Selective alterations of endocannabinoid system genes expression in obsessive compulsive disorder.


Journal

Translational psychiatry
ISSN: 2158-3188
Titre abrégé: Transl Psychiatry
Pays: United States
ID NLM: 101562664

Informations de publication

Date de publication:
26 Feb 2024
Historique:
received: 27 07 2023
accepted: 13 02 2024
revised: 09 02 2024
medline: 27 2 2024
pubmed: 27 2 2024
entrez: 26 2 2024
Statut: epublish

Résumé

Obsessive Compulsive Disorder (OCD) is listed as one of the top 10 most disabling neuropsychiatric conditions in the world. The neurobiology of OCD has not been completely understood and efforts are needed in order to develop new treatments. Beside the classical neurotransmitter systems and signalling pathways implicated in OCD, the possible involvement of the endocannabinoid system (ECS) has emerged in pathophysiology of OCD. We report here selective downregulation of the genes coding for enzymes allowing the synthesis of the endocannabinoids. We found reduced DAGLα and NAPE-PLD in blood samples of individuals with OCD (when compared to healthy controls) as well as in the amygdala complex and prefrontal cortex of dopamine transporter (DAT) heterozygous rats, manifesting compulsive behaviours. Also mRNA levels of the genes coding for cannabinoid receptors type 1 and type 2 resulted downregulated, respectively in the rat amygdala and in human blood. Moreover, NAPE-PLD changes in gene expression resulted to be associated with an increase in DNA methylation at gene promoter, and the modulation of this gene in OCD appears to be correlated to the progression of the disease. Finally, the alterations observed in ECS genes expression appears to be correlated with the modulation in oxytocin receptor gene expression, consistently with what recently reported. Overall, we confirm here a role for ECS in OCD at both preclinical and clinical level. Many potential biomarkers are suggested among its components, in particular NAPE-PLD, that might be of help for a prompt and clear diagnosis.

Identifiants

pubmed: 38409080
doi: 10.1038/s41398-024-02829-8
pii: 10.1038/s41398-024-02829-8
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

118

Informations de copyright

© 2024. The Author(s).

Références

Dell’Osso B, Benatti B, Buoli M, Altamura AC, Marazziti D, Hollander E, et al. The influence of age at onset and duration of illness on long-term outcome in patients with obsessive-compulsive disorder: a report from the International College of Obsessive Compulsive Spectrum Disorders (ICOCS). Eur Neuropsychopharmacol. 2013;23:865–71.
pubmed: 23791074 doi: 10.1016/j.euroneuro.2013.05.004
Milad MR, Rauch SL. Obsessive-compulsive disorder: Beyond segregated cortico-striatal pathways. Trends Cogn Sci. 2012;16:43–51.
pubmed: 22138231 doi: 10.1016/j.tics.2011.11.003
Angst J, Gamma A, Endrass J, Goodwin R, Ajdacic V, Eich D, et al. Obsessive-compulsive severity spectrum in the community: prevalence, comorbidity, and course. Eur Arch Psychiatry Clin Neurosci. 2004;254:156–64. https://doi.org/10.1007/s00406-004-0459-4
doi: 10.1007/s00406-004-0459-4 pubmed: 15205969
De Luca V, Gershenzon V, Burroughs E, Javaid N, Richter MA. Age at onset in Canadian OCD patients: mixture analysis and systematic comparison with other studies. J Affect Disord. 2011;133:300–4.
pubmed: 21546093 doi: 10.1016/j.jad.2011.03.041
Mathes BM, Morabito DM, Schmidt NB. Epidemiological and clinical gender differences in OCD. Curr Psychiatry Rep. 2019;21:36.
pubmed: 31016410 doi: 10.1007/s11920-019-1015-2
Del Casale A, Sorice S, Padovano A, Simmaco M, Ferracuti S, Lamis DA, et al. Psychopharmacological treatment of Obsessive-Compulsive Disorder (OCD). Curr Neuropharmacol. 2019;17:710–36.
pubmed: 30101713 pmcid: 7059159 doi: 10.2174/1570159X16666180813155017
Li Y, Zhang CC, Weidacker K, Zhang Y, He N, Jin H, et al. Investigation of anterior cingulate cortex gamma-aminobutyric acid and glutamate-glutamine levels in obsessive-compulsive disorder using magnetic resonance spectroscopy. BMC Psychiatry. 2019;19:164.
pubmed: 31146727 pmcid: 6543571 doi: 10.1186/s12888-019-2160-1
Simpson HB, Shungu DC, Bender J, Mao X, Xu X, Slifstein M, et al. Investigation of cortical glutamate–glutamine and γ-Aminobutyric acid in obsessive–compulsive disorder by proton magnetic resonance spectroscopy. Neuropsychopharmacology. 2012;37:2684–92.
pubmed: 22850733 pmcid: 3473334 doi: 10.1038/npp.2012.132
Karthik S, Sharma LP, Narayanaswamy JC. Investigating the role of glutamate in obsessive-compulsive disorder: current perspectives. Neuropsychiatr Dis Treat. 2020;ume 16:1003–13.
doi: 10.2147/NDT.S211703
Denys D, Zohar J, Westenberg HGM. The role of dopamine in obsessive-compulsive disorder: preclinical and clinical evidence. J Clin Psychiatry. 2004;65:11–7.
pubmed: 15554783
Koo M-S, Kim E-J, Roh D, Kim C-H. Role of dopamine in the pathophysiology and treatment of obsessive–compulsive disorder. Expert Rev Neurother. 2010;10:275–90.
pubmed: 20136383 doi: 10.1586/ern.09.148
Bellia F, Vismara M, Annunzi E, Cifani C, Benatti B, Dell’Osso B, et al. Genetic and epigenetic architecture of obsessive-compulsive disorder: in search of possible diagnostic and prognostic biomarkers. J Psychiatr Res. 2021;137:554–71.
pubmed: 33213890 doi: 10.1016/j.jpsychires.2020.10.040
Lutz B, Marsicano G, Maldonado R, Hillard CJ. The endocannabinoid system in guarding against fear, anxiety and stress. Nat Rev Neurosci. 2015;16:705–18.
pubmed: 26585799 pmcid: 5871913 doi: 10.1038/nrn4036
Gomes FV, Casarotto PC, Resstel LBM, Guimarães FS. Facilitation of CB1 receptor-mediated neurotransmission decreases marble burying behavior in mice. Prog Neuro-Psychopharmacol Biol Psychiatry. 2011;35:434–8.
doi: 10.1016/j.pnpbp.2010.11.027
Nardo M, Casarotto PC, Gomes FV, Guimarães FS. Cannabidiol reverses the mCPP-induced increase in marble-burying behavior. Fundam Clin Pharm. 2014;28:544–50.
doi: 10.1111/fcp.12051
Rueda-Orozco PE, Montes-Rodriguez CJ, Soria-Gomez E, Méndez-Díaz M, Prospéro-García O. Impairment of endocannabinoids activity in the dorsolateral striatum delays extinction of behavior in a procedural memory task in rats. Neuropharmacology. 2008;55:55–62.
pubmed: 18501388 doi: 10.1016/j.neuropharm.2008.04.013
Cooper JJ, Grant J. Refractory OCD due to thalamic infarct with response to dronabinol. J Neuropsychiatry Clin Neurosci. 2017;29:77–8.
pubmed: 27539378 doi: 10.1176/appi.neuropsych.16030053
Kayser RR, Raskin M, Snorrason I, Hezel DM, Haney M, Simpson HB. Cannabinoid augmentation of exposure-based psychotherapy for obsessive-compulsive disorder. J Clin Psychopharmacol. 2020;40:207–10.
pubmed: 32068563 pmcid: 7206660 doi: 10.1097/JCP.0000000000001179
Szejko N, Fremer C, Müller-Vahl KR. Cannabis improves obsessive-compulsive disorder—case report and review of the literature. Front Psychiatry. 2020;11:681. https://doi.org/10.3389/fpsyt.2020.00681
doi: 10.3389/fpsyt.2020.00681 pubmed: 32848902 pmcid: 7396551
D’Addario C, Bellia F, Benatti B, Grancini B, Vismara M, Pucci M, et al. Exploring the role of BDNF DNA methylation and hydroxymethylation in patients with obsessive compulsive disorder. J Psychiatr Res. 2019;114:17–23.
pubmed: 31004918 doi: 10.1016/j.jpsychires.2019.04.006
D’Addario C, Pucci M, Bellia F, Girella A, Sabatucci A, Fanti F, et al. Regulation of oxytocin receptor gene expression in obsessive–compulsive disorder: a possible role for the microbiota-host epigenetic axis. Clin Epigenet. 2022;14:47.
doi: 10.1186/s13148-022-01264-0
Huang Y, Yasuda H, Sarihi A, Tsumoto T. Roles of endocannabinoids in heterosynaptic long-term depression of excitatory synaptic transmission in visual cortex of young mice. J Neurosci. 2008;28:7074–83.
pubmed: 18614676 pmcid: 6670480 doi: 10.1523/JNEUROSCI.0899-08.2008
Lemtiri-Chlieh F, Levine ES. BDNF evokes release of endogenous cannabinoids at Layer 2/3 inhibitory synapses in the neocortex. J Neurophysiol. 2010;104:1923–32.
pubmed: 20719932 pmcid: 2957462 doi: 10.1152/jn.00472.2010
Maglio LE, Noriega-Prieto JA, Maraver MJ, Fernández de Sevilla D. Endocannabinoid-dependent long-term potentiation of synaptic transmission at rat barrel cortex. Cereb Cortex. 2018;28:1568–81.
pubmed: 28334325 doi: 10.1093/cercor/bhx053
Yeh ML, Selvam R, Levine ES. BDNF-induced endocannabinoid release modulates neocortical glutamatergic neurotransmission. Synapse. 2017;71:e21962.
doi: 10.1002/syn.21962
Wei D, Lee D, Cox CD, Karsten CA, Peñagarikano O, Geschwind DH, et al. Endocannabinoid signaling mediates oxytocin-driven social reward. Proc Natl Acad Sci. 2015;112:14084–9.
pubmed: 26504214 pmcid: 4653148 doi: 10.1073/pnas.1509795112
Festucci F, Annunzi E, Pepe M, Curcio G, D’Addario C, Adriani W. Dopamine‐transporter heterozygous rats carrying maternal wild‐type allele are more vulnerable to the development of compulsive behavior. Synapse. 2022;76:31–44. https://doi.org/10.1002/syn.22244
doi: 10.1002/syn.22244 pubmed: 35772468
Leo D, Sukhanov I, Zoratto F, Illiano P, Caffino L, Sanna F, et al. Pronounced hyperactivity, cognitive dysfunctions, and BDNF Dysregulation in dopamine transporter knock-out rats. J Neurosci. 2018;38:1959–72.
pubmed: 29348190 pmcid: 5824739 doi: 10.1523/JNEUROSCI.1931-17.2018
Carbone C, Brancato A, Adinolfi A, Lo Russo SLM, Alleva E, Cannizzaro C, et al. Motor transitions’ peculiarity of heterozygous DAT rats when offspring of an unconventional KOxWT mating. Neuroscience. 2020;433:108–20.
pubmed: 32171819 doi: 10.1016/j.neuroscience.2020.03.005
Howlett AC, Breivogel CS, Childers SR, Deadwyler SA, Hampson RE, Porrino LJ. Cannabinoid physiology and pharmacology: 30 years of progress. Neuropharmacology. 2004;47:345–58.
pubmed: 15464149 doi: 10.1016/j.neuropharm.2004.07.030
Ghashghaei HT, Hilgetag CC, Barbas H. Sequence of information processing for emotions based on the anatomic dialogue between prefrontal cortex and amygdala. Neuroimage. 2007;34:905–23.
pubmed: 17126037 doi: 10.1016/j.neuroimage.2006.09.046
Banks SJ, Eddy KT, Angstadt M, Nathan PJ, Phan KL. Amygdala–frontal connectivity during emotion regulation. Soc Cogn Affect Neurosci. 2007;2:303–12.
pubmed: 18985136 pmcid: 2566753 doi: 10.1093/scan/nsm029
Murray EA, Fellows LK. Prefrontal cortex interactions with the amygdala in primates. Neuropsychopharmacology. 2022;47:163–79.
pubmed: 34446829 doi: 10.1038/s41386-021-01128-w
Packard K, Opendak M. Rodent models of early adversity: Impacts on developing social behavior circuitry and clinical implications. Front Behav Neurosci. 2022;16:918862. https://doi.org/10.3389/fnbeh.2022.918862
doi: 10.3389/fnbeh.2022.918862 pubmed: 35990728 pmcid: 9385963
Prater KE, Hosanagar A, Klumpp H, Angstadt M, Luan Phan K. Aberrant amygdala-frontal cortex connectivity during perception of fearful faces and at rest in generalized social anxiety disorder. Depress Anxiety. 2013;30:234–41.
pubmed: 23184639 doi: 10.1002/da.22014
Sun T, Song Z, Tian Y, Tian W, Zhu C, Ji G, et al. Basolateral amygdala input to the medial prefrontal cortex controls obsessive-compulsive disorder-like checking behavior. Proc Natl Acad Sci. 2019;116:3799–804.
pubmed: 30808765 pmcid: 6397577 doi: 10.1073/pnas.1814292116
Kayser RR, Snorrason I, Haney M, Lee FS, Simpson HB. The endocannabinoid system: a new treatment target for obsessive compulsive disorder? Cannabis Cannabinoid Res. 2019;4:77–87.
pubmed: 32656342 pmcid: 7347041 doi: 10.1089/can.2018.0049
D’Addario C, Macellaro M, Bellia F, Benatti B, Annunzi E, Palumbo R et al. In search for biomarkers in obsessive-compulsive disorder: new evidence on saliva as a practical source of DNA to assess epigenetic regulation. Curr Med Chem. 2021;28. https://doi.org/10.2174/0929867328666211208115536 .
Schiele MA, Lipovsek J, Schlosser P, Soutschek M, Schratt G, Zaudig M, et al. Epigenome-wide DNA methylation in obsessive-compulsive disorder. Transl Psychiatry. 2022;12:221.
pubmed: 35650177 pmcid: 9160220 doi: 10.1038/s41398-022-01996-w
Stewart SE, Yu D, Scharf JM, Neale BM, Fagerness JA, Mathews CA, et al. Genome-wide association study of obsessive-compulsive disorder. Mol Psychiatry. 2013;18:788–98.
pubmed: 22889921 doi: 10.1038/mp.2012.85
First M, Williams J, Karg R, Spitzer R Structured clinical interview for DSM-5-Reasearch version (SCID-5 for DSM-5. research version; SCID-5-RV). American Psychiatric Association, (2015).
Goodman WK, Price LH, Rasmussen SA, Mazure C, Fleischmann RL, Hill CL, et al. The yale-brown obsessive compulsive scale: I. Development, use, and reliability. Arch Gen Psychiatry. 1989;46:1006–11.
pubmed: 2684084 doi: 10.1001/archpsyc.1989.01810110048007
Koran LM, Simpson HB. Guideline watch (March 2013): Practice guideline for the treatment of patients with obsessive-compulsive disorder. (2013).
Maxwell JAJ, Maxwell A. Model for qualitative research design. Qual Res Des Interact Approach. 1992;62:1–21.
Pucci M, Micioni Di Bonaventura MVMV, Zaplatic E, Bellia F, Maccarrone M, Cifani C, et al. Transcriptional regulation of the endocannabinoid system in a rat model of binge-eating behavior reveals a selective modulation of the hypothalamic fatty acid amide hydrolase gene. Int J Eat Disord. 2019;52:51–60.
pubmed: 30578649 doi: 10.1002/eat.22989
Fanti F, Vincenti F, Imparato G, Montesano C, Scipioni L, Ciaramellano F, et al. Determination of endocannabinoids and their conjugated congeners in the brain by means of μSPE combined with UHPLC-MS/MS. Talanta. 2023;257:124392.
pubmed: 36863295 doi: 10.1016/j.talanta.2023.124392
Bisogno T, Howell F, Williams G, Minassi A, Cascio MG, Ligresti A, et al. Cloning of the first sn1-DAG lipases points to the spatial and temporal regulation of endocannabinoid signaling in the brain. J Cell Biol. 2003;163:463–8.
pubmed: 14610053 pmcid: 2173631 doi: 10.1083/jcb.200305129
Maccarrone M. Metabolism of the endocannabinoid anandamide: open questions after 25 Years. Front Mol Neurosci. 2017;10:166. https://doi.org/10.3389/fnmol.2017.00166
doi: 10.3389/fnmol.2017.00166 pubmed: 28611591 pmcid: 5447297
Centonze D, Battistini L, Maccarrone M. The endocannabinoid system in peripheral lymphocytes as a mirror of neuroinflammatory diseases. Curr Pharm Des. 2008;14:2370–82.
pubmed: 18781987 doi: 10.2174/138161208785740018
D’Addario C, Di Francesco A, Arosio B, Gussago C, Dell’Osso B, Bari M, et al. Epigenetic regulation of fatty acid amide hydrolase in alzheimer disease. PLoS One. 2012;7:e39186.
pubmed: 22720070 pmcid: 3373611 doi: 10.1371/journal.pone.0039186
D’Addario C, Micale V, Di Bartolomeo M, Stark T, Pucci M, Sulcova A, et al. A preliminary study of endocannabinoid system regulation in psychosis: distinct alterations of CNR1 promoter DNA methylation in patients with schizophrenia. Schizophr Res. 2017;188:132–40.
pubmed: 28108228 doi: 10.1016/j.schres.2017.01.022
Bioque M, García-Bueno B, MacDowell KS, Meseguer A, Saiz PA, Parellada M, et al. Peripheral endocannabinoid system dysregulation in first-episode psychosis. Neuropsychopharmacology. 2013;38:2568–77.
pubmed: 23822951 pmcid: 3828529 doi: 10.1038/npp.2013.165
Hagen K, Solem S, Opstad HB, Hansen B, Hagen R. The role of metacognition and obsessive-compulsive symptoms in psychosis: an analogue study. BMC Psychiatry. 2017;17:233.
pubmed: 28662637 pmcid: 5492129 doi: 10.1186/s12888-017-1392-1
Bortolon C, Raffard S. Self-reported psychotic-like experiences in individuals with obsessive-compulsive disorder versus schizophrenia patients: characteristics and moderation role of trait anxiety. Compr Psychiatry. 2015;57:97–105.
pubmed: 25464835 doi: 10.1016/j.comppsych.2014.10.011
Eisen JL, Rasmussen SA. Obsessive compulsive disorder with psychotic features. J Clin Psychiatry. 1993;54:373–9.
pubmed: 8262879
De Marchi N, De Petrocellis L, Orlando P, Daniele F, Fezza F, Di Marzo V. Endocannabinoid signalling in the blood of patients with schizophrenia. Lipids Health Dis. 2003;2:5.
pubmed: 12969514 pmcid: 194767 doi: 10.1186/1476-511X-2-5
Ferretjans R, de Campos SM, Ribeiro-Santos R, Guimarães FC, de Oliveira K, Cardoso ACA, et al. Cognitive performance and peripheral endocannabinoid system receptor expression in schizophrenia. Schizophr Res. 2014;156:254–60.
pubmed: 24853061 doi: 10.1016/j.schres.2014.04.028
Chase KA, Feiner B, Rosen C, Gavin DP, Sharma RP. Characterization of peripheral cannabinoid receptor expression and clinical correlates in schizophrenia. Psychiatry Res. 2016;245:346–53.
pubmed: 27591408 doi: 10.1016/j.psychres.2016.08.055
Siniscalco D, Sapone A, Giordano C, Cirillo A, de Magistris L, Rossi F, et al. Cannabinoid receptor Type 2, but not Type 1, is up-regulated in peripheral blood mononuclear cells of children affected by autistic disorders. J Autism Dev Disord. 2013;43:2686–95.
pubmed: 23585028 doi: 10.1007/s10803-013-1824-9
Pacher P, Mechoulam R. Is lipid signaling through cannabinoid 2 receptors part of a protective system? Prog Lipid Res. 2011;50:193–211.
pubmed: 21295074 pmcid: 3062638 doi: 10.1016/j.plipres.2011.01.001
Klein TW, Newton C, Larsen K, Lu L, Perkins I, Nong L, et al. The cannabinoid system and immune modulation. J Leukoc Biol. 2003;74:486–96.
pubmed: 12960289 doi: 10.1189/jlb.0303101
Martin AF, Jassi A, Cullen AE, Broadbent M, Downs J, Krebs G. Co-occurring obsessive–compulsive disorder and autism spectrum disorder in young people: prevalence, clinical characteristics and outcomes. Eur Child Adolesc Psychiatry. 2020;29:1603–11.
pubmed: 32008168 pmcid: 7595977 doi: 10.1007/s00787-020-01478-8
Zamberletti E, Gabaglio M, Parolaro D. The Endocannabinoid System and Autism Spectrum Disorders: Insights from Animal Models. Int J Mol Sci. 2017;18:1916.
pubmed: 28880200 pmcid: 5618565 doi: 10.3390/ijms18091916
Zou M, Liu Y, Xie S, Wang L, Li D, Li L, et al. Alterations of the endocannabinoid system and its therapeutic potential in autism spectrum disorder. Open Biol. 2021;11:200306. https://doi.org/10.1098/rsob.200306
doi: 10.1098/rsob.200306 pubmed: 33529552 pmcid: 8061688
Ferreira S, Moreira P, Magalhães R, Coelho A, Marques P, Portugal-Nunes C, et al. Frontoparietal hyperconnectivity during cognitive regulation in obsessive-compulsive disorder followed by reward valuation inflexibility. J Psychiatr Res. 2021;137:657–66.
pubmed: 33187688 doi: 10.1016/j.jpsychires.2020.11.008
Moore LD, Le T, Fan G. DNA Methylation and Its Basic Function. Neuropsychopharmacology. 2013;38:23–38.
pubmed: 22781841 doi: 10.1038/npp.2012.112
Egertovà M, Elphick MR. Localisation of cannabinoid receptors in the rat brain using antibodies to the intracellular C-terminal tail of CB1. J Comp Neurol. 2000;422:159–71.
pubmed: 10842224 doi: 10.1002/(SICI)1096-9861(20000626)422:2<159::AID-CNE1>3.0.CO;2-1
Mailleux P, Vanderhaeghen J-J. Distribution of neuronal cannabinoid receptor in the adult rat brain: a comparative receptor binding radioautography and in situ hybridization histochemistry. Neuroscience. 1992;48:655–68.
pubmed: 1376455 doi: 10.1016/0306-4522(92)90409-U
Matsuda LA, Bonner TI, Lolait SJ. Localization of cannabinoid receptor mRNA in rat brain. J Comp Neurol. 1993;327:535–50.
pubmed: 8440779 doi: 10.1002/cne.903270406
Tsou K, Brown S, Sañudo-Peña M, Mackie K, Walker J. Immunohistochemical distribution of cannabinoid CB1 receptors in the rat central nervous system. Neuroscience. 1998;83:393–411.
pubmed: 9460749 doi: 10.1016/S0306-4522(97)00436-3
Katona I, Rancz EA, Acsády L, Ledent C, Mackie K, Hájos N, et al. Distribution of CB1 Cannabinoid Receptors in the Amygdala and their Role in the Control of GABAergic Transmission. J Neurosci. 2001;21:9506–18.
pubmed: 11717385 pmcid: 6763903 doi: 10.1523/JNEUROSCI.21-23-09506.2001
Kayser RR, Haney M, Raskin M, Arout C, Simpson HB. Acute effects of cannabinoids on symptoms of obsessive-compulsive disorder: a human laboratory study. Depress Anxiety. 2020;37:801–11.
pubmed: 32383271 pmcid: 7423713 doi: 10.1002/da.23032
Kundakovic M, Rocks D. Sex hormone fluctuation and increased female risk for depression and anxiety disorders: From clinical evidence to molecular mechanisms. Front Neuroendocrinol. 2022;66:101010.
pubmed: 35716803 pmcid: 9715398 doi: 10.1016/j.yfrne.2022.101010
Jaric I, Rocks D, Greally JM, Suzuki M, Kundakovic M. Chromatin organization in the female mouse brain fluctuates across the oestrous cycle. Nat Commun. 2019;10:2851.
pubmed: 31253786 pmcid: 6598989 doi: 10.1038/s41467-019-10704-0
Rocks D, Cham H, Kundakovic M. Why the estrous cycle matters for neuroscience. Biol Sex Differ. 2022;13:62.
pubmed: 36307876 pmcid: 9615204 doi: 10.1186/s13293-022-00466-8

Auteurs

Fabio Bellia (F)

Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100, Teramo, Italy.
Center for Advanced Studies and Technology (CAST), University "G. D'Annunzio" of Chieti-Pescara, 66100, Chieti, Italy.

Antonio Girella (A)

Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100, Teramo, Italy.

Eugenia Annunzi (E)

Department of Neuroscience, Imaging and Clinical Sciences, University "G. d' Annunzio" of Chieti-Pescara, 66100, Chieti, Italy.

Beatrice Benatti (B)

Department of Psychiatry, Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milan, ASST Fatebenefratelli-Sacco, 20019, Milan, Italy.
"Aldo Ravelli" Center for Nanotechnology and Neurostimulation, University of Milan, Milan, Italy.

Matteo Vismara (M)

Department of Psychiatry, Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milan, ASST Fatebenefratelli-Sacco, 20019, Milan, Italy.

Alberto Priori (A)

Department of Psychiatry, Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milan, ASST Fatebenefratelli-Sacco, 20019, Milan, Italy.

Fabiana Festucci (F)

Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy.

Federico Fanti (F)

Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100, Teramo, Italy.

Dario Compagnone (D)

Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100, Teramo, Italy.

Walter Adriani (W)

Center for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena, 299, I-00161, Rome, Italy.

Bernardo Dell'Osso (B)

Department of Psychiatry, Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milan, ASST Fatebenefratelli-Sacco, 20019, Milan, Italy. Bernardo.dellosso@unimi.it.
"Aldo Ravelli" Center for Nanotechnology and Neurostimulation, University of Milan, Milan, Italy. Bernardo.dellosso@unimi.it.

Claudio D'Addario (C)

Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100, Teramo, Italy. Claudio.daddario@ki.se.
Department of Clinical Neuroscience, Karolinska Institute, 10316, Stockholm, Sweden. Claudio.daddario@ki.se.

Classifications MeSH