé

Autologous natural dendritic cells (nDCs) treatment can induce tumor-specific immune responses and clinical responses in cancer patients. In this phase III clinical trial (NCT02993315), 148 patients with resected stage IIIB/C melanoma were randomized to adjuvant treatment with nDCs (n = 99) or placebo (n = 49). Active treatment consisted of intranodally injected autologous CD1c+ conventional and plasmacytoid DCs loaded with tumor antigens. The primary endpoint was the 2-year recurrence-free survival (RFS) rate, whereas the secondary endpoints included median RFS, 2-year and median overall survival, adverse event profile, and immunological response The 2-year RFS rate was 36.8% in the nDC treatment group and 46.9% in the control group (p = 0.31). Median RFS was 12.7 months vs 19.9 months, respectively (hazard ratio 1.25; 90% CI: 0.88-1.79; p = 0.29). Median overall survival was not reached in both treatment groups (hazard ratio 1.32; 90% CI: 0.73-2.38; p = 0.44). Grade 3-4 study-related adverse events occurred in 5% and 6% of patients. Functional antigen-specific T cell responses could be detected in 67.1% of patients tested in the nDC treatment group vs 3.8% of patients tested in the control group (p < 0.001). In conclusion, while adjuvant nDC treatment in stage IIIB/C melanoma patients generated specific immune responses and was well tolerated, no benefit in RFS was observed.

Identifiants

pubmed: 38395969
doi: 10.1038/s41467-024-45358-0
pii: 10.1038/s41467-024-45358-0
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1632

Informations de copyright

© 2024. The Author(s).

Références

Banchereau, J. & Steinman, R. M. Dendritic cells and the control of immunity. Nature 392, 245–252 (1998).
pubmed: 9521319 doi: 10.1038/32588
Palucka, K. & Banchereau, J. Cancer immunotherapy via dendritic cells. Nat. Rev. Cancer 12, 265–277 (2012).
pubmed: 22437871 pmcid: 3433802 doi: 10.1038/nrc3258
Baraibar, I., Melero, I., Ponz-Sarvise, M. & Castanon, E. Safety and tolerability of immune checkpoint inhibitors (PD-1 and PD-L1) in Cancer. Drug Saf. 42, 281–294 (2019).
pubmed: 30649742 doi: 10.1007/s40264-018-0774-8
Anguille, S., Smits, E. L., Lion, E., van Tendeloo, V. F. & Berneman, Z. N. Clinical use of dendritic cells for cancer therapy. Lancet Oncol. 15, e257–e267 (2014).
pubmed: 24872109 doi: 10.1016/S1470-2045(13)70585-0
Soruri, A. et al. IL-4 down-regulates anaphylatoxin receptors in monocytes and dendritic cells and impairs anaphylatoxin-induced migration in vivo. J. Immunol. 170, 3306–3314 (2003).
pubmed: 12626590 doi: 10.4049/jimmunol.170.6.3306
Breckpot, K. et al. Dendritic cells differentiated in the presence of IFN-{beta} and IL-3 are potent inducers of an antigen-specific CD8+ T cell response. J. Leukoc. Biol. 78, 898–908 (2005).
pubmed: 16037410 doi: 10.1189/jlb.0105052
Thurnher, M., Zelle-Rieser, C., Ramoner, R., Bartsch, G. & Holtl, L. The disabled dendritic cell. FASEB J. 15, 1054–1061 (2001).
pubmed: 11292667 doi: 10.1096/fsb2fj000508hyp
Wimmers, F., Schreibelt, G., Skold, A. E., Figdor, C. G. & De Vries, I. J. Paradigm shift in dendritic cell-based immunotherapy: from in vitro generated monocyte-derived DCs to naturally circulating DC subsets. Front. Immunol. 5, 165 (2014).
pubmed: 24782868 pmcid: 3990057 doi: 10.3389/fimmu.2014.00165
MacDonald, K. P. et al. Characterization of human blood dendritic cell subsets. Blood 100, 4512–4520 (2002).
pubmed: 12393628 doi: 10.1182/blood-2001-11-0097
Schreibelt, G. et al. Effective clinical responses in metastatic melanoma patients after vaccination with primary myeloid dendritic cells. Clin. Cancer Res. 22, 2155–2166 (2016).
pubmed: 26712687 doi: 10.1158/1078-0432.CCR-15-2205
Tel, J. et al. Natural human plasmacytoid dendritic cells induce antigen-specific T-cell responses in melanoma patients. Cancer Res. 73, 1063–1075 (2013).
pubmed: 23345163 doi: 10.1158/0008-5472.CAN-12-2583
Westdorp, H. et al. Blood-derived dendritic cell vaccinations induce immune responses that correlate with clinical outcome in patients with chemo-naive castration-resistant prostate cancer. J. Immunother. Cancer 7, 302 (2019).
pubmed: 31727154 pmcid: 6854814 doi: 10.1186/s40425-019-0787-6
Bloemendal, M. et al. Immunological responses to adjuvant vaccination with combined CD1c(+) myeloid and plasmacytoid dendritic cells in stage III melanoma patients. Oncoimmunology 11, 2015113 (2022).
pubmed: 36524210 doi: 10.1080/2162402X.2021.2015113
Schadendorf, D. et al. Dacarbazine (DTIC) versus vaccination with autologous peptide-pulsed dendritic cells (DC) in first-line treatment of patients with metastatic melanoma: a randomized phase III trial of the DC study group of the DeCOG. Ann. Oncol. 17, 563–570 (2006).
pubmed: 16418308 doi: 10.1093/annonc/mdj138
Kantoff, P. W. et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N. Eng. J. Med. 363, 411–422 (2010).
doi: 10.1056/NEJMoa1001294
Balch, C. M. et al. Final version of 2009 AJCC melanoma staging and classification. J. Clin. Oncol. 27, 6199–6206 (2009).
pubmed: 19917835 pmcid: 2793035 doi: 10.1200/JCO.2009.23.4799
Gajewski, T. F. et al. Immune resistance orchestrated by the tumor microenvironment. Immunol. Rev. 213, 131–145 (2006).
pubmed: 16972901 doi: 10.1111/j.1600-065X.2006.00442.x
Boudewijns, S. et al. Adjuvant dendritic cell vaccination induces tumor-specific immune responses in the majority of stage III melanoma patients. Oncoimmunology 5, e1191732 (2016).
pubmed: 27622047 pmcid: 5006921 doi: 10.1080/2162402X.2016.1191732
Aarntzen, E. H. J. G. et al. Skin-test infiltrating lymphocytes early predict clinical outcome of dendritic cell-based vaccination in metastatic melanoma. Cancer Res. 72, 6102–6110 (2012).
pubmed: 23010076 doi: 10.1158/0008-5472.CAN-12-2479
Bol, K. Favorable overall survival in stage III melanoma patients after adjuvant dendritic cell vaccination. OncoImmunology 5, e1057673 (2016).
pubmed: 26942068 doi: 10.1080/2162402X.2015.1057673
Eggermont, A. M. et al. Prolonged survival in stage III Melanoma with Ipilimumab Adjuvant Therapy. N. Engl. J. Med. 375, 1845–1855 (2016).
pubmed: 27717298 pmcid: 5648545 doi: 10.1056/NEJMoa1611299
Weber, J. et al. Adjuvant Nivolumab versus Ipilimumab in Resected Stage III or IV Melanoma. N. Engl. J. Med. 377, 1824–1835 (2017).
pubmed: 28891423 doi: 10.1056/NEJMoa1709030
Long, G. V. et al. Adjuvant dabrafenib plus Trametinib in Stage III BRAF-Mutated Melanoma. N. Engl. J. Med. 377, 1813–1823 (2017).
pubmed: 28891408 doi: 10.1056/NEJMoa1708539
Eggermont, A. M. M. et al. Adjuvant Pembrolizumab versus placebo in resected stage III Melanoma. N. Engl. J. Med. 378, 1789–1801 (2018).
pubmed: 29658430 doi: 10.1056/NEJMoa1802357
Bloemendal, M. et al. Early recurrence in completely resected IIIB and IIIC melanoma warrants restaging prior to adjuvant therapy. Annl. Surg. Oncol. 26, 3945–3952 (2019).
doi: 10.1245/s10434-019-07274-2
Gopalakrishnan, V. et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science 359, 97–103 (2018).
pubmed: 29097493 doi: 10.1126/science.aan4236
Chaput, N. et al. Baseline gut microbiota predicts clinical response and colitis in metastatic melanoma patients treated with ipilimumab. Ann. Oncol. 28, 1368–1379 (2017).
pubmed: 28368458 doi: 10.1093/annonc/mdx108
Alves Costa Stilva, C. et al. Influence of microbiota-associated metabolic reprograming on clinical outcome in patients with melanoma from the randomized adjuvant dendritic cell-based MIND-DC trial. Nat. Commun. https://doi.org/10.1038/s41467-024-45357-1 (2024).
Eggermont, A. M. et al. Adjuvant ipilimumab versus placebo after complete resection of high-risk stage III melanoma (EORTC 18071): a randomised, double-blind, phase 3 trial. Lancet. Oncol. 16, 522–530 (2015).
pubmed: 25840693 doi: 10.1016/S1470-2045(15)70122-1
Draube, A. et al. Dendritic cell based tumor vaccination in prostate and renal cell cancer: a systematic review and meta-analysis. PLoS One 6, e18801 (2011).
pubmed: 21533099 pmcid: 3080391 doi: 10.1371/journal.pone.0018801
Aarntzen, E. H. et al. Skin-test infiltrating lymphocytes early predict clinical outcome of dendritic cell based vaccination in metastatic melanoma. Cancer Res. 72, 6102–6110 (2012).
pubmed: 23010076 doi: 10.1158/0008-5472.CAN-12-2479
Waldman, A. D., Fritz, J. M. & Lenardo, M. J. A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat. Rev. Immunol. 20, 651–668 (2020).
pubmed: 32433532 pmcid: 7238960 doi: 10.1038/s41577-020-0306-5
Xie, N. et al. Neoantigens: promising targets for cancer therapy. Signal. Transduct Target Ther. 8, 9 (2023).
pubmed: 36604431 pmcid: 9816309 doi: 10.1038/s41392-022-01270-x
Schwarze, J. K. et al. Intratumoral administration of CD1c (BDCA-1)(+) and CD141 (BDCA-3)(+) myeloid dendritic cells in combination with talimogene laherparepvec in immune checkpoint blockade refractory advanced melanoma patients: a phase I clinical trial. J. Immunother. Cancer 10, e005141 (2022).
pubmed: 36113895 pmcid: 9486335 doi: 10.1136/jitc-2022-005141
Emerson, D. A. & Redmond, W. L. Overcoming tumor-induced immune suppression: from relieving inhibition to providing costimulation with T cell agonists. BioDrugs 32, 221–231 (2018).
pubmed: 29637478 pmcid: 7664461 doi: 10.1007/s40259-018-0277-2
Ribas, A. et al. Dendritic cell vaccination combined with CTLA4 blockade in patients with metastatic melanoma. Clin. Cancer Res. 15, 6267–6276 (2009).
pubmed: 19789309 pmcid: 2765061 doi: 10.1158/1078-0432.CCR-09-1254
Wilgenhof, S. et al. Phase II study of autologous monocyte-derived mRNA electroporated dendritic cells (TriMixDC-MEL) plus ipilimumab in patients with pretreated advanced melanoma. J. Clin. Oncol. 34, 1330–1338 (2016).
pubmed: 26926680 doi: 10.1200/JCO.2015.63.4121
Versteven, M. et al. Dendritic cells and programmed death-1 blockade: a joint venture to combat cancer. Front. Immunol. 9, 394 (2018).
pubmed: 29599770 pmcid: 5863527 doi: 10.3389/fimmu.2018.00394
Achkar, T. & Tarhini, A. A. The use of immunotherapy in the treatment of melanoma. J. Hematol. Oncol. 10, 88 (2017).
pubmed: 28434398 pmcid: 5402170 doi: 10.1186/s13045-017-0458-3
Faries, M. B. et al. Completion dissection or observation for sentinel-node metastasis in melanoma. N Engl. J. Med. 376, 2211–2222 (2017).
pubmed: 28591523 pmcid: 5548388 doi: 10.1056/NEJMoa1613210
Textor, J. & Wortel, I. M. jtextor/trialMinRand: Initial release (v1.0.0). Zenodo. https://doi.org/10.5281/zenodo.10145627 (2023).
Pocock, S. J. & Simon, R. Sequential treatment assignment with balancing for prognostic factors in the controlled clinical trial. Biometrics 31, 103–115 (1975).
pubmed: 1100130 doi: 10.2307/2529712
de Vries, I. J. et al. Immunomonitoring tumor-specific T cells in delayed-type hypersensitivity skin biopsies after dendritic cell vaccination correlates with clinical outcome. J. Clin. Oncol. 23, 5779–5787 (2005).
pubmed: 16110035 doi: 10.1200/JCO.2005.06.478

Auteurs

Kalijn F Bol (KF)

Medical Biosciences, Radboud Institute for Medical Innovation, Radboud university medical center, Nijmegen, The Netherlands.
Department of Medical Oncology, Radboud university medical center, Nijmegen, The Netherlands.

Gerty Schreibelt (G)

Medical Biosciences, Radboud Institute for Medical Innovation, Radboud university medical center, Nijmegen, The Netherlands.

Martine Bloemendal (M)

Medical Biosciences, Radboud Institute for Medical Innovation, Radboud university medical center, Nijmegen, The Netherlands.
Department of Medical Oncology, Radboud university medical center, Nijmegen, The Netherlands.

Wouter W van Willigen (WW)

Medical Biosciences, Radboud Institute for Medical Innovation, Radboud university medical center, Nijmegen, The Netherlands.
Department of Medical Oncology, Radboud university medical center, Nijmegen, The Netherlands.

Simone Hins-de Bree (S)

Medical Biosciences, Radboud Institute for Medical Innovation, Radboud university medical center, Nijmegen, The Netherlands.

Anna L de Goede (AL)

Department of Pharmacy, Radboud university medical center, Nijmegen, The Netherlands.

Annemiek J de Boer (AJ)

Medical Biosciences, Radboud Institute for Medical Innovation, Radboud university medical center, Nijmegen, The Netherlands.

Kevin J H Bos (KJH)

Medical Biosciences, Radboud Institute for Medical Innovation, Radboud university medical center, Nijmegen, The Netherlands.

Tjitske Duiveman-de Boer (T)

Medical Biosciences, Radboud Institute for Medical Innovation, Radboud university medical center, Nijmegen, The Netherlands.

Michel A M Olde Nordkamp (MAM)

Medical Biosciences, Radboud Institute for Medical Innovation, Radboud university medical center, Nijmegen, The Netherlands.

Tom G M van Oorschot (TGM)

Medical Biosciences, Radboud Institute for Medical Innovation, Radboud university medical center, Nijmegen, The Netherlands.

Carlijn J Popelier (CJ)

Medical Biosciences, Radboud Institute for Medical Innovation, Radboud university medical center, Nijmegen, The Netherlands.

Jeanne M Pots (JM)

Medical Biosciences, Radboud Institute for Medical Innovation, Radboud university medical center, Nijmegen, The Netherlands.

Nicole M Scharenborg (NM)

Medical Biosciences, Radboud Institute for Medical Innovation, Radboud university medical center, Nijmegen, The Netherlands.

Mandy W M M van de Rakt (MWMM)

Medical Biosciences, Radboud Institute for Medical Innovation, Radboud university medical center, Nijmegen, The Netherlands.

Valeska de Ruiter (V)

Medical Biosciences, Radboud Institute for Medical Innovation, Radboud university medical center, Nijmegen, The Netherlands.

Wilmy S van Meeteren (WS)

Department of Dermatology, Radboud university medical center, Nijmegen, The Netherlands.

Michelle M van Rossum (MM)

Department of Dermatology, Radboud university medical center, Nijmegen, The Netherlands.

Sandra J Croockewit (SJ)

Department of Hematology, Radboud university medical center, Nijmegen, The Netherlands.

Bouke J Koeneman (BJ)

Medical Biosciences, Radboud Institute for Medical Innovation, Radboud university medical center, Nijmegen, The Netherlands.

Jeroen H A Creemers (JHA)

Medical Biosciences, Radboud Institute for Medical Innovation, Radboud university medical center, Nijmegen, The Netherlands.

Inge M N Wortel (IMN)

Medical Biosciences, Radboud Institute for Medical Innovation, Radboud university medical center, Nijmegen, The Netherlands.
Department of Data Science, Institute for Computing and Information Sciences, Radboud University, Nijmegen, The Netherlands.

Caroline Angerer (C)

Miltenyi Biotec, Bergisch Gladbach, Germany.

Mareke Brüning (M)

Miltenyi Biotec, Bergisch Gladbach, Germany.

Katja Petry (K)

Miltenyi Biotec, Bergisch Gladbach, Germany.

Andrzej Dzionek (A)

Miltenyi Biotec, Bergisch Gladbach, Germany.

Astrid A van der Veldt (AA)

Departments of Medical Oncology and Radiology & Nuclear Medicine, Erasmus Medical Center Cancer Institute, Rotterdam, The Netherlands.

Dirk J van Grünhagen (DJ)

Department Surgical Oncology, Erasmus Medical Center Cancer Institute, Rotterdam, The Netherlands.

Johanna E M Werner (JEM)

Department Surgical Oncology, Radboud university medical center, Nijmegen, The Netherlands.

Johannes J Bonenkamp (JJ)

Department Surgical Oncology, Radboud university medical center, Nijmegen, The Netherlands.

John B A G Haanen (JBAG)

Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.

Marye J Boers-Sonderen (MJ)

Department of Medical Oncology, Radboud university medical center, Nijmegen, The Netherlands.

Rutger H T Koornstra (RHT)

Department of Medical Oncology, Radboud university medical center, Nijmegen, The Netherlands.

Martijn F Boomsma (MF)

Department of Radiology, Isala Oncology Center, Zwolle, The Netherlands.

Erik H J Aarntzen (EHJ)

Department of Medical Imaging, Radboud university medical center, Nijmegen, The Netherlands.

Martin Gotthardt (M)

Department of Medical Imaging, Radboud university medical center, Nijmegen, The Netherlands.

James Nagarajah (J)

Department of Medical Imaging, Radboud university medical center, Nijmegen, The Netherlands.

Theo J M de Witte (TJM)

Medical Biosciences, Radboud Institute for Medical Innovation, Radboud university medical center, Nijmegen, The Netherlands.

Carl G Figdor (CG)

Medical Biosciences, Radboud Institute for Medical Innovation, Radboud university medical center, Nijmegen, The Netherlands.

Johannes H W de Wilt (JHW)

Department Surgical Oncology, Radboud university medical center, Nijmegen, The Netherlands.

Johannes Textor (J)

Medical Biosciences, Radboud Institute for Medical Innovation, Radboud university medical center, Nijmegen, The Netherlands.
Department of Data Science, Institute for Computing and Information Sciences, Radboud University, Nijmegen, The Netherlands.

Jan Willem B de Groot (JWB)

Department of Medical Oncology, Isala Oncology Center, Zwolle, The Netherlands.

Winald R Gerritsen (WR)

Department of Medical Oncology, Radboud university medical center, Nijmegen, The Netherlands.

I Jolanda M de Vries (IJM)

Medical Biosciences, Radboud Institute for Medical Innovation, Radboud university medical center, Nijmegen, The Netherlands. Jolanda.deVries@radboudumc.nl.

Classifications MeSH