Does surface enamel composition and characteristics vary with inter proximal enamel reduction?
EDX
Enamel composition
Enamel demineralization
Interproximal reduction
Journal
Clinical oral investigations
ISSN: 1436-3771
Titre abrégé: Clin Oral Investig
Pays: Germany
ID NLM: 9707115
Informations de publication
Date de publication:
26 Feb 2024
26 Feb 2024
Historique:
received:
26
04
2023
accepted:
15
11
2023
medline:
27
2
2024
pubmed:
26
2
2024
entrez:
26
2
2024
Statut:
epublish
Résumé
This study aimed to evaluate the chemical composition of the proximal enamel surface and the surface characteristics subjected to different extents of interproximal reduction (IPR) in a clinical setting. Premolars of orthodontic patients which were designated for extraction were subjected to .2 mm, .3 mm, and .5 mm of IPR. After 1 month, the teeth were extracted and the teeth were subjected to scanning electron microscope (SEM) and energy-dispersive x-ray spectroscopy (EDX). The SEM images of the three experimental groups (taken at magnification of 500 × and 2000 ×) showed that the enamel surfaces were irregular and rough compared to the honey comb appearance of the unstripped group. Small areas of erosion of enamel surface were seen in Group I (0.2 mm) under 2000 × magnification compared to Group IV (control) which showed typical arrangement of enamel rods in alternating orientation. The enamel surfaces of stripped and unstripped enamel contained calcium, phosphorus, carbon, oxygen, and nitrogen. The differences were not statistically significant and neither were the calcium phosphorous stoichiometric ratios between the four groups. On analyzing the surface characteristics of enamel using SEM between the stripped and unstripped surfaces, there were irregularities and roughness seen in stripped surface whereas honey comb pattern was observed in unstripped enamel surfaces. The elements found in unstripped and stripped enamel surfaces were calcium, phosphorous, carbon, oxygen, and nitrogen. Although the calcium and phosphorus were high in the 0.5 mm IPR group, the difference between stripped and unstripped enamel surfaces was statistically not significant. There have been concerns that IPR can remove the superficial mineral-rich layer making the deeper layers more susceptible to carious attack. No study has evaluated the mineral content in different layers of enamel in response to IPR in vivo and this study found no significant difference between pristine enamel and enamel subjected to IPR. The results of this study strengthen the validity of the clinical protocol employed.
Identifiants
pubmed: 38407641
doi: 10.1007/s00784-023-05439-8
pii: 10.1007/s00784-023-05439-8
doi:
Substances chimiques
Calcium
SY7Q814VUP
Carbon
7440-44-0
Nitrogen
N762921K75
Oxygen
S88TT14065
Phosphorus
27YLU75U4W
Minerals
0
Types de publication
Journal Article
Langues
eng
Pagination
176Informations de copyright
© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Références
Livas C, Jongsma AC, Ren Y (2013) Enamel reduction techniques in orthodontics: a literature review. Open Dent J 7:146
doi: 10.2174/1874210601307010146
pubmed: 24265652
pmcid: 3831306
Georgiadis AA, Darmanin P, Topouzelis N, Ioannidou-Marathiotou I (2015) Indication and technical application of stripping. Balk J Dent Med 19(1):3–7
doi: 10.1515/bjdm-2015-0026
Chudasama D, Sheridan JJ (2007) Guidelines for contemporary air-rotor stripping. J Clin Orthod 41(6):315
pubmed: 17652864
Stroud JL, English J, Buschang PH (1998) Enamel thickness of the posterior dentition: its implications for nonextraction treatment. The Angle Orthodontist 68(2):141–6
pubmed: 9564423
Betteridge MA (1981) The effects of interdental stripping on the labial segments evaluated one year out of retention. Br J Orthod 8(4):193–197
doi: 10.1179/bjo.8.4.193
pubmed: 6945132
Pindoria J, Fleming PS, Sharma PK (2016) Inter-proximal enamel reduction in contemporary orthodontics. Br Dent J 221(12):757–763
doi: 10.1038/sj.bdj.2016.945
pubmed: 27982013
Macha AD, Vellini-Ferreira F, Scavone-Junior H, Ferreira RI (2010) Mesiodistal width and proximal enamel thickness of maxillary first bicuspids. Braz Oral Res 24:58–63
doi: 10.1590/S1806-83242010000100010
pubmed: 20339715
Kailasam V, Rangarajan H, Easwaran HN, Muthu MS (2021) Proximal enamel thickness of the permanent teeth: a systematic review and meta-analysis. Am J Orthod Dentofac Orthop 160(6):793–804
doi: 10.1016/j.ajodo.2021.05.007
Joseph VP, Rossouw PE, Basson NJ (1992) Orthodontic microabrasive reproximation. Am J Orthod Dentofac Orthop 102(4):351–359
doi: 10.1016/0889-5406(92)70051-B
Koretsi V, Chatzigianni A, Sidiropoulou S (2014) Enamel roughness and incidence of caries after interproximal enamel reduction: a systematic review. Orthod Craniofac Res 17(1):1–3
doi: 10.1111/ocr.12030
pubmed: 24011354
Weatherell JA, Robinson C, Hallsworth AS (1974) Variations in the chemical composition of human enamel. J Dent Res 53(2):180–192
doi: 10.1177/00220345740530020501
pubmed: 4591966
Macena MS, e Silva ML, de Lima Gouveia C, de Lima TA, Athayde PA, de Sousa FB (2014) A comparative study on component volumes from outer to inner dental enamel in relation to enamel tufts. Arch Oral Biol 59(6):568–77
doi: 10.1016/j.archoralbio.2014.03.001
Danesh G, Podstawa PK, Schwartz CE, Kirschneck C, Bizhang M, Arnold WH (2020) Depth of acid penetration and enamel surface roughness associated with different methods of interproximal enamel reduction. PLoS ONE 15(3):e0229595
doi: 10.1371/journal.pone.0229595
pubmed: 32119700
pmcid: 7051074
Li X, Wang J, Joiner A, Chang J (2014) The remineralisation of enamel: a review of the literature. J Dent 1(42):S12–20
doi: 10.1016/S0300-5712(14)50003-6
Burany S (2003) Scanning Electron Microscopy and X-Ray Microanalysis. J. Goldstein, D. Newbury, D. Joy, C, Lyman, P. Echlin, E. Lifshin, L. Sawyer, and J. Michael. Kluwer Academic, Plenum Publishers, New York; 2003, 688 pages (Hardback) ISBN 0-306-47292-9. Cambridge University Press, vol. 9, no. 5
De Felice ME, Nucci L, Fiori A, Flores-Mir C, Perillo L, Grassia V (2020) Accuracy of interproximal enamel reduction during clear aligner treatment. Prog Orthod 21(1):1–7
doi: 10.1186/s40510-020-00329-1
Nanci A (2017) Ten Cate's Oral Histology-e-book: development, structure, and function. Elsevier Health Sciences
Sa Y, Liang S, Ma X, Lu S, Wang Z, Jiang T, Wang Y (2014) Compositional, structural and mechanical comparisons of normal enamel and hypomaturation enamel. Acta Biomater 10(12):5169–5177
doi: 10.1016/j.actbio.2014.08.023
pubmed: 25172537
Vicente A, Ortiz Ruiz AJ, González Paz BM, García López J, Bravo-González LA (2017) Efficacy of fluoride varnishes for preventing enamel demineralization after interproximal enamel reduction. Qual Quant Eval PloS one 12(4):e0176389
doi: 10.1371/journal.pone.0176389
Zachrisson BU, Nyøygaard L, Mobarak K (2007) Dental health assessed more than 10 years after interproximal enamel reduction of mandibular anterior teeth. Am J Orthod Dentofac Orthop 131(2):162–169
doi: 10.1016/j.ajodo.2006.10.001
Arnold WH, Gaengler P (2007) Quantitative analysis of the calcium and phosphorus content of developing and permanent human teeth. Ann Anat-Anat Anzeiger 189(2):183–190
doi: 10.1016/j.aanat.2006.09.008
Klimuszko E, Orywal K, Sierpinska T, Sidun J, Golebiewska M (2018) Evaluation of calcium and magnesium contents in tooth enamel without any pathological changes: in vitro preliminary study. Odontology 106(4):369–376
doi: 10.1007/s10266-018-0353-6
pubmed: 29556861
pmcid: 6153988
Little MF, Brudevold F (1958) A study of the inorganic carbon dioxide in intact human enamel. J Dent Res 37(6):991–1000
doi: 10.1177/00220345580370062001
pubmed: 13611114
Paganelli C, Zanarini M, Pazzi E, Marchionni S, Visconti L, Alessandri BG (2015) Interproximal enamel reduction: an in vivo study. Scanning 37(1):73–81
doi: 10.1002/sca.21181
pubmed: 25488201
Jarjoura K, Gagnon G, Nieberg L (2006) Caries risk after interproximal enamel reduction. Am J Orthod Dentofac Orthop 130(1):26–30
doi: 10.1016/j.ajodo.2004.08.024