miR-184 represses β-catenin and behaves as a skin tumor suppressor.


Journal

Cell death & disease
ISSN: 2041-4889
Titre abrégé: Cell Death Dis
Pays: England
ID NLM: 101524092

Informations de publication

Date de publication:
26 Feb 2024
Historique:
received: 20 08 2023
accepted: 12 02 2024
revised: 27 01 2024
medline: 27 2 2024
pubmed: 27 2 2024
entrez: 26 2 2024
Statut: epublish

Résumé

miR-184-knockout mice display perturbed epidermal stem cell differentiation. However, the potential role of miR-184 in skin pathology is unclear. Here, we report that miR-184 controls epidermal stem cell dynamics and that miR-184 ablation enhances skin carcinogenesis in mice. In agreement, repression of miR-184 in human squamous cell carcinoma (SCC) enhances neoplastic hallmarks of human SCC cells in vitro and tumor development in vivo. Characterization of miR-184-regulatory network, suggests that miR-184 inhibits pro-oncogenic pathways, cell proliferation, and epithelial to mesenchymal transformation. Of note, depletion of miR-184 enhances the levels of β-catenin under homeostasis and following experimental skin carcinogenesis. Finally, the repression of β-catenin by miR-184, inhibits the neoplastic phenotype of SCC cells. Taken together, miR-184 behaves as an epidermal tumor suppressor, and may provide a potentially useful target for skin SCC therapy.

Identifiants

pubmed: 38409173
doi: 10.1038/s41419-024-06554-4
pii: 10.1038/s41419-024-06554-4
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

174

Subventions

Organisme : Israel Cancer Association (ICA)
ID : 20210135, 20221521

Informations de copyright

© 2024. The Author(s).

Références

Silpa SR, Chidvila V. A review on skin cancer. Int Res J Pharm. 2013;4:83–8.
doi: 10.7897/2230-8407.04814
Hasan ZU, Ahmed I, Matin RN, Homer V, Lear JT, Ismail F, et al. Topical treatment of actinic keratoses in organ transplant recipients: a feasibility study for SPOT (Squamous cell carcinoma Prevention in Organ transplant recipients using Topical treatments). Br J Dermatol. 2022;187:324–37.
doi: 10.1111/bjd.20974 pubmed: 34988975 pmcid: 9543168
Rosenberg AR, Tabacchi M, Ngo KH, Wallendorf M, Rosman IS, Cornelius LA, et al. Skin cancer precursor immunotherapy for squamous cell carcinoma prevention. JCI Insight. 2019;4:e125476.
doi: 10.1172/jci.insight.125476 pubmed: 30895944 pmcid: 6483001
Fania L, Didona D, Di Pietro FR, Verkhovskaia S, Morese R, Paolino G, et al. Cutaneous squamous cell carcinoma: from pathophysiology to novel therapeutic approaches. Biomedicines. 2021;9:171.
doi: 10.3390/biomedicines9020171 pubmed: 33572373 pmcid: 7916193
Kitamura S, Maeda T, Yanagi T. Vandetanib inhibits cell growth in EGFR-expressing cutaneous squamous cell carcinoma. Biochem Biophys Res Commun. 2020;531:396–401.
doi: 10.1016/j.bbrc.2020.07.111 pubmed: 32800552
Smirnov A, Anemona L, Novelli F, Piro CM, Annicchiarico-Petruzzelli M, Melino G, et al. p63 is a promising marker in the diagnosis of unusual skin cancer. Int J Mol Sci. 2019;20:5781.
doi: 10.3390/ijms20225781 pubmed: 31744230 pmcid: 6888618
Sherwood V, Leigh IM. WNT signaling in cutaneous squamous cell carcinoma: a future treatment strategy? J Investig Dermatol. 2016;136:1760–7.
doi: 10.1016/j.jid.2016.05.108 pubmed: 27448706
Lan YJ, Chen H, Chen JQ, Lei QH, Zheng M, Shao ZR. Immunolocalization of Vimentin, Keratin 17, Ki-67, Involucrin, β-Catenin and E-Cadherin in Cutaneous Squamous Cell Carcinoma. Pathol Oncol Res. 2014;20:263–6.
doi: 10.1007/s12253-013-9690-5 pubmed: 23999979
Sobel K, Tham M, Stark H, Stammer H, Prätzel‐Wunder S, Bickenbach JR, et al. Wnt‐3a‐activated human fibroblasts promote human keratinocyte proliferation and matrix destruction. Int J Cancer. 2015;136:2786–98.
doi: 10.1002/ijc.29336 pubmed: 25403422
Bartel DP. MicroRNAs. Cell. 2004;116:281–97.
doi: 10.1016/S0092-8674(04)00045-5 pubmed: 14744438
Akçakaya P. miR-185 and miR-133b deregulation is associated with overall survival and metastasis in colorectal cancer. Int J Oncol. 2011 May 13 [cited 2024 Jan 27]; Available from: http://www.spandidos-publications.com/10.3892/ijo.2011.1043
Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer. 2006;6:857–66.
doi: 10.1038/nrc1997 pubmed: 17060945
Khan A, Ahmed E, Elareer N, Junejo K, Steinhoff M, Uddin S. Role of miRNA-regulated cancer stem cells in the pathogenesis of human malignancies. Cells 2019;8:840.
doi: 10.3390/cells8080840 pubmed: 31530793 pmcid: 6721829
García-Sancha N, Corchado-Cobos R, Pérez-Losada J, Cañueto J. MicroRNA dysregulation in cutaneous squamous cell carcinoma. Int J Mol Sci. 2019;20:2181.
doi: 10.3390/ijms20092181 pubmed: 31052530 pmcid: 6540078
Hughes AE, Bradley DT, Campbell M, Lechner J, Dash DP, Simpson DA, et al. Mutation altering the miR-184 seed region causes familial keratoconus with cataract. Am J Hum Genet. 2011;89:628–33.
doi: 10.1016/j.ajhg.2011.09.014 pubmed: 21996275 pmcid: 3213395
Wong TS, Liu XB, Wong BYH, Ng RWM, Yuen APW, Wei WI. Mature miR-184 as Potential Oncogenic microRNA of squamous cell carcinoma of tongue. Clin Cancer Res. 2008;14:2588–92.
doi: 10.1158/1078-0432.CCR-07-0666 pubmed: 18451220
Chen D, Li J, Li S, Han P, Li N, Wang Y, et al. miR‑184 promotes cell proliferation in tongue squamous cell carcinoma by targeting SOX7. Oncol Lett [Internet]. 2018 Jun 5 [cited 2024 Jan 27]; Available from: http://www.spandidos-publications.com/10.3892/ol.2018.8906
Cheng Z, Wang HZ, Li X, Wu Z, Han Y, Li Y, et al. MicroRNA-184 inhibits cell proliferation and invasion, and specifically targets TNFAIP2 in Glioma. J Exp Clin Cancer Res. 2015;34:27.
doi: 10.1186/s13046-015-0142-9 pubmed: 25888093 pmcid: 4387599
Malzkorn B, Wolter M, Liesenberg F, Grzendowski M, Stühler K, Meyer HE, et al. Identification and functional characterization of micrornas involved in the malignant progression of gliomas. Brain Pathol. 2010;20:539–50.
doi: 10.1111/j.1750-3639.2009.00328.x pubmed: 19775293
Nagosa S, Leesch F, Putin D, Bhattacharya S, Altshuler A, Serror L, et al. microRNA-184 induces a commitment switch to epidermal differentiation. Stem Cell Rep. 2017;9:1991–2004.
doi: 10.1016/j.stemcr.2017.10.030
Altshuler A, Verbuk M, Bhattacharya S, Abramovich I, Haklai R, Hanna JH. et al.RAS regulates the transition from naive to primed pluripotent stem cells.Stem Cell Rep.2018;10:1088–101.
doi: 10.1016/j.stemcr.2018.01.004
Abel EL, Angel JM, Kiguchi K, DiGiovanni J. Multi-stage chemical carcinogenesis in mouse skin: fundamentals and applications. Nat Protoc. 2009;4:1350–62.
doi: 10.1038/nprot.2009.120 pubmed: 19713956 pmcid: 3213400
Bhattacharya S, Serror L, Nir E, Dhiraj D, Altshuler A, Khreish M, et al. SOX2 regulates P63 and stem/progenitor cell state in the corneal epithelium. Stem Cells. 2019;37:417–29.
doi: 10.1002/stem.2959 pubmed: 30548157
Nasser W, Amitai-Lange A, Soteriou D, Hanna R, Tiosano B, Fuchs Y, et al. Corneal-committed cells restore the stem cell pool and tissue boundary following injury. Cell Rep. 2018;22:323–31.
doi: 10.1016/j.celrep.2017.12.040 pubmed: 29320729
Avitan-Hersh E, Feng Y, Oknin Vaisman A, Abu Ahmad Y, Zohar Y, Zhang T, et al. Regulation of eIF2α by RNF4 promotes melanoma tumorigenesis and therapy resistance. J Investig Dermatol. 2020;140:2466–77.
doi: 10.1016/j.jid.2020.04.008 pubmed: 32360601
Boyango I, Barash U, Naroditsky I, Li JP, Hammond E, Ilan N, et al. Heparanase Cooperates with Ras to drive breast and skin tumorigenesis. Cancer Res. 2014;74:4504–14.
doi: 10.1158/0008-5472.CAN-13-2962 pubmed: 24970482 pmcid: 4134691
Abramson JH. WINPEPI updated: computer programs for epidemiologists, and their teaching potential. Epidemiol Perspect Innov. 2011;8:1.
doi: 10.1186/1742-5573-8-1 pubmed: 21288353 pmcid: 3041648
Amitai-Lange A, Berkowitz E, Altshuler A, Dbayat N, Nasser W, Suss-Toby E, et al. A method for lineage tracing of corneal cells using multi-color fluorescent reporter mice. J Vis Exp. 2015;106:e53370.
Park CY, Choi YS, McManus MT. Analysis of microRNA knockouts in mice. Hum Mol Genet. 2010;19:R169–75.
doi: 10.1093/hmg/ddq367 pubmed: 20805106 pmcid: 2981466
Nicolas M, Wolfer A, Raj K, Kummer JA, Mill P, Van Noort M, et al. Notch1 functions as a tumor suppressor in mouse skin. Nat Genet. 2003;33:416–21.
doi: 10.1038/ng1099 pubmed: 12590261
Yang C, Jin K, Tong Y, Cho WC. Therapeutic potential of cancer stem cells. Med Oncol Northwood Lond Engl. 2015;32:619.
Miao Y, Yang H, Levorse J, Yuan S, Polak L, Sribour M, et al. Adaptive immune resistance emerges from tumor-initiating stem cells. Cell 2019;177:1172–86.e14.
doi: 10.1016/j.cell.2019.03.025 pubmed: 31031009 pmcid: 6525024

Auteurs

Lubov Turovsky (L)

Department of Genetics & Developmental Biology, The Rappaport Faculty of Medicine & Research Institute, Technion Integrated Cancer Center, Technion - Israel Institute of Technology, Haifa, 31096, Israel.
Skin Cancer Research lab, Clinical research institute (CRIR), Rambam Health Care Campus, Haifa, 31096, Israel.

Ghazal Kheshaiboun (G)

Department of Genetics & Developmental Biology, The Rappaport Faculty of Medicine & Research Institute, Technion Integrated Cancer Center, Technion - Israel Institute of Technology, Haifa, 31096, Israel.
Skin Cancer Research lab, Clinical research institute (CRIR), Rambam Health Care Campus, Haifa, 31096, Israel.

Gharam Yassen (G)

Department of Genetics & Developmental Biology, The Rappaport Faculty of Medicine & Research Institute, Technion Integrated Cancer Center, Technion - Israel Institute of Technology, Haifa, 31096, Israel.

Sara Nagosa (S)

Department of Genetics & Developmental Biology, The Rappaport Faculty of Medicine & Research Institute, Technion Integrated Cancer Center, Technion - Israel Institute of Technology, Haifa, 31096, Israel.

Ilanit Boyango (I)

Skin Cancer Research lab, Clinical research institute (CRIR), Rambam Health Care Campus, Haifa, 31096, Israel.

Aya Amitai-Lange (A)

Department of Genetics & Developmental Biology, The Rappaport Faculty of Medicine & Research Institute, Technion Integrated Cancer Center, Technion - Israel Institute of Technology, Haifa, 31096, Israel.

Swarnabh Bhattacharya (S)

Department of Genetics & Developmental Biology, The Rappaport Faculty of Medicine & Research Institute, Technion Integrated Cancer Center, Technion - Israel Institute of Technology, Haifa, 31096, Israel.

Neta Ilan (N)

Cell Biology and Cancer Science, The Ruth and Bruce Rappaport Faculty of Medicine, Technion Integrated Cancer Center, Technion Israel Institute of Technology, Haifa, 31096, Israel.

Israel Vlodavsky (I)

Cell Biology and Cancer Science, The Ruth and Bruce Rappaport Faculty of Medicine, Technion Integrated Cancer Center, Technion Israel Institute of Technology, Haifa, 31096, Israel.

Daniel Aberdam (D)

Université de Paris Cité, INSERM U1138, Centre des Cordeliers, Paris, France.

Ruby Shalom-Feuerstein (R)

Department of Genetics & Developmental Biology, The Rappaport Faculty of Medicine & Research Institute, Technion Integrated Cancer Center, Technion - Israel Institute of Technology, Haifa, 31096, Israel.

Emily Avitan-Hersh (E)

Skin Cancer Research lab, Clinical research institute (CRIR), Rambam Health Care Campus, Haifa, 31096, Israel. emily@technion.ac.il.
Cell Biology and Cancer Science, The Ruth and Bruce Rappaport Faculty of Medicine, Technion Integrated Cancer Center, Technion Israel Institute of Technology, Haifa, 31096, Israel. emily@technion.ac.il.

Classifications MeSH