DNA Methylation Signatures Correlate with Response to Immune Checkpoint Inhibitors in Metastatic Melanoma.


Journal

Targeted oncology
ISSN: 1776-260X
Titre abrégé: Target Oncol
Pays: France
ID NLM: 101270595

Informations de publication

Date de publication:
24 Feb 2024
Historique:
accepted: 02 02 2024
medline: 24 2 2024
pubmed: 24 2 2024
entrez: 24 2 2024
Statut: aheadofprint

Résumé

DNA methylation profiles have emerged as potential predictors of therapeutic response in various solid tumors. This study aimed to analyze the DNA methylation profiles of patients with stage IV metastatic melanoma undergoing first-line immune checkpoint inhibitor treatment and evaluate their correlation with a radiological response according to immune-related Response Evaluation Criteria in Solid Tumors (iRECIST). A total of 81 tissue samples from 71 patients with metastatic melanoma (27 female, 44 male) were included in this study. We utilized Illumina Methylation EPIC Beadchips to retrieve their genome-wide methylation profile by interrogating >850,000 CpG sites. Clustering based on the 500 most differentially methylated genes was conducted to identify distinct methylation patterns associated with immune checkpoint inhibitor response. Results were further aligned with an independent, previously published data set. The median progression-free survival was 8.5 months (range: 0-104.1 months), and the median overall survival was 30.6 months (range: 0-104.1 months). Objective responses were observed in 29 patients (40.8%). DNA methylation profiling revealed specific signatures that correlated with radiological response to immune checkpoint inhibitors. Three distinct clusters were identified based on the methylation patterns of the 500 most differentially methylated genes. Cluster 1 (12/12) and cluster 2 (12/24) exhibited a higher proportion of responders, while cluster 3 (39/45) predominantly consisted of non-responders. In the validation data set, responders also showed more frequent hypomethylation although differences in the data sets limit the interpretation. These findings suggest that DNA methylation profiling of tumor tissues might serve as a predictive biomarker for immune checkpoint inhibitor response in patients with metastatic melanoma. Further validation studies are warranted to confirm the efficiency of DNA methylation profiling as a predictive tool in the context of immunotherapy for metastatic melanoma.

Sections du résumé

BACKGROUND BACKGROUND
DNA methylation profiles have emerged as potential predictors of therapeutic response in various solid tumors.
OBJECTIVE OBJECTIVE
This study aimed to analyze the DNA methylation profiles of patients with stage IV metastatic melanoma undergoing first-line immune checkpoint inhibitor treatment and evaluate their correlation with a radiological response according to immune-related Response Evaluation Criteria in Solid Tumors (iRECIST).
METHODS METHODS
A total of 81 tissue samples from 71 patients with metastatic melanoma (27 female, 44 male) were included in this study. We utilized Illumina Methylation EPIC Beadchips to retrieve their genome-wide methylation profile by interrogating >850,000 CpG sites. Clustering based on the 500 most differentially methylated genes was conducted to identify distinct methylation patterns associated with immune checkpoint inhibitor response. Results were further aligned with an independent, previously published data set.
RESULTS RESULTS
The median progression-free survival was 8.5 months (range: 0-104.1 months), and the median overall survival was 30.6 months (range: 0-104.1 months). Objective responses were observed in 29 patients (40.8%). DNA methylation profiling revealed specific signatures that correlated with radiological response to immune checkpoint inhibitors. Three distinct clusters were identified based on the methylation patterns of the 500 most differentially methylated genes. Cluster 1 (12/12) and cluster 2 (12/24) exhibited a higher proportion of responders, while cluster 3 (39/45) predominantly consisted of non-responders. In the validation data set, responders also showed more frequent hypomethylation although differences in the data sets limit the interpretation.
CONCLUSIONS CONCLUSIONS
These findings suggest that DNA methylation profiling of tumor tissues might serve as a predictive biomarker for immune checkpoint inhibitor response in patients with metastatic melanoma. Further validation studies are warranted to confirm the efficiency of DNA methylation profiling as a predictive tool in the context of immunotherapy for metastatic melanoma.

Identifiants

pubmed: 38401029
doi: 10.1007/s11523-024-01041-4
pii: 10.1007/s11523-024-01041-4
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2024. The Author(s).

Références

Algazi AP, Tsai KK, Shoushtari AN, Munhoz RR, Eroglu Z, Piulats JM, et al. Clinical outcomes in metastatic uveal melanoma treated with PD-1 and PD-L1 antibodies. Cancer. 2016;122(21):3344–53. https://doi.org/10.1002/cncr.30258 .
doi: 10.1002/cncr.30258 pubmed: 27533448
Capper D, Jones DTW, Sill M, Hovestadt V, Schrimpf D, Sturm D, et al. DNA methylation-based classification of central nervous system tumours. Nature. 2018;555(7697):469–74. https://doi.org/10.1038/nature26000 .
doi: 10.1038/nature26000 pubmed: 29539639 pmcid: 6093218
Daud AI, Wolchok JD, Robert C, Hwu WJ, Weber JS, Ribas A, et al. Programmed death-ligand 1 expression and response to the anti-programmed death 1 antibody pembrolizumab in melanoma. J Clin Oncol. 2016;34(34):4102–9. https://doi.org/10.1200/jco.2016.67.2477 .
doi: 10.1200/jco.2016.67.2477 pubmed: 27863197 pmcid: 5562434
Dimitriou F, Namikawa K, Reijers ILM, Buchbinder EI, Soon JA, Zaremba A, et al. Single-agent anti-PD-1 or combined with ipilimumab in patients with mucosal melanoma: an international, retrospective, cohort study. Ann Oncol. 2022;33(9):968–80. https://doi.org/10.1016/j.annonc.2022.06.004 .
doi: 10.1016/j.annonc.2022.06.004 pubmed: 35716907
Elgundi Z, Papanicolaou M, Major G, Cox TR, Melrose J, Whitelock JM, et al. Cancer metastasis: the role of the extracellular matrix and the heparan sulfate proteoglycan perlecan. Front Oncol. 2019;9:1482. https://doi.org/10.3389/fonc.2019.01482 .
doi: 10.3389/fonc.2019.01482 pubmed: 32010611
Emran AA, Chatterjee A, Rodger EJ, Tiffen JC, Gallagher SJ, Eccles MR, et al. Targeting DNA methylation and EZH2 activity to overcome melanoma resistance to immunotherapy. Trends Immunol. 2019;40(4):328–44. https://doi.org/10.1016/j.it.2019.02.004 .
doi: 10.1016/j.it.2019.02.004 pubmed: 30853334
Filipski K, Scherer M, Zeiner KN, Bucher A, Kleemann J, Jurmeister P, et al. DNA methylation-based prediction of response to immune checkpoint inhibition in metastatic melanoma. J Immunother Cancer. 2021;9(7): e002226. https://doi.org/10.1136/jitc-2020-002226 .
doi: 10.1136/jitc-2020-002226 pubmed: 34281986 pmcid: 8291310
Forschner A, Battke F, Hadaschik D, Schulze M, Weißgraeber S, Han CT, et al. Tumor mutation burden and circulating tumor DNA in combined CTLA-4 and PD-1 antibody therapy in metastatic melanoma: results of a prospective biomarker study. J Immunother Cancer. 2019;7(1):180. https://doi.org/10.1186/s40425-019-0659-0 .
doi: 10.1186/s40425-019-0659-0 pubmed: 31300034 pmcid: 6625062
Gallo S, Vitacolonna A, Crepaldi T. NMDA receptor and its emerging role in cancer. Int J Mol Sci. 2023;24(3):2540. https://doi.org/10.3390/ijms24032540 .
doi: 10.3390/ijms24032540 pubmed: 36768862 pmcid: 9917092
Gao Y, Yang C, He N, Zhao G, Wang J, Yang Y. Integration of the tumor mutational burden and tumor heterogeneity identify an immunological subtype of melanoma with favorable survival. Front Oncol. 2020;10: 571545. https://doi.org/10.3389/fonc.2020.571545 .
doi: 10.3389/fonc.2020.571545 pubmed: 33194669 pmcid: 7661856
Garbe C, Amaral T, Peris K, Hauschild A, Arenberger P, Basset-Seguin N, et al. European consensus-based interdisciplinary guideline for melanoma. Part 2: treatment: update 2022. Eur J Cancer. 2022;170:256–84. https://doi.org/10.1016/j.ejca.2022.04.018 .
doi: 10.1016/j.ejca.2022.04.018 pubmed: 35623961
Garbe C, Amaral T, Peris K, Hauschild A, Arenberger P, Bastholt L, et al. European consensus-based interdisciplinary guideline for melanoma. Part 1: diagnostics: update 2019. Eur J Cancer. 2020;126:141–58. https://doi.org/10.1016/j.ejca.2019.11.014 .
doi: 10.1016/j.ejca.2019.11.014 pubmed: 31928887
Ge SX, Jung D, Yao R. ShinyGO: a graphical gene-set enrichment tool for animals and plants. Bioinformatics. 2019;36(8):2628–9. https://doi.org/10.1093/bioinformatics/btz931 .
doi: 10.1093/bioinformatics/btz931 pmcid: 7178415
Gelis L, Jovancevic N, Bechara FG, Neuhaus EM, Hatt H. Functional expression of olfactory receptors in human primary melanoma and melanoma metastasis. Exp Dermatol. 2017;26(7):569–76. https://doi.org/10.1111/exd.13316 .
doi: 10.1111/exd.13316 pubmed: 28191688
Gowrishankar K, Gunatilake D, Gallagher SJ, Tiffen J, Rizos H, Hersey P. Inducible but not constitutive expression of PD-L1 in human melanoma cells is dependent on activation of NF-κB. PLoS ONE. 2015;10(4): e0123410. https://doi.org/10.1371/journal.pone.0123410 .
doi: 10.1371/journal.pone.0123410 pubmed: 25844720 pmcid: 4386825
He Y, Liu T, Dai S, Xu Z, Wang L, Luo F. Tumor-associated extracellular matrix: how to be a potential aide to anti-tumor immunotherapy? Front Cell Dev Biol. 2021;9: 739161. https://doi.org/10.3389/fcell.2021.739161 .
doi: 10.3389/fcell.2021.739161 pubmed: 34733848 pmcid: 8558531
Helmink BA, Reddy SM, Gao J, Zhang S, Basar R, Thakur R, et al. B cells and tertiary lymphoid structures promote immunotherapy response. Nature. 2020;577(7791):549–55. https://doi.org/10.1038/s41586-019-1922-8 .
doi: 10.1038/s41586-019-1922-8 pubmed: 31942075 pmcid: 8762581
Jiang X, Wang J, Deng X, Xiong F, Ge J, Xiang B, et al. Role of the tumor microenvironment in PD-L1/PD-1-mediated tumor immune escape. Mol Cancer. 2019;18(1):10. https://doi.org/10.1186/s12943-018-0928-4 .
doi: 10.1186/s12943-018-0928-4 pubmed: 30646912 pmcid: 6332843
Jurmeister P, Wrede N, Hoffmann I, Vollbrecht C, Heim D, Hummel M, et al. Mucosal melanomas of different anatomic sites share a common global DNA methylation profile with cutaneous melanoma but show location-dependent patterns of genetic and epigenetic alterations. J Pathol. 2022;256(1):61–70. https://doi.org/10.1002/path.5808 .
doi: 10.1002/path.5808 pubmed: 34564861
Keung EZ, Gershenwald JE. The eighth edition American Joint Committee on Cancer (AJCC) melanoma staging system: implications for melanoma treatment and care. Expert Rev Anticancer Ther. 2018;18(8):75–84. https://doi.org/10.1080/14737140.2018.1489246 .
doi: 10.1080/14737140.2018.1489246
Kodet O, Lacina L, Krejčí E, Dvořánková B, Grim M, Štork J, et al. Melanoma cells influence the differentiation pattern of human epidermal keratinocytes. Mol Cancer. 2015;14(1):1. https://doi.org/10.1186/1476-4598-14-1 .
doi: 10.1186/1476-4598-14-1 pubmed: 25560632 pmcid: 4325966
Koelsche C, Schrimpf D, Stichel D, Sill M, Sahm F, Reuss DE, et al. Sarcoma classification by DNA methylation profiling. Nat Commun. 2021;12(1):498. https://doi.org/10.1038/s41467-020-20603-4 .
doi: 10.1038/s41467-020-20603-4 pubmed: 33479225 pmcid: 7819999
Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Cowey CL, Lao CD, et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015;373(1):23–34. https://doi.org/10.1056/NEJMoa1504030 .
doi: 10.1056/NEJMoa1504030 pubmed: 26027431 pmcid: 5698905
Louis DN, Perry A, Wesseling P, Brat DJ, Cree IA, Figarella-Branger D, et al. The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro Oncol. 2021;23(8):1231–51. https://doi.org/10.1093/neuonc/noab106 .
doi: 10.1093/neuonc/noab106 pubmed: 34185076 pmcid: 8328013
Lu T, Wang S, Xu L, Zhou Q, Singla N, Gao J, et al. Tumor neoantigenicity assessment with CSiN score incorporates clonality and immunogenicity to predict immunotherapy outcomes. Sci Immunol. 2020;5(44):eaaz3199. https://doi.org/10.1126/sciimmunol.aaz3199 .
doi: 10.1126/sciimmunol.aaz3199 pubmed: 32086382 pmcid: 7239327
Maksimovic J, Gordon L, Oshlack A. SWAN: subset-quantile within array normalization for illumina infinium human methylation 450 bead chips. Genome Biol. 2012;13(6):R44. https://doi.org/10.1186/gb-2012-13-6-r44 .
doi: 10.1186/gb-2012-13-6-r44 pubmed: 22703947 pmcid: 3446316
Metsalu T, Vilo J. ClustVis: a web tool for visualizing clustering of multivariate data using principal component analysis and heatmap. Nucleic Acids Res. 2015;43(W1):W566–70. https://doi.org/10.1093/nar/gkv468 .
doi: 10.1093/nar/gkv468 pubmed: 25969447 pmcid: 4489295
Morrison C, Pabla S, Conroy JM, Nesline MK, Glenn ST, Dressman D, et al. Predicting response to checkpoint inhibitors in melanoma beyond PD-L1 and mutational burden. J Immunother Cancer. 2018;6(1):32. https://doi.org/10.1186/s40425-018-0344-8 .
doi: 10.1186/s40425-018-0344-8 pubmed: 29743104 pmcid: 5944039
Newell F, Pires da Silva I, Johansson PA, Menzies AM, Wilmott JS, Addala V, et al. Multiomic profiling of checkpoint inhibitor-treated melanoma: identifying predictors of response and resistance, and markers of biological discordance. Cancer Cell. 2022;40(1):88–102. https://doi.org/10.1016/j.ccell.2021.11.012 .
doi: 10.1016/j.ccell.2021.11.012 pubmed: 34951955
Ning B, Liu Y, Wang M, Li Y, Xu T, Wei Y. The predictive value of tumor mutation burden on clinical efficacy of immune checkpoint inhibitors in melanoma: a systematic review and meta-analysis. Front Pharmacol. 2022;13: 748674. https://doi.org/10.3389/fphar.2022.748674 .
doi: 10.3389/fphar.2022.748674 pubmed: 35355708 pmcid: 8959431
Pater JL, Loeb M. Nonanatomic prognostic factors in carcinoma of the lung: a multivariate analysis. Cancer. 1982;50(2):326–31. https://doi.org/10.1002/1097-0142(19820715)50:2%3c326::aid-cncr2820500227%3e3.0.co;2-g .
doi: 10.1002/1097-0142(19820715)50:2<326::aid-cncr2820500227>3.0.co;2-g pubmed: 7083139
Pedro MP, Lund K, Iglesias-Bartolome R. The landscape of GPCR signaling in the regulation of epidermal stem cell fate and skin homeostasis. Stem Cells. 2020;38(12):520-31. https://doi.org/10.1002/stem.3273 .
doi: 10.1002/stem.3273 pubmed: 32896043
Phipson B, Maksimovic J, Oshlack A. missMethyl: an R package for analyzing data from Illumina’s human methylation 450 platform. Bioinformatics. 2016;32(2):286–8. https://doi.org/10.1093/bioinformatics/btv560 .
doi: 10.1093/bioinformatics/btv560 pubmed: 26424855
Raymond JH, Aktary Z, Larue L, Delmas V. Targeting GPCRs and their signaling as a therapeutic option in melanoma. Cancers (Basel). 2022;14(3):706. https://doi.org/10.3390/cancers14030706 .
doi: 10.3390/cancers14030706 pubmed: 35158973
Rober C, Schachter J, Long GV, Arance A, Grob JJ, Mortier L, et al. Pembrolizumab versus ipilimumab in advanced melanoma. N Engl J Med. 2015;372(26):2521–32. https://doi.org/10.1056/NEJMoa1503093 .
doi: 10.1056/NEJMoa1503093
Rodrigues M, Koning L, Coupland SE, Jochemsen AG, Marais R, Stern MH, et al. So close, yet so far: discrepancies between uveal and other melanomas. A position paper from UM Cure 2020. Cancers (Basel). 2019;11(7):1032. https://doi.org/10.3390/cancers11071032 .
doi: 10.3390/cancers11071032 pubmed: 31336679
Rømer AMA, Thorseth ML, Madsen DH. Immune modulatory properties of collagen in cancer. Front Immunol. 2021;12: 791453. https://doi.org/10.3389/fimmu.2021.791453 .
doi: 10.3389/fimmu.2021.791453 pubmed: 34956223 pmcid: 8692250
Seymour L, Bogaerts J, Perrone A, Ford R, Schwartz LH, Mandrekar S, et al. iRECIST: guidelines for response criteria for use in trials testing immunotherapeutics. Lancet Oncol. 2017;18(3):e143–52. https://doi.org/10.1016/s1470-2045(17)30074-8 .
doi: 10.1016/s1470-2045(17)30074-8 pubmed: 28271869 pmcid: 5648544
Starzer AM, Berghoff AS, Hamacher R, Tomasich E, Feldmann K, Hatziioannou T, et al. Tumor DNA methylation profiles correlate with response to anti-PD-1 immune checkpoint inhibitor monotherapy in sarcoma patients. J Immunother Cancer. 2021;9(3): e001458. https://doi.org/10.1136/jitc-2020-001458 .
doi: 10.1136/jitc-2020-001458 pubmed: 33762319 pmcid: 7993298
Starzer AM, Heller G, Tomasich E, Melchardt T, Feldmann K, Hatziioannou T, et al. DNA methylation profiles differ in responders versus non-responders to anti-PD-1 immune checkpoint inhibitors in patients with advanced and metastatic head and neck squamous cell carcinoma. J Immunother Cancer. 2022;10(3): e003420. https://doi.org/10.1136/jitc-2021-003420 .
doi: 10.1136/jitc-2021-003420 pubmed: 35338086 pmcid: 8961155
Thomas D, Rathinavel AK, Radhakrishnan P. Altered glycosylation in cancer: a promising target for biomarkers and therapeutics. Biochim Biophys Acta Rev Cancer. 2021;1875(1): 188464. https://doi.org/10.1016/j.bbcan.2020.188464 .
doi: 10.1016/j.bbcan.2020.188464 pubmed: 33157161
Wang P, Xu G, Gao E, Xu Y, Liang L, Jiang G, et al. Identification of prognostic DNA methylation signatures in lung adenocarcinoma. Oxid Med Cell Longev. 2022;2022:8802303. https://doi.org/10.1155/2022/8802303 .
doi: 10.1155/2022/8802303 pubmed: 35814273 pmcid: 9259289
Weber J, Mandala M, Del Vecchio M, Gogas HJ, Arance AM, Cowey CL, et al. Adjuvant nivolumab versus ipilimumab in resected stage III or IV melanoma. N Engl J Med. 2017;377(19):1824–35. https://doi.org/10.1056/NEJMoa1709030 .
doi: 10.1056/NEJMoa1709030 pubmed: 28891423
Wells L, Cerniglia M, Hall S, Jost AC, Britt G. Treatment of metastatic disease with immune checkpoint inhibitors nivolumab and pembrolizumab: effect of performance status on clinical outcomes. J Immunother Precis Oncol. 2022;5(2):37–42. https://doi.org/10.36401/jipo-22-3 .
doi: 10.36401/jipo-22-3 pubmed: 35664089 pmcid: 9153247
Wolchok JD, Chiarion-Sileni V, Gonzalez R, Rutkowski P, Grob JJ, Cowey CL, et al. Overall survival with combined nivolumab and ipilimumab in advanced melanoma. N Engl J Med. 2017;377(14):1345–56. https://doi.org/10.1056/NEJMoa1709684 .
doi: 10.1056/NEJMoa1709684 pubmed: 28889792 pmcid: 5706778
Wolchok JD, Kluger H, Callahan MK, Postow MA, Rizvi NA, Lesokhin AM, et al. Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med. 2013;369(2):122–33. https://doi.org/10.1056/NEJMoa1302369 .
doi: 10.1056/NEJMoa1302369 pubmed: 23724867 pmcid: 5698004
Xu J, Zhao J, Wang J, Sun C, Zhu X. Prognostic value of lactate dehydrogenase for melanoma patients receiving anti-PD-1/PD-L1 therapy: a meta-analysis. Medicine (Baltimore). 2021;100(14): e25318. https://doi.org/10.1097/md.0000000000025318 .
doi: 10.1097/md.0000000000025318 pubmed: 33832106
Yang F, Markovic SN, Molina JR, Halfdanarson TR, Pagliaro LC, Chintakuntlawar AV, et al. Association of sex, age, and eastern cooperative oncology group performance status with survival benefit of cancer immunotherapy in randomized clinical trials: a systematic review and meta-analysis. JAMA Netw Open. 2020;3(8): e2012534. https://doi.org/10.1001/jamanetworkopen.2020.12534 .
doi: 10.1001/jamanetworkopen.2020.12534 pubmed: 32766800 pmcid: 7414387
Zimmer L, Vaubel J, Mohr P, Hauschild A, Utikal J, Simon J, et al. Phase II DeCOG-study of ipilimumab in pretreated and treatment-naïve patients with metastatic uveal melanoma. PLoS ONE. 2015;10(3): e0118564. https://doi.org/10.1371/journal.pone.0118564 .
doi: 10.1371/journal.pone.0118564 pubmed: 25761109 pmcid: 4356548

Auteurs

Julia Maria Ressler (JM)

Department of Dermatology, Medical University of Vienna, Vienna, Austria.

Erwin Tomasich (E)

Department of Medicine I, Division of Oncology, Christian Doppler Laboratory for Personalized Immunotherapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
Department of Medicine I, Division of Oncology, Medical University of Vienna, Vienna, Austria.

Teresa Hatziioannou (T)

Department of Medicine I, Division of Oncology, Christian Doppler Laboratory for Personalized Immunotherapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
Department of Medicine I, Division of Oncology, Medical University of Vienna, Vienna, Austria.

Helmut Ringl (H)

Wiener Gesundheitsverbund, Klinik Donaustadt, Vienna, Austria.

Gerwin Heller (G)

Department of Medicine I, Division of Oncology, Medical University of Vienna, Vienna, Austria.

Rita Silmbrod (R)

Department of Dermatology, Medical University of Vienna, Vienna, Austria.

Lynn Gottmann (L)

Department of Medicine I, Division of Oncology, Christian Doppler Laboratory for Personalized Immunotherapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
Department of Medicine I, Division of Oncology, Medical University of Vienna, Vienna, Austria.

Angelika Martina Starzer (AM)

Department of Medicine I, Division of Oncology, Medical University of Vienna, Vienna, Austria.

Nina Zila (N)

Department of Dermatology, Medical University of Vienna, Vienna, Austria.
Division of Biomedical Science, University of Applied Sciences FH Campus Wien, Vienna, Austria.

Philipp Tschandl (P)

Department of Dermatology, Medical University of Vienna, Vienna, Austria.

Christoph Hoeller (C)

Department of Dermatology, Medical University of Vienna, Vienna, Austria.

Matthias Preusser (M)

Department of Medicine I, Division of Oncology, Christian Doppler Laboratory for Personalized Immunotherapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
Department of Medicine I, Division of Oncology, Medical University of Vienna, Vienna, Austria.

Anna Sophie Berghoff (AS)

Department of Medicine I, Division of Oncology, Christian Doppler Laboratory for Personalized Immunotherapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria. anna.berghoff@meduniwien.ac.at.
Department of Medicine I, Division of Oncology, Medical University of Vienna, Vienna, Austria. anna.berghoff@meduniwien.ac.at.

Classifications MeSH