Type 1 interferons and Foxo1 down-regulation play a key role in age-related T-cell exhaustion in mice.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
26 Feb 2024
Historique:
received: 19 12 2022
accepted: 05 02 2024
medline: 27 2 2024
pubmed: 27 2 2024
entrez: 26 2 2024
Statut: epublish

Résumé

Foxo family transcription factors are critically involved in multiple processes, such as metabolism, quiescence, cell survival and cell differentiation. Although continuous, high activity of Foxo transcription factors extends the life span of some species, the involvement of Foxo proteins in mammalian aging remains to be determined. Here, we show that Foxo1 is down-regulated with age in mouse T cells. This down-regulation of Foxo1 in T cells may contribute to the disruption of naive T-cell homeostasis with age, leading to an increase in the number of memory T cells. Foxo1 down-regulation is also associated with the up-regulation of co-inhibitory receptors by memory T cells and exhaustion in aged mice. Using adoptive transfer experiments, we show that the age-dependent down-regulation of Foxo1 in T cells is mediated by T-cell-extrinsic cues, including type 1 interferons. Taken together, our data suggest that type 1 interferon-induced Foxo1 down-regulation is likely to contribute significantly to T-cell dysfunction in aged mice.

Identifiants

pubmed: 38409097
doi: 10.1038/s41467-024-45984-8
pii: 10.1038/s41467-024-45984-8
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1718

Subventions

Organisme : Fondation pour la Recherche Médicale (Foundation for Medical Research in France)
ID : EQU202103012662

Informations de copyright

© 2024. The Author(s).

Références

Maklakov, A. A. & Immler, S. The expensive germline and the evolution of ageing. Curr. Biol. 26, R577–R586 (2016).
pubmed: 27404253 doi: 10.1016/j.cub.2016.04.012
Kline, K. A. & Bowdish, D. M. E. Infection in an aging population. Curr. Opin. Microbiol. 29, 63–67 (2016).
pubmed: 26673958 doi: 10.1016/j.mib.2015.11.003
Bottazzi, B., Riboli, E. & Mantovani, A. Aging, inflammation and cancer. Semin. Immunol. 40, 74–82 (2018).
pubmed: 30409538 doi: 10.1016/j.smim.2018.10.011
Drijvers, J. M., Sharpe, A. H. & Haigis, M. C. The effects of age and systemic metabolism on anti-tumor T cell responses. eLife 9, e62420 (2020).
pubmed: 33170123 pmcid: 7655106 doi: 10.7554/eLife.62420
Lefebvre, J. S. et al. Vaccine efficacy and T helper cell differentiation change with aging. Oncotarget 7, 33581–33594 (2016).
pubmed: 27177221 pmcid: 5085104 doi: 10.18632/oncotarget.9254
Allen, J. C., Toapanta, F. R., Chen, W. & Tennant, S. M. Understanding immunosenescence and its impact on vaccination of older adults. Vaccine 38, 8264–8272 (2020).
pubmed: 33229108 pmcid: 7719605 doi: 10.1016/j.vaccine.2020.11.002
Nikolich-Zugich, J. & Rudd, B. D. Immune memory and aging: an infinite or finite resource? Curr. Opin. Immunol. 22, 535–540 (2010).
pubmed: 20674320 pmcid: 2925022 doi: 10.1016/j.coi.2010.06.011
Goronzy, J. J. & Weyand, C. M. Successful and maladaptive T cell aging. Immunity 46, 364–378 (2017).
pubmed: 28329703 pmcid: 5433436 doi: 10.1016/j.immuni.2017.03.010
Goronzy, J. J. & Weyand, C. M. Mechanisms underlying T cell ageing. Nat. Rev. Immunol. 19, 573–583 (2019).
pubmed: 31186548 pmcid: 7584388 doi: 10.1038/s41577-019-0180-1
Montecino-Rodriguez, E., Berent-Maoz, B. & Dorshkind, K. Causes, consequences, and reversal of immune system aging. J. Clin. Investig. 123, 958–965 (2013).
pubmed: 23454758 pmcid: 3582124 doi: 10.1172/JCI64096
Mittelbrunn, M. & Kroemer, G. Hallmarks of T cell aging. Nat. Immunol. 22, 687–698 (2021).
pubmed: 33986548 doi: 10.1038/s41590-021-00927-z
Kenyon, C. The plasticity of aging: insights from long-lived mutants. Cell 120, 449–460 (2005).
pubmed: 15734678 doi: 10.1016/j.cell.2005.02.002
Dong, X. C. et al. Inactivation of hepatic Foxo1 by insulin signaling is required for adaptive nutrient homeostasis and endocrine growth regulation. Cell Metab. 8, 65–76 (2008).
pubmed: 18590693 pmcid: 2929667 doi: 10.1016/j.cmet.2008.06.006
Tran, H., Brunet, A., Griffith, E. C. & Greenberg, M. E. The many forks in FOXO’s road. Sci. STKE 2003, RE5 (2003).
pubmed: 12621150 doi: 10.1126/stke.2003.172.re5
Gui, T. & Burgering, B. M. T. FOXOs: masters of the equilibrium. FEBS J. https://doi.org/10.1111/febs.16221 (2021).
Kenyon, C., Chang, J., Gensch, E., Rudner, A. & Tabtiang, R. A C. elegans mutant that lives twice as long as wild type. Nature 366, 461–464 (1993).
pubmed: 8247153 doi: 10.1038/366461a0
Tissenbaum, H. A. DAF-16: FOXO in the context of C. elegans. Curr. Top. Dev. Biol. 127, 1–21 (2018).
pubmed: 29433733 doi: 10.1016/bs.ctdb.2017.11.007
Hwangbo, D. S. et al. Drosophila dFOXO controls lifespan and regulates insulin signalling in brain and fat body. Nature 429, 562–566 (2004).
pubmed: 15175753 doi: 10.1038/nature02549
Giannakou, M. E. et al. Long-lived Drosophila with overexpressed dFOXO in adult fat body. Science 305, 361 (2004).
pubmed: 15192154 doi: 10.1126/science.1098219
Boehm, A.-M. et al. FoxO is a critical regulator of stem cell maintenance in immortal Hydra. Proc. Natl Acad. Sci. USA 109, 19697–19702 (2012).
pubmed: 23150562 pmcid: 3511741 doi: 10.1073/pnas.1209714109
Bosch, T. C. G. Hydra as model to determine the role of FOXO in longevity. Methods Mol. Biol. Clifton NJ 1890, 231–238 (2019).
doi: 10.1007/978-1-4939-8900-3_19
Fabre, S. et al. FOXO1 regulates L-Selectin and a network of human T cell homing molecules downstream of phosphatidylinositol 3-kinase. J. Immunol. Baltim. Md 1950 181, 2980–2989 (2008).
Kerdiles, Y. M. et al. Foxo1 links homing and survival of naive T cells by regulating L-selectin, CCR7 and interleukin 7 receptor. Nat. Immunol. 10, 176–184 (2009).
pubmed: 19136962 pmcid: 2856471 doi: 10.1038/ni.1689
Kerdiles, Y. M. et al. Foxo transcription factors control regulatory T cell development and function. Immunity 33, 890–904 (2010).
pubmed: 21167754 pmcid: 3034255 doi: 10.1016/j.immuni.2010.12.002
Ouyang, W. et al. Foxo proteins cooperatively control the differentiation of Foxp3+ regulatory T cells. Nat. Immunol. 11, 618–627 (2010).
pubmed: 20467422 doi: 10.1038/ni.1884
Stone, E. L. et al. ICOS coreceptor signaling inactivates the transcription factor FOXO1 to promote Tfh cell differentiation. Immunity 42, 239–251 (2015).
pubmed: 25692700 pmcid: 4334393 doi: 10.1016/j.immuni.2015.01.017
Lainé, A. et al. Foxo1 Is a T-cell intrinsic inhibitor of the RORγt-Th17 program. J. Immunol. 195, 1791–1803 (2015).
pubmed: 26170390 doi: 10.4049/jimmunol.1500849
Malik, S. & Awasthi, A. Transcriptional control of Th9 cells: role of Foxo1 in interleukin-9 induction. Front. Immunol. 9, 995 (2018).
pubmed: 29867972 pmcid: 5954031 doi: 10.3389/fimmu.2018.00995
Martin, B. et al. Highly self-reactive naive CD4 T cells are prone to differentiate into regulatory T cells. Nat. Commun. 4, 2209 (2013).
pubmed: 23900386 doi: 10.1038/ncomms3209
Durand, A. et al. Profiling the lymphoid-resident T cell pool reveals modulation by age and microbiota. Nat. Commun. 9, 68 (2018).
pubmed: 29302034 pmcid: 5754350 doi: 10.1038/s41467-017-02458-4
Tzivion, G., Dobson, M. & Ramakrishnan, G. FoxO transcription factors; regulation by AKT and 14-3-3 proteins. Biochim. Biophys. Acta 1813, 1938–1945 (2011).
pubmed: 21708191 doi: 10.1016/j.bbamcr.2011.06.002
Jin, J. et al. FOXO1 deficiency impairs proteostasis in aged T cells. Sci. Adv. 6, eaba1808 (2020).
pubmed: 32494657 pmcid: 7176426 doi: 10.1126/sciadv.aba1808
Mootha, V. K. et al. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat. Genet. 34, 267–273 (2003).
pubmed: 12808457 doi: 10.1038/ng1180
Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).
pubmed: 16199517 pmcid: 1239896 doi: 10.1073/pnas.0506580102
Thomas, R., Wang, W. & Su, D.-M. Contributions of age-related thymic involution to immunosenescence and inflammaging. Immun. Ageing A 17, 2 (2020).
doi: 10.1186/s12979-020-0173-8
Crawford, A. et al. Molecular and transcriptional basis of CD4
pubmed: 24530057 pmcid: 3990591 doi: 10.1016/j.immuni.2014.01.005
Canale, F. P. et al. CD39 expression defines cell exhaustion in tumor-infiltrating CD8+ T cells. Cancer Res. 78, 115–128 (2018).
pubmed: 29066514 doi: 10.1158/0008-5472.CAN-16-2684
Khan, O. et al. TOX transcriptionally and epigenetically programs CD8+ T cell exhaustion. Nature 571, 211–218 (2019).
pubmed: 31207603 pmcid: 6713202 doi: 10.1038/s41586-019-1325-x
Wu, T. et al. The TCF1-Bcl6 axis counteracts type I interferon to repress exhaustion and maintain T cell stemness. Sci. Immunol. 1, eaai8593 (2016).
pubmed: 28018990 pmcid: 5179228 doi: 10.1126/sciimmunol.aai8593
Blank, C. U. et al. Defining ‘T cell exhaustion’. Nat. Rev. Immunol. 19, 665–674 (2019).
pubmed: 31570879 pmcid: 7286441 doi: 10.1038/s41577-019-0221-9
Abdel-Hakeem, M. S. et al. Epigenetic scarring of exhausted T cells hinders memory differentiation upon eliminating chronic antigenic stimulation. Nat. Immunol. 22, 1008–1019 (2021).
pubmed: 34312545 pmcid: 8323971 doi: 10.1038/s41590-021-00975-5
McLane, L. M., Abdel-Hakeem, M. S. & Wherry, E. J. CD8 T cell exhaustion during chronic viral infection and cancer. Annu. Rev. Immunol. 37, 457–495 (2019).
pubmed: 30676822 doi: 10.1146/annurev-immunol-041015-055318
Weisshaar, N. et al. Rgs16 promotes antitumor CD8+ T cell exhaustion. Sci. Immunol. 7, eabh1873 (2022).
pubmed: 35622904 doi: 10.1126/sciimmunol.abh1873
Seo, H. et al. TOX and TOX2 transcription factors cooperate with NR4A transcription factors to impose CD8+ T cell exhaustion. Proc. Natl Acad. Sci. USA 116, 12410–12415 (2019).
pubmed: 31152140 pmcid: 6589758 doi: 10.1073/pnas.1905675116
Papavassiliou, A. G. & Musti, A. M. The multifaceted Output of c-Jun biological activity: focus at the junction of CD8 T cell activation and exhaustion. Cells 9, E2470 (2020).
doi: 10.3390/cells9112470
McLane, L. M. et al. Role of nuclear localization in the regulation and function of T-bet and Eomes in exhausted CD8 T cells. Cell Rep. 35, 109120 (2021).
pubmed: 33979613 pmcid: 8195461 doi: 10.1016/j.celrep.2021.109120
Seo, W., Jerin, C. & Nishikawa, H. Transcriptional regulatory network for the establishment of CD8+ T cell exhaustion. Exp. Mol. Med. 53, 202–209 (2021).
pubmed: 33627794 pmcid: 8080584 doi: 10.1038/s12276-021-00568-0
Seo, H. et al. BATF and IRF4 cooperate to counter exhaustion in tumor-infiltrating CAR T cells. Nat. Immunol. 22, 983–995 (2021).
pubmed: 34282330 pmcid: 8319109 doi: 10.1038/s41590-021-00964-8
Hu, B. et al. Transcription factor networks in aged naïve CD4 T cells bias lineage differentiation. Aging Cell 18, e12957 (2019).
pubmed: 31264370 pmcid: 6612640 doi: 10.1111/acel.12957
Rudd, B. D. et al. Nonrandom attrition of the naive CD8+ T-cell pool with aging governed by T-cell receptor:pMHC interactions. Proc. Natl Acad. Sci. USA 108, 13694–13699 (2011).
pubmed: 21813761 pmcid: 3158207 doi: 10.1073/pnas.1107594108
Decman, V. et al. Defective CD8 T cell responses in aged mice are due to quantitative and qualitative changes in virus-specific precursors. J. Immunol. 188, 1933–1941 (2012).
pubmed: 22246631 doi: 10.4049/jimmunol.1101098
Chiu, B.-C., Martin, B. E., Stolberg, V. R. & Chensue, S. W. Cutting edge: central memory CD8 T cells in aged mice are virtual memory cells. J. Immunol. 191, 5793–5796 (2013).
pubmed: 24227783 doi: 10.4049/jimmunol.1302509
Renkema, K. R., Li, G., Wu, A., Smithey, M. J. & Nikolich-Žugich, J. Two separate defects affecting true naive or virtual memory T cell precursors combine to reduce naive T cell responses with aging. J. Immunol. 192, 151–159 (2014).
pubmed: 24293630 doi: 10.4049/jimmunol.1301453
Forsey, R. J. et al. Plasma cytokine profiles in elderly humans. Mech. Ageing Dev. 124, 487–493 (2003).
pubmed: 12714257 doi: 10.1016/S0047-6374(03)00025-3
Thevaranjan, N. et al. Age-associated microbial dysbiosis promotes intestinal permeability, systemic inflammation, and macrophage dysfunction. Cell Host Microbe 21, 455–466.e4 (2017).
pubmed: 28407483 pmcid: 5392495 doi: 10.1016/j.chom.2017.03.002
Mostafavi, S. et al. Parsing the Interferon transcriptional network and its disease associations. Cell 164, 564–578 (2016).
pubmed: 26824662 pmcid: 4743492 doi: 10.1016/j.cell.2015.12.032
Delpoux, A., Lai, C.-Y., Hedrick, S. M. & Doedens, A. L. FOXO1 opposition of CD8+ T cell effector programming confers early memory properties and phenotypic diversity. Proc. Natl Acad. Sci. USA 114, E8865–E8874 (2017).
pubmed: 28973925 pmcid: 5651728 doi: 10.1073/pnas.1618916114
Müller, U. et al. Functional role of type I and type II interferons in antiviral defense. Science 264, 1918–1921 (1994).
pubmed: 8009221 doi: 10.1126/science.8009221
Delpoux, A. et al. FOXO1 constrains activation and regulates senescence in CD8 T cells. Cell Rep. 34, 108674 (2021).
pubmed: 33503413 doi: 10.1016/j.celrep.2020.108674
Essaghir, A., Dif, N., Marbehant, C. Y., Coffer, P. J. & Demoulin, J.-B. The transcription of FOXO genes is stimulated by FOXO3 and repressed by growth. Factors J. Biol. Chem. 284, 10334–10342 (2009).
pubmed: 19244250 doi: 10.1074/jbc.M808848200
Link, W. & Fernandez-Marcos, P. J. FOXO transcription factors at the interface of metabolism and cancer. Int. J. Cancer 141, 2379–2391 (2017).
pubmed: 28631330 doi: 10.1002/ijc.30840
Bapat, S. P. et al. Depletion of fat-resident Treg cells prevents age-associated insulin resistance. Nature 528, 137–141 (2015).
pubmed: 26580014 pmcid: 4670283 doi: 10.1038/nature16151
Koguchi-Yoshioka, H. et al. Skin T cells maintain their diversity and functionality in the elderly. Commun. Biol. 4, 13 (2021).
pubmed: 33398080 pmcid: 7782613 doi: 10.1038/s42003-020-01551-7
Goplen, N. P. et al. Tissue-resident CD8+ T cells drive age-associated chronic lung sequelae after viral pneumonia. Sci. Immunol. 5, eabc4557 (2020).
pubmed: 33158975 pmcid: 7970412 doi: 10.1126/sciimmunol.abc4557
Gustafson, C. E., Cavanagh, M. M., Jin, J., Weyand, C. M. & Goronzy, J. J. Functional pathways regulated by microRNA networks in CD8 T-cell aging. Aging Cell 18, e12879 (2019).
pubmed: 30488559 doi: 10.1111/acel.12879
Eberlein, J. et al. Aging promotes acquisition of naive-like CD8+ memory T cell traits and enhanced functionalities. J. Clin. Invest 126, 3942–3960 (2016).
pubmed: 27617858 pmcid: 5096808 doi: 10.1172/JCI88546
Pulko, V. et al. Human memory T cells with a naive phenotype accumulate with aging and respond to persistent viruses. Nat. Immunol. 17, 966–975 (2016).
pubmed: 27270402 pmcid: 4955715 doi: 10.1038/ni.3483
Moskowitz, D. M. et al. Epigenomics of human CD8 T cell differentiation and aging. Sci. Immunol. 2, eaag0192 (2017).
pubmed: 28439570 pmcid: 5399889 doi: 10.1126/sciimmunol.aag0192
Nikolich-Žugich, J. Aging of the T cell compartment in mice and humans: from no naive expectations to foggy memories. J. Immunol. Baltim. Md 1950 193, 2622–2629 (2014).
Wherry, E. J. et al. Molecular signature of CD8+ T cell exhaustion during chronic viral infection. Immunity 27, 670–684 (2007).
pubmed: 17950003 doi: 10.1016/j.immuni.2007.09.006
Rao, R. R., Li, Q., Gubbels Bupp, M. R. & Shrikant, P. A. Transcription factor Foxo1 represses T-bet-mediated effector functions and promotes memory CD8(+) T cell differentiation. Immunity 36, 374–387 (2012).
pubmed: 22425248 pmcid: 3314246 doi: 10.1016/j.immuni.2012.01.015
Zhang, L. et al. Mammalian target of rapamycin complex 2 controls CD8 T cell memory differentiation in a Foxo1-dependent manner. Cell Rep. 14, 1206–1217 (2016).
pubmed: 26804903 doi: 10.1016/j.celrep.2015.12.095
Ban, Y. H. et al. miR-150-mediated Foxo1 regulation programs CD8+ T cell differentiation. Cell Rep. 20, 2598–2611 (2017).
pubmed: 28903041 doi: 10.1016/j.celrep.2017.08.065
Delpoux, A. et al. Continuous activity of Foxo1 is required to prevent anergy and maintain the memory state of CD8+ T cells. J. Exp. Med. 215, 575–594 (2018).
pubmed: 29282254 pmcid: 5789410 doi: 10.1084/jem.20170697
Ouyang, W. et al. Novel Foxo1-dependent transcriptional programs control T(reg) cell function. Nature 491, 554–559 (2012).
pubmed: 23135404 pmcid: 3771531 doi: 10.1038/nature11581
Charbonnier, L.-M. et al. Functional reprogramming of regulatory T cells in the absence of Foxp3. Nat. Immunol. 20, 1208–1219 (2019).
pubmed: 31384057 pmcid: 6707855 doi: 10.1038/s41590-019-0442-x
Fontenot, J. D., Gavin, M. A. & Rudensky, A. Y. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat. Immunol. 4, 330–336 (2003).
pubmed: 12612578 doi: 10.1038/ni904
Kim, J. M., Rasmussen, J. P. & Rudensky, A. Y. Regulatory T cells prevent catastrophic autoimmunity throughout the lifespan of mice. Nat. Immunol. 8, 191–197 (2007).
pubmed: 17136045 doi: 10.1038/ni1428
Jergović, M., Thompson, H. L., Renkema, K. R., Smithey, M. J. & Nikolich-Žugich, J. Defective transcriptional programming of effector CD8 T cells in aged mice is cell-extrinsic and can be corrected by administration of IL-12 and IL-18. Front. Immunol. 10, 2206 (2019).
pubmed: 31620129 pmcid: 6759569 doi: 10.3389/fimmu.2019.02206
Fulop, T., Witkowski, J. M., Olivieri, F. & Larbi, A. The integration of inflammaging in age-related diseases. Semin. Immunol. 40, 17–35 (2018).
pubmed: 30287177 doi: 10.1016/j.smim.2018.09.003
Snell, L. M., McGaha, T. L. & Brooks, D. G. Type I interferon in chronic virus infection and cancer. Trends Immunol. 38, 542–557 (2017).
pubmed: 28579323 pmcid: 8059441 doi: 10.1016/j.it.2017.05.005
Boukhaled, G. M., Harding, S. & Brooks, D. G. Opposing roles of type I interferons in cancer immunity. Annu. Rev. Pathol. 16, 167–198 (2021).
pubmed: 33264572 doi: 10.1146/annurev-pathol-031920-093932
Teijaro, J. R. et al. Persistent LCMV infection is controlled by blockade of type I interferon signaling. Science 340, 207–211 (2013).
pubmed: 23580529 pmcid: 3640797 doi: 10.1126/science.1235214
Wilson, E. B. et al. Blockade of chronic type I interferon signaling to control persistent LCMV infection. Science 340, 202–207 (2013).
pubmed: 23580528 pmcid: 3704950 doi: 10.1126/science.1235208
Cheng, L. et al. Blocking type I interferon signaling enhances T cell recovery and reduces HIV-1. Reserv. J. Clin. Invest. 127, 269–279 (2017).
doi: 10.1172/JCI90745
Jacquelot, N. et al. Sustained Type I interferon signaling as a mechanism of resistance to PD-1 blockade. Cell Res. 29, 846–861 (2019).
pubmed: 31481761 pmcid: 6796942 doi: 10.1038/s41422-019-0224-x
Reticker-Flynn, N. E. et al. Lymph node colonization induces tumor-immune tolerance to promote distant metastasis. Cell 185, 1924–1942.e23 (2022).
pubmed: 35525247 pmcid: 9149144 doi: 10.1016/j.cell.2022.04.019
Ma, H. et al. Interferon-alpha promotes immunosuppression through IFNAR1/STAT1 signalling in head and neck squamous cell carcinoma. Br. J. Cancer 120, 317–330 (2019).
pubmed: 30555157 doi: 10.1038/s41416-018-0352-y
Sumida, T. S. et al. Type I interferon transcriptional network regulates expression of coinhibitory receptors in human T cells. Nat. Immunol. 23, 632–642 (2022).
pubmed: 35301508 pmcid: 8989655 doi: 10.1038/s41590-022-01152-y
Xia, Y. et al. Neuronal C/EBPβ/AEP pathway shortens life span via selective GABAnergic neuronal degeneration by FOXO repression. Sci. Adv. 8, eabj8658 (2022).
pubmed: 35353567 pmcid: 8967231 doi: 10.1126/sciadv.abj8658
García-Prat, L. et al. FoxO maintains a genuine muscle stem-cell quiescent state until geriatric age. Nat. Cell Biol. 22, 1307–1318 (2020).
pubmed: 33106654 doi: 10.1038/s41556-020-00593-7
Akasaki, Y. et al. Dysregulated FOXO transcription factors in articular cartilage in aging and osteoarthritis. Osteoarthr. Cartil. 22, 162–170 (2014).
doi: 10.1016/j.joca.2013.11.004
Duffy, T., Bekki, H. & Lotz, M. K. Genome-wide occupancy profiling reveals critical roles of FoxO1 in regulating extracellular matrix and circadian rhythm genes in human chondrocytes. Arthritis Rheumatol. 72, 1514–1523 (2020).
pubmed: 32281255 pmcid: 7813518 doi: 10.1002/art.41284
Alvarez-Garcia, O., Matsuzaki, T., Olmer, M., Masuda, K. & Lotz, M. K. Age-related reduction in the expression of FOXO transcription factors and correlations with intervertebral disc degeneration. J. Orthop. Res. 35, 2682–2691 (2017).
pubmed: 28430387 pmcid: 5650945 doi: 10.1002/jor.23583
Lee, K. I. et al. FOXO1 and FOXO3 transcription factors have unique functions in meniscus development and homeostasis during aging and osteoarthritis. Proc. Natl Acad. Sci. USA 117, 3135–3143 (2020).
pubmed: 31980519 pmcid: 7022148 doi: 10.1073/pnas.1918673117
Xie, L. et al. FOXO1 is a tumor suppressor in classical Hodgkin lymphoma. Blood 119, 3503–3511 (2012).
pubmed: 22343918 doi: 10.1182/blood-2011-09-381905
Wang, Y. et al. Th2 lymphoproliferative disorder of LatY136F mutant mice unfolds independently of TCR-MHC engagement and is insensitive to the action of Foxp3+ regulatory T cells. J. Immunol. 180, 1565–1575 (2008).
pubmed: 18209052 doi: 10.4049/jimmunol.180.3.1565
Delpoux, A. et al. TCR signaling events are required for maintaining CD4 regulatory T cell numbers and suppressive capacities in the periphery. J. Immunol. 193, 5914–5923 (2014).
pubmed: 25381435 doi: 10.4049/jimmunol.1400477
Taleb, K. et al. Chronic type I IFN is sufficient to promote immunosuppression through accumulation of myeloid-derived suppressor cells. J. Immunol. 198, 1156–1163 (2017).
pubmed: 28003378 doi: 10.4049/jimmunol.1502638
Delpoux, A. et al. Foxp3-independent loss of regulatory CD4+ T-cell suppressive capacities induced by self-deprivation. Eur. J. Immunol. 42, 1237–1249 (2012).
pubmed: 22539296 doi: 10.1002/eji.201142148
Le Campion, A. et al. Quantitative and qualitative adjustment of thymic T cell production by clonal expansion of premigrant thymocytes. J. Immunol. 168, 1664–1671 (2002).
pubmed: 11823495 doi: 10.4049/jimmunol.168.4.1664
Bolstad, B. M., Irizarry, R. A., Astrand, M. & Speed, T. P. A comparison of normalization methods for high-density oligonucleotide array data based on variance and bias. Bioinforma. Oxf. Engl. 19, 185–193 (2003).
doi: 10.1093/bioinformatics/19.2.185

Auteurs

Aurélie Durand (A)

Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, 75014, Paris, France.

Nelly Bonilla (N)

Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, 75014, Paris, France.

Théo Level (T)

Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, 75014, Paris, France.

Zoé Ginestet (Z)

Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, 75014, Paris, France.

Amélie Lombès (A)

Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, 75014, Paris, France.

Vincent Guichard (V)

Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, 75014, Paris, France.

Mathieu Germain (M)

Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, 75014, Paris, France.

Sébastien Jacques (S)

Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, 75014, Paris, France.

Franck Letourneur (F)

Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, 75014, Paris, France.

Marcio Do Cruzeiro (M)

Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, 75014, Paris, France.

Carmen Marchiol (C)

Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, 75014, Paris, France.

Gilles Renault (G)

Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, 75014, Paris, France.

Morgane Le Gall (M)

Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, 75014, Paris, France.

Céline Charvet (C)

Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.
CNRS UMR7104, Illkirch, France.
INSERM U1258, Illkirch, France.
Université de Strasbourg, Strasbourg, France.

Agnès Le Bon (A)

Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, 75014, Paris, France.

Bruno Martin (B)

Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, 75014, Paris, France.

Cédric Auffray (C)

Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, 75014, Paris, France.

Bruno Lucas (B)

Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, 75014, Paris, France. bruno.lucas@inserm.fr.

Classifications MeSH