KDM3B inhibitors disrupt the oncogenic activity of PAX3-FOXO1 in fusion-positive rhabdomyosarcoma.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
24 Feb 2024
Historique:
received: 21 11 2022
accepted: 07 02 2024
medline: 25 2 2024
pubmed: 25 2 2024
entrez: 24 2 2024
Statut: epublish

Résumé

Fusion-positive rhabdomyosarcoma (FP-RMS) is an aggressive pediatric sarcoma driven primarily by the PAX3-FOXO1 fusion oncogene, for which therapies targeting PAX3-FOXO1 are lacking. Here, we screen 62,643 compounds using an engineered cell line that monitors PAX3-FOXO1 transcriptional activity identifying a hitherto uncharacterized compound, P3FI-63. RNA-seq, ATAC-seq, and docking analyses implicate histone lysine demethylases (KDMs) as its targets. Enzymatic assays confirm the inhibition of multiple KDMs with the highest selectivity for KDM3B. Structural similarity search of P3FI-63 identifies P3FI-90 with improved solubility and potency. Biophysical binding of P3FI-90 to KDM3B is demonstrated using NMR and SPR. P3FI-90 suppresses the growth of FP-RMS in vitro and in vivo through downregulating PAX3-FOXO1 activity, and combined knockdown of KDM3B and KDM1A phenocopies P3FI-90 effects. Thus, we report KDM inhibitors P3FI-63 and P3FI-90 with the highest specificity for KDM3B. Their potent suppression of PAX3-FOXO1 activity indicates a possible therapeutic approach for FP-RMS and other transcriptionally addicted cancers.

Identifiants

pubmed: 38402212
doi: 10.1038/s41467-024-45902-y
pii: 10.1038/s41467-024-45902-y
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1703

Subventions

Organisme : NCI NIH HHS
ID : HHSN261200800001E
Pays : United States

Informations de copyright

© 2024. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply.

Références

Shern, J. F., Yohe, M. E. & Khan, J. Pediatric rhabdomyosarcoma. Crit. Rev. Oncog. 20, 227–243 (2015).
pubmed: 26349418 pmcid: 5486973 doi: 10.1615/CritRevOncog.2015013800
Parham, D. M. et al. Correlation between histology and PAX/FKHR fusion status in alveolar rhabdomyosarcoma: a report from the Children’s Oncology Group. Am. J. Surg. Pathol. 31, 895–901 (2007).
pubmed: 17527077 doi: 10.1097/01.pas.0000213436.99492.51
Sorensen, P. H. B. et al. PAX3-FKHR and PAX7-FKHR gene fusions are prognostic indicators in alveolar rhabdomyosarcoma: a report from the children’s oncology group. J. Clin. Oncol. 20, 2672–2679 (2002).
pubmed: 12039929 doi: 10.1200/JCO.2002.03.137
Grobner, S. N. et al. The landscape of genomic alterations across childhood cancers. Nature 555, 321–327 (2018).
pubmed: 29489754 doi: 10.1038/nature25480
Gryder, B. E. et al. Chemical genomics reveals histone deacetylases are required for core regulatory transcription. Nat. Commun. 10, 3004 (2019).
pubmed: 31285436 pmcid: 6614369 doi: 10.1038/s41467-019-11046-7
Gryder, B. E. et al. PAX3-FOXO1 establishes myogenic super enhancers and confers BET bromodomain vulnerability. Cancer Discov. 7, 884–899 (2017).
pubmed: 28446439 pmcid: 7802885 doi: 10.1158/2159-8290.CD-16-1297
Amstutz, R. et al. Phosphorylation regulates transcriptional activity of PAX3/FKHR and reveals novel therapeutic possibilities. Cancer Res. 68, 3767–3776 (2008).
pubmed: 18483260 doi: 10.1158/0008-5472.CAN-07-2447
Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).
pubmed: 16199517 pmcid: 1239896 doi: 10.1073/pnas.0506580102
Mootha, V. K. et al. PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat. Genet. 34, 267–273 (2003).
pubmed: 12808457 doi: 10.1038/ng1180
Ebauer, M., Wachtel, M., Niggli, F. K. & Schaefer, B. W. Comparative expression profiling identifies an in vivo target gene signature with TFAP2B as a mediator of the survival function of PAX3/FKHR. Oncogene 26, 7267–7281 (2007).
pubmed: 17525748 doi: 10.1038/sj.onc.1210525
Alley, M. C. et al. Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay. Cancer Res. 48, 589–601 (1988).
pubmed: 3335022
Liberzon, A. et al. The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst. 1, 417–425 (2015).
pubmed: 26771021 pmcid: 4707969 doi: 10.1016/j.cels.2015.12.004
Wang, L. et al. A small molecule modulates Jumonji histone demethylase activity and selectively inhibits cancer growth. Nat. Commun. 4, 2035 (2013).
pubmed: 23792809 doi: 10.1038/ncomms3035
Hookway, E. The Role of the Lysine Demethylases KDM5 and KDM6 in Bone Malignancies. PhD thesis, Univ. Oxford. (2017). https://ora.ox.ac.uk/objects/uuid:b591861f-985b-4722-8027-492e750f3ff7 .
Keiser, M. J. et al. Relating protein pharmacology by ligand chemistry. Nat. Biotechnol. 25, 197–206 (2007).
pubmed: 17287757 doi: 10.1038/nbt1284
Hoffmann, I. et al. The role of histone demethylases in cancer therapy. Mol. Oncol. 6, 683–703 (2012).
pubmed: 22902149 pmcid: 5528348 doi: 10.1016/j.molonc.2012.07.004
Pishas, K. I. et al. Therapeutic targeting of KDM1A/LSD1 in Ewing Sarcoma with SP-2509 engages the endoplasmic reticulum stress response. Mol. Cancer Ther. 17, 1902–1916 (2018).
pubmed: 29997151 pmcid: 6201274 doi: 10.1158/1535-7163.MCT-18-0373
Pockrand, I., Swalen, J. D., Gordon, J. G. & Philpott, M. R. Surface plasmon spectroscopy of organic monolayer assemblies. Surf. Sci. 74, 237–244 (1978).
doi: 10.1016/0039-6028(78)90283-2
Vollmar, M. et al. Crystal structure of JmjC domain of human histone 3 Lysine-specific demethylase 3B (KDM3B). (2013). PBD ID: 4C8D. https://doi.org/10.2210/pdb4C8D/pdb .
Dalvit, C. et al. Identification of compounds with binding affinity to proteins via magnetization transfer from bulk water. J. Biomol. NMR 18, 65–68 (2000).
pubmed: 11061229 doi: 10.1023/A:1008354229396
Meiboom, S. & Gill, D. Modified spin‐echo method for measuring nuclear relaxation times. Rev. Sci. Instrum. 29, 688–691 (1958).
doi: 10.1063/1.1716296
Sanson, K. R. et al. Optimized libraries for CRISPR-Cas9 genetic screens with multiple modalities. Nat. Commun. 9, 5416 (2018).
pubmed: 30575746 pmcid: 6303322 doi: 10.1038/s41467-018-07901-8
Patel, A. G. et al. The myogenesis program drives clonal selection and drug resistance in rhabdomyosarcoma. Dev. Cell 57, 1226–1240 e1228 (2022).
pubmed: 35483358 pmcid: 9133224 doi: 10.1016/j.devcel.2022.04.003
Gryder, B. E. et al. Histone hyperacetylation disrupts core gene regulatory architecture in rhabdomyosarcoma. Nat. Genet. 51, 1714–1722 (2019).
pubmed: 31784732 pmcid: 6886578 doi: 10.1038/s41588-019-0534-4
Sunkel, B. D. et al. Evidence of pioneer factor activity of an oncogenic fusion transcription factor. iScience 24, 102867 (2021).
pubmed: 34386729 pmcid: 8346656 doi: 10.1016/j.isci.2021.102867
Xie, Z. et al. Gene set knowledge discovery with Enrichr. Curr. Protoc. 1, e90 (2021).
pubmed: 33780170 pmcid: 8152575 doi: 10.1002/cpz1.90
Ashburner, M. et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 25, 25–29 (2000).
pubmed: 10802651 pmcid: 3037419 doi: 10.1038/75556
Yang, T. et al. HiCRep: assessing the reproducibility of Hi-C data using a stratum-adjusted correlation coefficient. Genome Res. 27, 1939–1949 (2017).
pubmed: 28855260 pmcid: 5668950 doi: 10.1101/gr.220640.117
Galan, S. et al. CHESS enables quantitative comparison of chromatin contact data and automatic feature extraction. Nat. Genet. 52, 1247–1255 (2020).
pubmed: 33077914 pmcid: 7610641 doi: 10.1038/s41588-020-00712-y
Vian, L. et al. The energetics and physiological impact of cohesin extrusion. Cell 173, 1165–1178.e1120 (2018).
pubmed: 29706548 pmcid: 6065110 doi: 10.1016/j.cell.2018.03.072
Haydn, T., Metzger, E., Schuele, R. & Fulda, S. Concomitant epigenetic targeting of LSD1 and HDAC synergistically induces mitochondrial apoptosis in rhabdomyosarcoma cells. Cell Death Dis. 8, e2879 (2017).
pubmed: 28617441 pmcid: 5520898 doi: 10.1038/cddis.2017.239
Walters, Z. S. et al. Role for the histone demethylase KDM4B in rhabdomyosarcoma via CDK6 and CCNA2: compensation by KDM4A and apoptotic response of targeting both KDM4B and KDM4A. Cancers 13, 1734 (2021).
pubmed: 33917420 pmcid: 8038694 doi: 10.3390/cancers13071734
Singh, S. et al. Targeting KDM4 for treating PAX3-FOXO1-driven alveolar rhabdomyosarcoma. Sci. Transl. Med. 14, eabq2096 (2022).
pubmed: 35857643 pmcid: 9548378 doi: 10.1126/scitranslmed.abq2096
Xu, X. et al. Small molecular modulators of JMJD1C preferentially inhibit growth of leukemia cells. Int. J. Cancer 146, 400–412 (2020).
pubmed: 31271662 doi: 10.1002/ijc.32552
Metzger, E. et al. LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription. Nature 437, 436–439 (2005).
pubmed: 16079795 doi: 10.1038/nature04020
Dalvi, M. P. et al. Taxane-platin-resistant lung cancers co-develop hypersensitivity to JumonjiC demethylase inhibitors. Cell Rep. 19, 1669–1684 (2017).
pubmed: 28538184 pmcid: 5531293 doi: 10.1016/j.celrep.2017.04.077
Kim, J. Y. et al. KDM3B is the H3K9 demethylase involved in transcriptional activation of lmo2 in leukemia. Mol. Cell Biol. 32, 2917–2933 (2012).
pubmed: 22615488 pmcid: 3416203 doi: 10.1128/MCB.00133-12
An, M. J. et al. Histone demethylase KDM3B regulates the transcriptional network of cell-cycle genes in hepatocarcinoma HepG2 cells. Biochem. Biophys. Res. Commun. 508, 576–582 (2019).
pubmed: 30514438 doi: 10.1016/j.bbrc.2018.11.179
Shern, J. F. et al. Comprehensive genomic analysis of rhabdomyosarcoma reveals a landscape of alterations affecting a common genetic axis in fusion-positive and fusion-negative tumors. Cancer Discov. 4, 216–231 (2014).
pubmed: 24436047 pmcid: 4462130 doi: 10.1158/2159-8290.CD-13-0639
Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902.e21 (2019).
pubmed: 31178118 pmcid: 6687398 doi: 10.1016/j.cell.2019.05.031
Traag, V. A., Waltman, L. & van Eck, N. J. From Louvain to Leiden: guaranteeing well-connected communities. Sci. Rep. 9, 5233 (2019).
pubmed: 30914743 pmcid: 6435756 doi: 10.1038/s41598-019-41695-z
Becht, E. et al. Dimensionality reduction for visualizing single-cell data using UMAP. Nat. Biotechnol. 37, 38–44 (2019).
McDavid, A., Finak, G. & Yajima, M. MAST: Model-based Analysis of Single Cell Transcriptomics. https://doi.org/10.18129/B9.bioc.MAST , R package version 1.18.0. Bioconductor (2021). https://bioconductor.org/packages/MAST .
Korotkevich, G. et al. Fast gene set enrichment analysis. Preprint at bioRxiv https://doi.org/10.1101/060012 (2021).
Yohe, M. et al. MEK inhibition induces MYOG and remodels super-enhancers in RAS-driven rhabdomyosarcoma. Sci. Transl. Med. 10, eaan4470 (2018).
pubmed: 29973406 pmcid: 8054766 doi: 10.1126/scitranslmed.aan4470
Azorsa, D. O. et al. Immunohistochemical detection of PAX-FOXO1 fusion proteins in alveolar rhabdomyosarcoma using breakpoint specific monoclonal antibodies. Mod. Pathol. 34, 748–757 (2021).
pubmed: 33299109 doi: 10.1038/s41379-020-00719-0
Ramirez, F., Dundar, F., Diehl, S., Gruning, B. A. & Manke, T. deepTools: a flexible platform for exploring deep-sequencing data. Nucleic Acids Res. 42, W187–191 (2014).
pubmed: 24799436 pmcid: 4086134 doi: 10.1093/nar/gku365
Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).
pubmed: 20110278 pmcid: 2832824 doi: 10.1093/bioinformatics/btq033
Ross-Innes, C. S. et al. Differential oestrogen receptor binding is associated with clinical outcome in breast cancer. Nature 481, 389–393 (2012).
pubmed: 22217937 pmcid: 3272464 doi: 10.1038/nature10730
Ernst, J. & Kellis, M. ChromHMM: automating chromatin-state discovery and characterization. Nat. Methods 9, 215–216 (2012).
pubmed: 22373907 pmcid: 3577932 doi: 10.1038/nmeth.1906
Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576–589 (2010).
pubmed: 20513432 pmcid: 2898526 doi: 10.1016/j.molcel.2010.05.004
Open2C et al. Pairtools: from sequencing data to chromosome contacts. Preprint at bioRxiv https://doi.org/10.1101/2023.02.13.528389 (2023).
Kruse, K., Hug, C. B. & Vaquerizas, J. M. FAN-C: a feature-rich framework for the analysis and visualisation of chromosome conformation capture data. Genome Biol. 21, 303 (2020).
pubmed: 33334380 pmcid: 7745377 doi: 10.1186/s13059-020-02215-9
Shen, L. GeneOverlap: an R package to test and visualize gene overlaps (2016). https://doi.org/10.18129/B9.bioc.GeneOverlap , R package version 1.18.0, https://bioconductor.org/packages/GeneOverlap .
Wolff, J. et al. Galaxy HiCExplorer 3: a web server for reproducible Hi-C, capture Hi-C and single-cell Hi-C data analysis, quality control and visualization. Nucleic Acids Res. 48, W177–W184 (2020).
pubmed: 32301980 pmcid: 7319437 doi: 10.1093/nar/gkaa220
Durand, N. C. et al. Juicer provides a one-click system for analyzing loop-resolution Hi-C experiments. Cell Syst. 3, 95–98 (2016).
pubmed: 27467249 pmcid: 5846465 doi: 10.1016/j.cels.2016.07.002
Hart, T. et al. High-resolution CRISPR screens reveal fitness genes and genotype-specific cancer liabilities. Cell 163, 1515–1526 (2015).
pubmed: 26627737 doi: 10.1016/j.cell.2015.11.015
Li, W. et al. MAGeCK enables robust identification of essential genes from genome-scale CRISPR/Cas9 knockout screens. Genome Biol. 15, 554 (2014).
pubmed: 25476604 pmcid: 4290824 doi: 10.1186/s13059-014-0554-4
Leung, I. K. et al. Reporter ligand NMR screening method for 2-oxoglutarate oxygenase inhibitors. J. Med. Chem. 56, 547–555 (2013).
pubmed: 23234607 pmcid: 4673903 doi: 10.1021/jm301583m
Calabrese, D. R., Connelly, C. M. & Schneekloth Jr, J. S. Ligand-observed NMR techniques to probe RNA-small molecule interactions. In Methods in Enzymology). (Elsevier, 2019).

Auteurs

Yong Yean Kim (YY)

Genetics Branch, NCI, NIH, Bethesda, MD, USA. yong.kim@nih.gov.

Berkley E Gryder (BE)

Genetics Branch, NCI, NIH, Bethesda, MD, USA.
Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA.

Ranuka Sinniah (R)

Genetics Branch, NCI, NIH, Bethesda, MD, USA.

Megan L Peach (ML)

Basic Science Program, Frederick National Laboratory for Cancer Research (FNLCR), Frederick, MD, USA.

Jack F Shern (JF)

Pediatric Oncology Branch, NCI, NIH, Bethesda, MD, USA.

Abdalla Abdelmaksoud (A)

Collaborative Bioinformatics Resource, NCI, NIH, Bethesda, MD, USA.

Silvia Pomella (S)

Genetics Branch, NCI, NIH, Bethesda, MD, USA.
Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.

Girma M Woldemichael (GM)

Leidos Biomed Res Inc, FNLCR, Basic Sci Program, Frederick, MD, USA.
Molecular Targets Program, NCI, NIH, Frederick, MD, USA.

Benjamin Z Stanton (BZ)

Genetics Branch, NCI, NIH, Bethesda, MD, USA.
Nationwide Children's Hospital, Center for Childhood Cancer Research, Columbus, OH, USA.
Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA.
Department of Biological Chemistry & Pharmacology, The Ohio State University College of Medicine, Columbus, OH, USA.

David Milewski (D)

Genetics Branch, NCI, NIH, Bethesda, MD, USA.

Joseph J Barchi (JJ)

Chemical Biology Laboratory, NCI, NIH, Frederick, MD, USA.

John S Schneekloth (JS)

Chemical Biology Laboratory, NCI, NIH, Frederick, MD, USA.

Raj Chari (R)

Genome Modification Core, Laboratory Animal Sciences Program, FNLCR, Frederick, MD, USA.

Joshua T Kowalczyk (JT)

Genetics Branch, NCI, NIH, Bethesda, MD, USA.

Shilpa R Shenoy (SR)

Leidos Biomed Res Inc, FNLCR, Basic Sci Program, Frederick, MD, USA.
Molecular Targets Program, NCI, NIH, Frederick, MD, USA.

Jason R Evans (JR)

Natural Products Branch, NCI, NIH, Frederick, MD, USA.

Young K Song (YK)

Genetics Branch, NCI, NIH, Bethesda, MD, USA.

Chaoyu Wang (C)

Genetics Branch, NCI, NIH, Bethesda, MD, USA.

Xinyu Wen (X)

Genetics Branch, NCI, NIH, Bethesda, MD, USA.

Hsien-Chao Chou (HC)

Genetics Branch, NCI, NIH, Bethesda, MD, USA.

Vineela Gangalapudi (V)

Genetics Branch, NCI, NIH, Bethesda, MD, USA.

Dominic Esposito (D)

Protein Expression Laboratory, FNLCR, NIH, Frederick, MD, USA.

Jane Jones (J)

Protein Expression Laboratory, FNLCR, NIH, Frederick, MD, USA.

Lauren Procter (L)

Protein Expression Laboratory, FNLCR, NIH, Frederick, MD, USA.

Maura O'Neill (M)

Protein Characterization Laboratory, FNLCR, NIH, Frederick, MD, USA.

Lisa M Jenkins (LM)

Laboratory of Cell Biology, NCI, NIH, Bethesda, MD, USA.

Nadya I Tarasova (NI)

Cancer Innovation Laboratory, NCI, NIH, Bethesda, MD, USA.

Jun S Wei (JS)

Genetics Branch, NCI, NIH, Bethesda, MD, USA.

James B McMahon (JB)

Molecular Targets Program, NCI, NIH, Frederick, MD, USA.

Barry R O'Keefe (BR)

Molecular Targets Program, NCI, NIH, Frederick, MD, USA.
Natural Products Branch, NCI, NIH, Frederick, MD, USA.

Robert G Hawley (RG)

Genetics Branch, NCI, NIH, Bethesda, MD, USA.
Department of Anatomy and Cell Biology, George Washington University, Washington, DC, USA.

Javed Khan (J)

Genetics Branch, NCI, NIH, Bethesda, MD, USA. khanjav@mail.nih.gov.

Classifications MeSH